Skip to main content

2013 | OriginalPaper | Buchkapitel

5. Brownian Models of Chemical Reactions in Microdomains

verfasst von : Zeev Schuss

Erschienen in: Brownian Dynamics at Boundaries and Interfaces

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Biological microstructures such as synapses, dendritic spines, subcellular domains, sensor cells, and many other structures are regulated by chemical reactions that involve only a small number of molecules, that is, between a few and up to thousands of molecules. Traditional chemical kinetics theory may provide an inadequate description of chemical reactions in such microdomains. Models with a small number of diffusers can be used to describe noise due to gating of ionic channels by random binding and unbinding of ligands in biological sensor cells, such as olfactory cilia, photoreceptors, and hair cells in the cochlea. A chemical reaction that involves only 10–100 proteins can cause a qualitative transition in the physiological behavior of a given part of a cell. Large fluctuations should be expected in a reaction if so few molecules are involved, both in transient and persistent binding and unbinding reactions. In the latter case, large fluctuations in the number of bound molecules can force the physiological state to change all the time, unless there is a specific mechanism that prevents the switch and stabilizes the physiological state. Therefore, a theory of chemical kinetics of such reactions is needed to predict the threshold at which switches occur and to explain how the physiological function is regulated in molecular terms at a subcellular level.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Berne, B.J. and R. Pecora (1976), Dynamic Light Scattering with Applications to Chemistry, Biology, and Physics. Wiley-Interscience NY. Berne, B.J. and R. Pecora (1976), Dynamic Light Scattering with Applications to Chemistry, Biology, and Physics. Wiley-Interscience NY.
Zurück zum Zitat Blomberg, F., R.S. Cohen, and P. Siekevitz (1977), “The structure of postsynaptic densities isolated from dog cerebral cortex, II. Characterization and arrangement of some of the major protein within the structure,” J. Cell Biol., 74 (1), 204–225. Blomberg, F., R.S. Cohen, and P. Siekevitz (1977), “The structure of postsynaptic densities isolated from dog cerebral cortex, II. Characterization and arrangement of some of the major protein within the structure,” J. Cell Biol., 74 (1), 204–225.
Zurück zum Zitat Bonhoeffer, T. and R. Yuste (2002), “Spine motility: phenomenology, mechanisms, and function,” Neuron, 35 (6), 1019–1027.CrossRef Bonhoeffer, T. and R. Yuste (2002), “Spine motility: phenomenology, mechanisms, and function,” Neuron, 35 (6), 1019–1027.CrossRef
Zurück zum Zitat Chandrasekhar, S. (1943), “Stochastic Problems In Physics and Astronomy,” Rev. Mod. Phys., 15, 2–89.CrossRef Chandrasekhar, S. (1943), “Stochastic Problems In Physics and Astronomy,” Rev. Mod. Phys., 15, 2–89.CrossRef
Zurück zum Zitat Crick, F. “Do dendritic spines twitch?” Trends Neurosci, 5, 44–46. Crick, F. “Do dendritic spines twitch?” Trends Neurosci, 5, 44–46.
Zurück zum Zitat Dunaevsky, A., A. Tashiro, A. Majewska, C. Mason, R. Yuste (1999), “Developmental regulation of spine motility in the mammalian central nervous system,” PNAS, 96 (23), 13438–13443.CrossRef Dunaevsky, A., A. Tashiro, A. Majewska, C. Mason, R. Yuste (1999), “Developmental regulation of spine motility in the mammalian central nervous system,” PNAS, 96 (23), 13438–13443.CrossRef
Zurück zum Zitat Fischer, M., S. Kaech, D. Knutti, A. Matus (1998, “Rapid actin-based plasticity in dendritic spines,” Neuron, 20 (5), 847–854). Fischer, M., S. Kaech, D. Knutti, A. Matus (1998, “Rapid actin-based plasticity in dendritic spines,” Neuron, 20 (5), 847–854).
