Skip to main content
Erschienen in:
Buchtitelbild

2019 | OriginalPaper | Buchkapitel

1. Bubble Dynamics

verfasst von : Rachel Pflieger, Sergey I. Nikitenko, Carlos Cairós, Robert Mettin

Erschienen in: Characterization of Cavitation Bubbles and Sonoluminescence

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Bubble dynamics and cavitation have been recognized as a relevant topic of physics and engineering for more than 100 years. Starting with erosion problems at ship propellers end of the nineteenth century [1, 2], experimental and theoretical research went on to intense ultrasound fields in liquids after World War I [3]. However, the phenomena are intrinsically difficult to investigate since the involved spatial scales span many orders of magnitude, the timescales are partly extremely fast, and the behavior includes important nonlinearities.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
More realistic descriptions of bubbles might consider non-equilibrium conditions like heat conduction, inhomogeneous bubble interior, or dynamics of evaporation/condensation of liquid/vapor at the bubble wall.
 
2
Free submicron bubbles should dissolve quite rapidly because of surface tension, as suggested above. However, bubbles might be stabilized in crevices of solid particles [8] or be stabilized statically or dynamically when covered partly with hydrophobic material; see [8, 22].
 
3
The term “stable” for gas dominated bubble dynamics is somehow unfortunate since less strong collapsing bubbles can nevertheless exhibit instabilities (e.g., develop non-spherical shapes and splitting), while inertial cavitation bubbles can well oscillate in stable regimes. The older notion of “transient” cavitation for inertial cavitation is misleading in the same sense.
 
4
The unlimited expansion occurs theoretically in an unbounded liquid volume. In a real situation, the nucleus expansion will be stopped by boundary conditions, but it can reach a “macroscopic” bubble size.
 
5
In a way as a contrast, “top-down” descriptions of cavitation start from multiphase flow of liquid and vapor (for hydrodynamic cavitation, see [9, 39]) or from sound propagation in bubbly media (see [4045]).
 
6
Pressure gradients of the sound field are typically much larger than the hydrostatic pressure gradient, and therefore buoyancy can often be neglected in the discussion of acoustic cavitation bubbles. Only for larger bubbles and weak driving, buoyancy might supersede acoustic forces which leads to a rise of the bubble to the surface.
 
7
While secondary Bjerknes forces indeed decay with the squared distance like gravitational forces, there are differences in that stars move without friction and do typically not collide. Furthermore, the secondary Bjerknes force changes for very close or far distances, and the “mass” of a bubble depends on the driving pressure at its position. Nevertheless, partly interesting similarities exist visually between bubble structures and galactic structures.
 
8
Inactive larger bubbles can be trapped at pressure nodes of a standing acoustic wave.
 
9
Details of liquid injection are still subject of investigation. At least, three scenarios could take place: (I) During re-expansion of the bubble, the spherical shape is roughly restored, and remnants of the jet might disintegrate into droplets, remaining in the gas phase until the next collapse happens. (II) The jet impact onto the opposite bubble wall can cause nanosplashes that disintegrate into droplets [95]. (III) The rear side of the bubble might become unstable and split off droplets. In this context, note the non-smooth bubble backside in Fig. 1.17.
 
Literatur
1.
Zurück zum Zitat Silberrad D (1912) Propeller erosion. Engineering 33:33–35 Silberrad D (1912) Propeller erosion. Engineering 33:33–35
2.
Zurück zum Zitat Rayleigh L (1917) On the pressure developed in a liquid during the collapse of a spherical cavity. Phil Mag Ser 6(34):94–98CrossRef Rayleigh L (1917) On the pressure developed in a liquid during the collapse of a spherical cavity. Phil Mag Ser 6(34):94–98CrossRef
3.
Zurück zum Zitat Wood RW, Loomis AL (1927) XXXVIII The physical and biological effects of high-frequency sound-waves of great intensity. Lond, Edinb, Dublin Philos Mag J Sci 4(22):417–436CrossRef Wood RW, Loomis AL (1927) XXXVIII The physical and biological effects of high-frequency sound-waves of great intensity. Lond, Edinb, Dublin Philos Mag J Sci 4(22):417–436CrossRef
4.
Zurück zum Zitat Flynn HG (1964) Physics of acoustic cavitation in liquids. In: Mason WP (ed) Physical acoustics, vol 1, Part B. Academic Press, New York, pp 57–172 Flynn HG (1964) Physics of acoustic cavitation in liquids. In: Mason WP (ed) Physical acoustics, vol 1, Part B. Academic Press, New York, pp 57–172
5.
Zurück zum Zitat Rozenberg LD (1971) High-intensity ultrasonic fields. Plenum Press, New YorkCrossRef Rozenberg LD (1971) High-intensity ultrasonic fields. Plenum Press, New YorkCrossRef
6.
7.
Zurück zum Zitat Young FR (1989) Cavitation. McGraw-Hill, London Young FR (1989) Cavitation. McGraw-Hill, London
8.
Zurück zum Zitat Leighton TG (1994) The acoustic bubble. Academic Press, London Leighton TG (1994) The acoustic bubble. Academic Press, London
9.
Zurück zum Zitat Brennen EG (1995) Cavitation and bubble dynamics. Oxford University Press, New York Brennen EG (1995) Cavitation and bubble dynamics. Oxford University Press, New York
10.
Zurück zum Zitat Young FR (2005) Sonoluminescence. CRC Press, Boca Raton Young FR (2005) Sonoluminescence. CRC Press, Boca Raton
11.
Zurück zum Zitat Mason TJ, Lorimer JP (1988) Sonochemistry. Wiley Mason TJ, Lorimer JP (1988) Sonochemistry. Wiley
12.
Zurück zum Zitat Mason TJ (ed) (1999) Advances in sonochemistry, vol 5. Jai Press, Stamford Mason TJ (ed) (1999) Advances in sonochemistry, vol 5. Jai Press, Stamford
13.
Zurück zum Zitat Lauterborn W, Kurz T, Mettin R, Ohl C-D (1999) Experimental and theoretical bubble dynamics. Adv Chem Phys 110: 295–380 Lauterborn W, Kurz T, Mettin R, Ohl C-D (1999) Experimental and theoretical bubble dynamics. Adv Chem Phys 110: 295–380
14.
Zurück zum Zitat Ohl C-D, Kurz T, Geisler R, Lindau O, Lauterborn W (1999) Bubble dynamics, shock waves and sonoluminescence. Phil Trans R Soc Lond A 357:269–294CrossRef Ohl C-D, Kurz T, Geisler R, Lindau O, Lauterborn W (1999) Bubble dynamics, shock waves and sonoluminescence. Phil Trans R Soc Lond A 357:269–294CrossRef
15.
Zurück zum Zitat Mettin R (2007) From a single bubble to bubble structures in acoustic cavitation. In: Kurz T, Parlitz U, Kaatze U (eds) Oscillations, waves and interactions. Universitätsverlag Göttingen, Göttingen, pp 171–198 Mettin R (2007) From a single bubble to bubble structures in acoustic cavitation. In: Kurz T, Parlitz U, Kaatze U (eds) Oscillations, waves and interactions. Universitätsverlag Göttingen, Göttingen, pp 171–198
16.
Zurück zum Zitat Lauterborn W, Kurz T (2010) Physics of bubble oscillations. Rep Prog Phys 73:106501CrossRef Lauterborn W, Kurz T (2010) Physics of bubble oscillations. Rep Prog Phys 73:106501CrossRef
17.
Zurück zum Zitat Lauterborn W, Mettin R (2015) Acoustic cavitation: bubble dynamics in high-power ultrasonic fields. In: Gallego-Juárez JA, Graff KF (eds) Power ultrasonics. Elsevier, pp 37–78 Lauterborn W, Mettin R (2015) Acoustic cavitation: bubble dynamics in high-power ultrasonic fields. In: Gallego-Juárez JA, Graff KF (eds) Power ultrasonics. Elsevier, pp 37–78
18.
Zurück zum Zitat Mettin R, Cairós C (2016) Bubble dynamics and observations. In: Ashokkumar M et al (eds) Handbook of ultrasonics and sonochemistry. Springer Science + Business Media, SingaporeCrossRef Mettin R, Cairós C (2016) Bubble dynamics and observations. In: Ashokkumar M et al (eds) Handbook of ultrasonics and sonochemistry. Springer Science + Business Media, SingaporeCrossRef
19.