Zurück zum Zitat Fischer, M., S. Kaech, U. Wagner, H. Brinkhaus, A. Matus (2000), “Glutamate receptors regulate actin-based plasticity in dendritic spines,” Nat. Neurosci., 3 (9), 887–894.CrossRef Fischer, M., S. Kaech, U. Wagner, H. Brinkhaus, A. Matus (2000), “Glutamate receptors regulate actin-based plasticity in dendritic spines,” Nat. Neurosci., 3 (9), 887–894.CrossRef
Zurück zum Zitat Hänggi, P., P. Talkner, and M. Borkovec (1990), “50 years after Kramers,” Rev. Mod. Phys., 62, 251–341.CrossRef Hänggi, P., P. Talkner, and M. Borkovec (1990), “50 years after Kramers,” Rev. Mod. Phys., 62, 251–341.CrossRef
Zurück zum Zitat Haynes, L.W., A.R. Kay, K.W. Yau (1986), “Single cyclic GMP-activated channel activity in excised patches of rod outer segment membrane,” Nature, 321 (6065), 66–70.CrossRef Haynes, L.W., A.R. Kay, K.W. Yau (1986), “Single cyclic GMP-activated channel activity in excised patches of rod outer segment membrane,” Nature, 321 (6065), 66–70.CrossRef
Zurück zum Zitat Holcman, D., Z. Schuss, and E. Korkotian (2004), “Calcium dynamics in dendritic spines and spine motility,” Biophys J., 87, 81–91.CrossRef Holcman, D., Z. Schuss, and E. Korkotian (2004), “Calcium dynamics in dendritic spines and spine motility,” Biophys J., 87, 81–91.CrossRef
Zurück zum Zitat Kandel, E.R., J.H. Schwartz, T.M. Jessell (2000), Principles of Neural Science, McGraw-Hill, New York, 4th edition. Kandel, E.R., J.H. Schwartz, T.M. Jessell (2000), Principles of Neural Science, McGraw-Hill, New York, 4th edition.
Zurück zum Zitat Koch, C. (1999), Biophysics of Computation, Oxford University Press, NY. Koch, C. (1999), Biophysics of Computation, Oxford University Press, NY.
Zurück zum Zitat Koch, C. and A. Zador (1993), “The function of dendritic spines: Devices subserving biochemical rather than electrical compartmentalization,” J. Neurosci., 13, 413–422. Koch, C. and A. Zador (1993), “The function of dendritic spines: Devices subserving biochemical rather than electrical compartmentalization,” J. Neurosci., 13, 413–422.
Zurück zum Zitat Koch, C. and I. Segev (editors) (2001), Methods in Neuronal Modeling (3rd printing), MIT Press, Cambridge, MA. Koch, C. and I. Segev (editors) (2001), Methods in Neuronal Modeling (3rd printing), MIT Press, Cambridge, MA.
Zurück zum Zitat Korkotian, E. and M. Segal (2001), “Spike-associated fast contraction of dendritic spines in cultured hippocampal neurons,” Neuron, 30 (3), 751–758.CrossRef Korkotian, E. and M. Segal (2001), “Spike-associated fast contraction of dendritic spines in cultured hippocampal neurons,” Neuron, 30 (3), 751–758.CrossRef
Zurück zum Zitat Kramers, H.A. (1940), “Brownian motion in field of force and diffusion model of chemical reaction,” Physica, 7, 284–304.MathSciNetMATHCrossRef Kramers, H.A. (1940), “Brownian motion in field of force and diffusion model of chemical reaction,” Physica, 7, 284–304.MathSciNetMATHCrossRef
Zurück zum Zitat Landau, L.D. and E.M. Lifshitz (1975), Fluid Mechanics, Pergamon Press, Elmsford, NY. Landau, L.D. and E.M. Lifshitz (1975), Fluid Mechanics, Pergamon Press, Elmsford, NY.
Zurück zum Zitat Lisman, J. (1994), “The CAM kinase II hypothesis for the storage of synaptic memory,” Trends Neurosci., 10, 406–412.CrossRef Lisman, J. (1994), “The CAM kinase II hypothesis for the storage of synaptic memory,” Trends Neurosci., 10, 406–412.CrossRef
Zurück zum Zitat Lisman, J. (2003), “Long-term potentiation: outstanding questions and attempted synthesis,” Philos. Trans. R. Soc. Lond. B Biol. Sci., 29 (358(1432)), 829–842. Lisman, J. (2003), “Long-term potentiation: outstanding questions and attempted synthesis,” Philos. Trans. R. Soc. Lond. B Biol. Sci., 29 (358(1432)), 829–842.