Zurück zum Zitat Harvey EN, McElroy WD, Whiteley AH (1947) On cavity formation in water. J Appl Phys 18(2):162–172CrossRef Harvey EN, McElroy WD, Whiteley AH (1947) On cavity formation in water. J Appl Phys 18(2):162–172CrossRef
20.
Zurück zum Zitat Fox FE, Herzfeld KF (1954) Gas bubbles with organic skin as cavitation nuclei. J Acoust Soc Am 26(6):984–989CrossRef Fox FE, Herzfeld KF (1954) Gas bubbles with organic skin as cavitation nuclei. J Acoust Soc Am 26(6):984–989CrossRef
21.
Zurück zum Zitat Crum LA (1982) Nucleation and stabilization of microbubbles in liquids. Appl Sci Res 38(1):101–115CrossRef Crum LA (1982) Nucleation and stabilization of microbubbles in liquids. Appl Sci Res 38(1):101–115CrossRef
22.
Zurück zum Zitat Yasui K, Tuziuti T, Kanematsu W, Kato K (2016) Dynamic equilibrium model for a bulk nanobubble and a microbubble partly covered with hydrophobic material. Langmuir 32(43):11101–11110PubMedCrossRef Yasui K, Tuziuti T, Kanematsu W, Kato K (2016) Dynamic equilibrium model for a bulk nanobubble and a microbubble partly covered with hydrophobic material. Langmuir 32(43):11101–11110PubMedCrossRef
23.
Zurück zum Zitat Keller AP (1974) Investigations concerning scale effects of the inception of cavitation. In: Proceedings I mechanical engineering conference on cavitation, pp 109–117 Keller AP (1974) Investigations concerning scale effects of the inception of cavitation. In: Proceedings I mechanical engineering conference on cavitation, pp 109–117
25.
Zurück zum Zitat Minnaert M (1933) On musical air bubbles and the sounds of running water. Phil Mag Ser 7(16):235–248CrossRef Minnaert M (1933) On musical air bubbles and the sounds of running water. Phil Mag Ser 7(16):235–248CrossRef
26.
Zurück zum Zitat Parlitz U, Englisch V, Scheffczyk C, Lauterborn W (1990) Bifurcation structure of bubble oscillators. J Acoust Soc Am 88:1061CrossRef Parlitz U, Englisch V, Scheffczyk C, Lauterborn W (1990) Bifurcation structure of bubble oscillators. J Acoust Soc Am 88:1061CrossRef
27.
Zurück zum Zitat Hilgenfeldt S, Grossmann S, Lohse D (1999) Sonoluminescence light emission. Phys Fluids 11:1318CrossRef Hilgenfeldt S, Grossmann S, Lohse D (1999) Sonoluminescence light emission. Phys Fluids 11:1318CrossRef
28.
Zurück zum Zitat Hilgenfeldt S, Brenner MP, Grossmann S, Lohse D (1998) Analysis of Rayleigh-Plesset dynamics for sonoluminescing bubbles. J Fluid Mech 365:171–204CrossRef Hilgenfeldt S, Brenner MP, Grossmann S, Lohse D (1998) Analysis of Rayleigh-Plesset dynamics for sonoluminescing bubbles. J Fluid Mech 365:171–204CrossRef
29.
Zurück zum Zitat Prosperetti A, Lezzi A (1986) Bubble dynamics in a compressible liquid. Part 1. First-order theory. J Fluid Mech 168:457–478CrossRef Prosperetti A, Lezzi A (1986) Bubble dynamics in a compressible liquid. Part 1. First-order theory. J Fluid Mech 168:457–478CrossRef
30.
Zurück zum Zitat Kamath V, Prosperetti A, Egolfopoulos FN (1993) A theoretical study of sonoluminescence. J Acoust Soc Am 94(1):248–260CrossRef Kamath V, Prosperetti A, Egolfopoulos FN (1993) A theoretical study of sonoluminescence. J Acoust Soc Am 94(1):248–260CrossRef
31.
Zurück zum Zitat Yasui K (1997) Alternative model of single-bubble sonoluminescence. Phys Rev E 56:6750CrossRef Yasui K (1997) Alternative model of single-bubble sonoluminescence. Phys Rev E 56:6750CrossRef
32.
Zurück zum Zitat Keller JB, Miksis M (1980) Bubble oscillations of large amplitude. J Acoust Soc Am 68:628CrossRef Keller JB, Miksis M (1980) Bubble oscillations of large amplitude. J Acoust Soc Am 68:628CrossRef
33.
Zurück zum Zitat Mettin R, Cairós C, Troia A (2015) Sonochemistry and bubble dynamics. Ultrason Sonochem 25:24–30PubMedCrossRef Mettin R, Cairós C, Troia A (2015) Sonochemistry and bubble dynamics. Ultrason Sonochem 25:24–30PubMedCrossRef
34.
Zurück zum Zitat Thiemann A, Holsteyns F, Cairos C, Mettin R (2017) Sonoluminescence and dynamics of cavitation bubble populations in sulfuric acid. Ultrason Sonochem 34:663–676PubMedCrossRef Thiemann A, Holsteyns F, Cairos C, Mettin R (2017) Sonoluminescence and dynamics of cavitation bubble populations in sulfuric acid. Ultrason Sonochem 34:663–676PubMedCrossRef
35.
Zurück zum Zitat Blake FG (1949) Harvard University Acoustic Research Laboratory, Tech. Mem. No. 12, 1949 (unpublished) Blake FG (1949) Harvard University Acoustic Research Laboratory, Tech. Mem. No. 12, 1949 (unpublished)
36.
Zurück zum Zitat Noltingk BE, Neppiras EA (1950) Cavitation produced by ultrasonics. Proc Phys Soc Lond, Sect B 63(9):674CrossRef Noltingk BE, Neppiras EA (1950) Cavitation produced by ultrasonics. Proc Phys Soc Lond, Sect B 63(9):674CrossRef
37.
Zurück zum Zitat Louisnard O, Gomez F (2003) Growth by rectified diffusion of strongly acoustically forced gas bubbles in nearly saturated liquids. Phys Rev E 67:036610 Louisnard O, Gomez F (2003) Growth by rectified diffusion of strongly acoustically forced gas bubbles in nearly saturated liquids. Phys Rev E 67:036610
38.
Zurück zum Zitat Lauterborn W, Mettin R (1999) Nonlinear bubble dynamics—response curves and more. In: Crum LA, Mason TJ, Reisse JL, Suslick KS (eds) Sonochemistry and sonoluminescence; Proceedings of the NATO advanced study institute, Leavenworth (WA), USA, 18–29 Aug 1997. Kluwer Academic Publishers, Dordrecht, pp 63–72CrossRef Lauterborn W, Mettin R (1999) Nonlinear bubble dynamics—response curves and more. In: Crum LA, Mason TJ, Reisse JL, Suslick KS (eds) Sonochemistry and sonoluminescence; Proceedings of the NATO advanced study institute, Leavenworth (WA), USA, 18–29 Aug 1997. Kluwer Academic Publishers, Dordrecht, pp 63–72CrossRef
39.
Zurück zum Zitat Franc J-P, Michel J-M (2006) Fundamentals of cavitation. Springer science & Business media, Berlin Franc J-P, Michel J-M (2006) Fundamentals of cavitation. Springer science & Business media, Berlin
40.
Zurück zum Zitat Van Wijngaarden L (1972) One-dimensional flow of liquids containing small gas bubbles. Ann Rev Fluid Mech 4:369–394CrossRef Van Wijngaarden L (1972) One-dimensional flow of liquids containing small gas bubbles. Ann Rev Fluid Mech 4:369–394CrossRef
41.
Zurück zum Zitat Caflisch RE, Miksis MJ, Papanicolaou GC, Ting L (1985) Effective equations for wave propagation in bubbly liquids. J Fluid Mech 153:259–273CrossRef Caflisch RE, Miksis MJ, Papanicolaou GC, Ting L (1985) Effective equations for wave propagation in bubbly liquids. J Fluid Mech 153:259–273CrossRef
42.