Zurück zum Zitat Majewska, A., A. Tashiro, and R. Yuste (2000a), “Regulation of spine calcium dynamics by rapid spine motility,” J. Neurosci., 20 (22), 8262–8268. Majewska, A., A. Tashiro, and R. Yuste (2000a), “Regulation of spine calcium dynamics by rapid spine motility,” J. Neurosci., 20 (22), 8262–8268.
Zurück zum Zitat Majewska, A., E. Brown, J. Ross, R. Yuste (2000b), “Mechanisms of calcium decay kinetics in hippocampal spines: role of spine calcium pumps and calcium diffusion through the spine neck in biochemical compartmentalization,” J. Neurosci., 20 (5), 1722–1734. Majewska, A., E. Brown, J. Ross, R. Yuste (2000b), “Mechanisms of calcium decay kinetics in hippocampal spines: role of spine calcium pumps and calcium diffusion through the spine neck in biochemical compartmentalization,” J. Neurosci., 20 (5), 1722–1734.
Zurück zum Zitat Malenka, R.C., J.A. Kauer, D.J. Perkel, and R.A. Nicoll (1989), “The impact of postsynaptic calcium on synaptic transmission—its role in long-term potentiation,” Trends Neurosci., 12 (11), 444–450.CrossRef Malenka, R.C., J.A. Kauer, D.J. Perkel, and R.A. Nicoll (1989), “The impact of postsynaptic calcium on synaptic transmission—its role in long-term potentiation,” Trends Neurosci., 12 (11), 444–450.CrossRef
Zurück zum Zitat Matkowsky, B.J. and Z. Schuss (1977), “The exit problem for randomly perturbed dynamical systems,” SIAM J. Appl. Math., 33, 365–382.MathSciNetMATHCrossRef Matkowsky, B.J. and Z. Schuss (1977), “The exit problem for randomly perturbed dynamical systems,” SIAM J. Appl. Math., 33, 365–382.MathSciNetMATHCrossRef
Zurück zum Zitat Morales, M., E. Fifkova (1989), “Distribution of MAP2 in dendritic spines and its colocalization with actin. An immunogold electron-microscope study,” Cell Tissue Res., 256 (3), 447–456. Morales, M., E. Fifkova (1989), “Distribution of MAP2 in dendritic spines and its colocalization with actin. An immunogold electron-microscope study,” Cell Tissue Res., 256 (3), 447–456.
Zurück zum Zitat Nadler, B., T. Naeh, and Z. Schuss (2002), “The stationary arrival process of diffusing particles from a continuum to an absorbing boundary is Poissonian,” SIAM J. Appl. Math., 62 (2), 433–447.MathSciNetCrossRef Nadler, B., T. Naeh, and Z. Schuss (2002), “The stationary arrival process of diffusing particles from a continuum to an absorbing boundary is Poissonian,” SIAM J. Appl. Math., 62 (2), 433–447.MathSciNetCrossRef
Zurück zum Zitat Nimchinsky, E.A., B.L. Sabatini, K. Svoboda (2002), “Structure and function of dendritic spines,” Annu. Rev. Physiol., 64, 313–335.CrossRef Nimchinsky, E.A., B.L. Sabatini, K. Svoboda (2002), “Structure and function of dendritic spines,” Annu. Rev. Physiol., 64, 313–335.CrossRef
Zurück zum Zitat Picones, A. and J.I. Korenbrot (1994), “Analysis of fluctuations in the CGMP-dependent currents of cone photoreceptor outer segments,” Biophys. J. 66, (2, Part 1), 360–365. Picones, A. and J.I. Korenbrot (1994), “Analysis of fluctuations in the CGMP-dependent currents of cone photoreceptor outer segments,” Biophys. J. 66, (2, Part 1), 360–365.