Zurück zum Zitat Commander KW, Prosperetti A (1989) Linear pressure waves in bubbly liquids: comparison between theory and experiments. J Acoust Soc Am 85:732–746CrossRef Commander KW, Prosperetti A (1989) Linear pressure waves in bubbly liquids: comparison between theory and experiments. J Acoust Soc Am 85:732–746CrossRef
43.
Zurück zum Zitat Akhatov I, Parlitz U, Lauterborn W (1996) Towards a theory of self-organization phenomena in bubble-liquid mixtures. Phys Rev E 54:4990CrossRef Akhatov I, Parlitz U, Lauterborn W (1996) Towards a theory of self-organization phenomena in bubble-liquid mixtures. Phys Rev E 54:4990CrossRef
44.
Zurück zum Zitat Louisnard O (2012) A simple model of ultrasound propagation in a cavitating liquid. Part I: theory, nonlinear attenuation and traveling wave generation. Ultrason Sonochem 19:56–65PubMedCrossRef Louisnard O (2012) A simple model of ultrasound propagation in a cavitating liquid. Part I: theory, nonlinear attenuation and traveling wave generation. Ultrason Sonochem 19:56–65PubMedCrossRef
45.
Zurück zum Zitat Louisnard O (2012) A simple model of ultrasound propagation in a cavitating liquid. Part II: primary Bjerknes force and bubble structures. Ultrason. Sonochem. 19:66–76PubMedCrossRef Louisnard O (2012) A simple model of ultrasound propagation in a cavitating liquid. Part II: primary Bjerknes force and bubble structures. Ultrason. Sonochem. 19:66–76PubMedCrossRef
46.
Zurück zum Zitat Cairós C, Schneider J, Pflieger R, Mettin R (2014) Effects of argon sparging rate, ultrasonic power, and frequency on multibubble sonoluminescence spectra and bubble dynamics in NaCl aqueous solutions. Ultrason Sonochem 21:2044–2051PubMedCrossRef Cairós C, Schneider J, Pflieger R, Mettin R (2014) Effects of argon sparging rate, ultrasonic power, and frequency on multibubble sonoluminescence spectra and bubble dynamics in NaCl aqueous solutions. Ultrason Sonochem 21:2044–2051PubMedCrossRef
47.
Zurück zum Zitat Mettin R, Cairós C (2019) Leuchtende Blasen. Phys Unserer Zeit 50(1):38–42CrossRef Mettin R, Cairós C (2019) Leuchtende Blasen. Phys Unserer Zeit 50(1):38–42CrossRef
48.
Zurück zum Zitat Taylor GI (1950) The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. Proc R Soc Lond A 201:192–196CrossRef Taylor GI (1950) The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. Proc R Soc Lond A 201:192–196CrossRef
49.
Zurück zum Zitat Plesset MS (1954) On the stability of fluid flows with spherical symmetry. J Appl Phys 25(1):96–98CrossRef Plesset MS (1954) On the stability of fluid flows with spherical symmetry. J Appl Phys 25(1):96–98CrossRef
50.
Zurück zum Zitat Birkhoff G (1954) Note on Taylor instability. Q Appl Math 12(3):306–309CrossRef Birkhoff G (1954) Note on Taylor instability. Q Appl Math 12(3):306–309CrossRef
51.
Zurück zum Zitat Birkhoff G (1956) Stability of spherical bubbles. Q Appl Math 13(4):451–453CrossRef Birkhoff G (1956) Stability of spherical bubbles. Q Appl Math 13(4):451–453CrossRef
52.
Zurück zum Zitat Plesset MS, Mitchell TP (1956) On the stability of the spherical shape of a vapor cavity in a liquid. Q Appl Math 13(4):419–430CrossRef Plesset MS, Mitchell TP (1956) On the stability of the spherical shape of a vapor cavity in a liquid. Q Appl Math 13(4):419–430CrossRef
53.
Zurück zum Zitat Strube HW (1971) Numerische Untersuchungen zur Stabilität nichtsphärisch schwingender Blasen. Acustica 25:289–303 Strube HW (1971) Numerische Untersuchungen zur Stabilität nichtsphärisch schwingender Blasen. Acustica 25:289–303
54.
Zurück zum Zitat Kornfeld M, Suvorov L (1944) On the destructive action of cavitation. J Appl Phys 15(6):495–506CrossRef Kornfeld M, Suvorov L (1944) On the destructive action of cavitation. J Appl Phys 15(6):495–506CrossRef
55.
Zurück zum Zitat Hilgenfeldt S, Lohse D, Brenner MP (1996) Phase diagrams for sonoluminescing bubbles. Phys Fluids 8:2808CrossRef Hilgenfeldt S, Lohse D, Brenner MP (1996) Phase diagrams for sonoluminescing bubbles. Phys Fluids 8:2808CrossRef
56.
Zurück zum Zitat Versluis M, Goertz DE, Palanchon P, Heitman IL, van der Meer SM, Dollet B, de Jong N, Lohse D (2010) Microbubble shape oscillations excited through ultrasonic parametric driving. Phys Rev E 82(2):026321CrossRef Versluis M, Goertz DE, Palanchon P, Heitman IL, van der Meer SM, Dollet B, de Jong N, Lohse D (2010) Microbubble shape oscillations excited through ultrasonic parametric driving. Phys Rev E 82(2):026321CrossRef
57.
Zurück zum Zitat Eller A, Flynn HG (1965) Rectified diffusion during nonlinear pulsations of cavitation bubbles. J Acoust Soc Am 37(3):493–503CrossRef Eller A, Flynn HG (1965) Rectified diffusion during nonlinear pulsations of cavitation bubbles. J Acoust Soc Am 37(3):493–503CrossRef
58.
Zurück zum Zitat Fyrillas MM, Szeri AJ (1994) Dissolution or growth of soluble spherical oscillating bubbles. J Fluid Mech 277:381–407CrossRef Fyrillas MM, Szeri AJ (1994) Dissolution or growth of soluble spherical oscillating bubbles. J Fluid Mech 277:381–407CrossRef
59.
Zurück zum Zitat Bjerknes VFK (1906) Fields of force. Columbia University Press, New York Bjerknes VFK (1906) Fields of force. Columbia University Press, New York
60.
Zurück zum Zitat Matula TJ, Cordry AM, Roy RA, Crum LA (1997) Bjerknes force and bubble levitation under single-bubble sonoluminescence conditions. J Acoust Soc Am 102:1522–1527CrossRef Matula TJ, Cordry AM, Roy RA, Crum LA (1997) Bjerknes force and bubble levitation under single-bubble sonoluminescence conditions. J Acoust Soc Am 102:1522–1527CrossRef
61.
Zurück zum Zitat Akhatov I, Mettin R, Ohl C-D, Parlitz U, Lauterborn W (1997) Bjerknes force threshold for stable single bubble sonoluminescence. Phys Rev E 55:3747–3750CrossRef Akhatov I, Mettin R, Ohl C-D, Parlitz U, Lauterborn W (1997) Bjerknes force threshold for stable single bubble sonoluminescence. Phys Rev E 55:3747–3750CrossRef
62.
Zurück zum Zitat Mettin R, Akhatov I, Parlitz U, Ohl CD, Lauterborn W (1997) Bjerknes forces between small cavitation bubbles in a strong acoustic field. Phys Rev E 56:2924–2931CrossRef Mettin R, Akhatov I, Parlitz U, Ohl CD, Lauterborn W (1997) Bjerknes forces between small cavitation bubbles in a strong acoustic field. Phys Rev E 56:2924–2931CrossRef
63.
Zurück zum Zitat Crum LA (1975) Bjerknes forces on bubbles in a stationary sound field. J Acoust Soc Am 57(6):1363–1370CrossRef Crum LA (1975) Bjerknes forces on bubbles in a stationary sound field. J Acoust Soc Am 57(6):1363–1370CrossRef
64.
Zurück zum Zitat Cairós C, Mettin R (2017) Simultaneous high-speed recording of sonoluminescence and bubble dynamics in multibubble fields. Phys Rev Lett 118(6):064301PubMedCrossRef Cairós C, Mettin R (2017) Simultaneous high-speed recording of sonoluminescence and bubble dynamics in multibubble fields. Phys Rev Lett 118(6):064301PubMedCrossRef
65.