Zurück zum Zitat Ramón y Cajal, S. (1909), “Les nouvelles idées sur la structure du système nerveux chez l’homme et chez les vertébrés,” Transl. L. Azouly, Malaine, Paris, France. “New ideas on the structure of the nervous system of man and vertebrates,” Transl. N. & N.L. Swanson, MIT Press, Cambridge, MA 1991. Ramón y Cajal, S. (1909), “Les nouvelles idées sur la structure du système nerveux chez l’homme et chez les vertébrés,” Transl. L. Azouly, Malaine, Paris, France. “New ideas on the structure of the nervous system of man and vertebrates,” Transl. N. & N.L. Swanson, MIT Press, Cambridge, MA 1991.
Zurück zum Zitat Rieke, F. and D.A. Baylor (1996), “Molecular origin of continuous dark noise in rod photoreceptors,” Biophys J, 71, 2553–2572.CrossRef Rieke, F. and D.A. Baylor (1996), “Molecular origin of continuous dark noise in rod photoreceptors,” Biophys J, 71, 2553–2572.CrossRef
Zurück zum Zitat Sabatini, B.L., M. Maravall, and K. Svoboda (2001), “Ca2 +  signalling in dendritic spines,” Curr. Opin. Neurobiol., 11 (3), 349–356.CrossRef Sabatini, B.L., M. Maravall, and K. Svoboda (2001), “Ca2 +  signalling in dendritic spines,” Curr. Opin. Neurobiol., 11 (3), 349–356.CrossRef
Zurück zum Zitat Schuss, Z. (2010b), Theory and Applications of Stochastic Processes, and Analytical Approach, Springer series on Applied Mathematical Sciences 170, NY. Schuss, Z. (2010b), Theory and Applications of Stochastic Processes, and Analytical Approach, Springer series on Applied Mathematical Sciences 170, NY.
Zurück zum Zitat Segev, I. and W. Rall (1988), “Computational study of an excitable dendritic spine,” J. Neurophysiology, 60 (6), 499–523. Segev, I. and W. Rall (1988), “Computational study of an excitable dendritic spine,” J. Neurophysiology, 60 (6), 499–523.
Zurück zum Zitat Shepherd, G.M. (1996), “The dendritic spine: a multi-functional integrative unit,” J. Neurophysiology, 75 (6), 2197–2210. Shepherd, G.M. (1996), “The dendritic spine: a multi-functional integrative unit,” J. Neurophysiology, 75 (6), 2197–2210.
Zurück zum Zitat Volfovsky, N., H. Parnas, M. Segal, and E. Korkotian (1999), “Geometry of dendritic spines affects calcium dynamics in hippocampal neurons: theory and experiments,” J. Neurophysiol., 82, 450–454. Volfovsky, N., H. Parnas, M. Segal, and E. Korkotian (1999), “Geometry of dendritic spines affects calcium dynamics in hippocampal neurons: theory and experiments,” J. Neurophysiol., 82, 450–454.
Zurück zum Zitat Yuste, R. and W. Denk (1995), “Dendritic spines as basic functional units of neuronal integration,” Nature, 375 (6533), 682–684.CrossRef Yuste, R. and W. Denk (1995), “Dendritic spines as basic functional units of neuronal integration,” Nature, 375 (6533), 682–684.CrossRef
Zurück zum Zitat Zador, A., C. Koch, and T.H. Brown (1990), “Biophysical model of a Hebbian synapse,” PNAS, 87, 6718–6722.CrossRef Zador, A., C. Koch, and T.H. Brown (1990), “Biophysical model of a Hebbian synapse,” PNAS, 87, 6718–6722.CrossRef
Zurück zum Zitat Zucker, R.S. and W.G. Regehr (2002), “Short-term synaptic plasticity,” Ann. Rev. Physiol., 64, 355–405.CrossRef Zucker, R.S. and W.G. Regehr (2002), “Short-term synaptic plasticity,” Ann. Rev. Physiol., 64, 355–405.CrossRef
Metadaten
Titel
Brownian Models of Chemical Reactions in Microdomains
verfasst von
Zeev Schuss
Copyright-Jahr
2013
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4614-7687-0_5