Zurück zum Zitat Levich VG (1962) Physicochemical hydrodynamics. Prentice-Hall, Englewood Cliffs Levich VG (1962) Physicochemical hydrodynamics. Prentice-Hall, Englewood Cliffs
66.
Zurück zum Zitat Klyachko LS (1934) Heating and ventilation. USSR J Otopl I Ventil (4) Klyachko LS (1934) Heating and ventilation. USSR J Otopl I Ventil (4)
67.
Zurück zum Zitat Magnaudet J, Legendre D (1998) The viscous drag force on a spherical bubble with a time-dependent radius. Phys Fluids 10(3):550–554CrossRef Magnaudet J, Legendre D (1998) The viscous drag force on a spherical bubble with a time-dependent radius. Phys Fluids 10(3):550–554CrossRef
68.
Zurück zum Zitat Krefting D, Mettin R, Lauterborn W (2002) Kräfte in akustischen Kavitationsfeldern (Forces in acoustic cavitation fields). In Jekosch U (ed) Fortschritte der Akustik—DAGA 2002, Bochum. DEGA, Oldenburg, pp 260–261 Krefting D, Mettin R, Lauterborn W (2002) Kräfte in akustischen Kavitationsfeldern (Forces in acoustic cavitation fields). In Jekosch U (ed) Fortschritte der Akustik—DAGA 2002, Bochum. DEGA, Oldenburg, pp 260–261
69.
Zurück zum Zitat Apfel RE (1981) Acoustic cavitation prediction. J Acoust Soc Am 69(6):1624–1633CrossRef Apfel RE (1981) Acoustic cavitation prediction. J Acoust Soc Am 69(6):1624–1633CrossRef
70.
Zurück zum Zitat Church CC (1988) Prediction of rectified diffusion during nonlinear bubble pulsations at biomedical frequencies. J Acoust Soc Am 83(6):2210–2217PubMedCrossRef Church CC (1988) Prediction of rectified diffusion during nonlinear bubble pulsations at biomedical frequencies. J Acoust Soc Am 83(6):2210–2217PubMedCrossRef
71.
Zurück zum Zitat Mettin R (2005) Bubble structures in acoustic cavitation. In: Doinikov AA (ed) Bubble and particle dynamics in acoustic fields: modern trends and applications. Research Signpost, Kerala, pp 1–36 Mettin R (2005) Bubble structures in acoustic cavitation. In: Doinikov AA (ed) Bubble and particle dynamics in acoustic fields: modern trends and applications. Research Signpost, Kerala, pp 1–36
72.
Zurück zum Zitat Gaitan D, Crum LA, Church CC, Roy RA (1992) Sonoluminescence and bubble dynamics for a single, stable, cavitation bubble. J Acoust Soc Am 91:3166–3183CrossRef Gaitan D, Crum LA, Church CC, Roy RA (1992) Sonoluminescence and bubble dynamics for a single, stable, cavitation bubble. J Acoust Soc Am 91:3166–3183CrossRef
73.
Zurück zum Zitat Hiller R, Putterman SJ, Barber BP (1992) Spectrum of synchronous picosecond sonoluminescence. Phys Rev Lett 69:1182PubMedCrossRef Hiller R, Putterman SJ, Barber BP (1992) Spectrum of synchronous picosecond sonoluminescence. Phys Rev Lett 69:1182PubMedCrossRef
74.
Zurück zum Zitat Barber BP, Hiller RA, Löfstedt R, Putterman SJ, Weninger KR (1997) Defining the unknowns of sonoluminescence. Phys Rep 281:65–143CrossRef Barber BP, Hiller RA, Löfstedt R, Putterman SJ, Weninger KR (1997) Defining the unknowns of sonoluminescence. Phys Rep 281:65–143CrossRef
76.
Zurück zum Zitat Gompf B, Günther R, Nick G, Pecha R, Eisenmenger W (1997) Resolving sonoluminescence pulse width with time-correlated single photon counting. Phys Rev Lett 79:1405CrossRef Gompf B, Günther R, Nick G, Pecha R, Eisenmenger W (1997) Resolving sonoluminescence pulse width with time-correlated single photon counting. Phys Rev Lett 79:1405CrossRef
77.
Zurück zum Zitat Chen W, Huang W, Liang Y, Gao X, Cui W (2008) Time-resolved spectra of single-bubble sonoluminescence in sulfuric acid with a streak camera. Phys Rev E 78(3):035301CrossRef Chen W, Huang W, Liang Y, Gao X, Cui W (2008) Time-resolved spectra of single-bubble sonoluminescence in sulfuric acid with a streak camera. Phys Rev E 78(3):035301CrossRef
78.
Zurück zum Zitat Hiller R, Weninger K, Putterman SJ, Barber BP (1994) Effect of noble gas doping in single-bubble sonoluminescence. Science 266(5183):248–250PubMedCrossRef Hiller R, Weninger K, Putterman SJ, Barber BP (1994) Effect of noble gas doping in single-bubble sonoluminescence. Science 266(5183):248–250PubMedCrossRef
79.
Zurück zum Zitat Schneider J, Pflieger R, Nikitenko SI, Shchukin D, Möhwald H (2010) Line emission of sodium and hydroxyl radicals in single-bubble sonoluminescence. J Phys Chem A 115(2):136–140PubMedCrossRef Schneider J, Pflieger R, Nikitenko SI, Shchukin D, Möhwald H (2010) Line emission of sodium and hydroxyl radicals in single-bubble sonoluminescence. J Phys Chem A 115(2):136–140PubMedCrossRef
80.
Zurück zum Zitat Flannigan DJ, Suslick KS (2005) Plasma line emission during single-bubble cavitation. Phys Rev Lett 95:044301PubMedCrossRef Flannigan DJ, Suslick KS (2005) Plasma line emission during single-bubble cavitation. Phys Rev Lett 95:044301PubMedCrossRef
81.
Zurück zum Zitat Flannigan DJ, Suslick KS (2005) Plasma formation and temperature measurement during single-bubble cavitation. Nature 434(7029):52PubMedCrossRef Flannigan DJ, Suslick KS (2005) Plasma formation and temperature measurement during single-bubble cavitation. Nature 434(7029):52PubMedCrossRef
82.
Zurück zum Zitat Lepoint T, Lepoint-Mullie F, Henglein A (1999) Single bubble sonochemistry. In: Crum LA et al (eds) Sonochemistry and sonoluminescence. Kluwer Academic Publishers, Dordrecht, pp 285–290CrossRef Lepoint T, Lepoint-Mullie F, Henglein A (1999) Single bubble sonochemistry. In: Crum LA et al (eds) Sonochemistry and sonoluminescence. Kluwer Academic Publishers, Dordrecht, pp 285–290CrossRef
83.
Zurück zum Zitat Verraes T, Lepoint-Mullie F, Lepoint T, Longuet-Higgins M (2000) Experimental study of the liquid flow near a single sonoluminescent bubble. J Acoust Soc Am 108:117PubMedCrossRef Verraes T, Lepoint-Mullie F, Lepoint T, Longuet-Higgins M (2000) Experimental study of the liquid flow near a single sonoluminescent bubble. J Acoust Soc Am 108:117PubMedCrossRef
84.
Zurück zum Zitat Troia A, Madonna Ripa D, Lago S, Spagnolo R (2004) Evidence for liquid phase reactions during single bubble acoustic cavitation. Ultrason Sonochem 11:317PubMedCrossRef Troia A, Madonna Ripa D, Lago S, Spagnolo R (2004) Evidence for liquid phase reactions during single bubble acoustic cavitation. Ultrason Sonochem 11:317PubMedCrossRef
85.
Zurück zum Zitat Didenko YT, Suslick KS (2002) The energy efficiency of formation of photons, radicals and ions during single-bubble cavitation. Nature 418(6896):394PubMedCrossRef Didenko YT, Suslick KS (2002) The energy efficiency of formation of photons, radicals and ions during single-bubble cavitation. Nature 418(6896):394PubMedCrossRef
86.
Zurück zum Zitat Mettin R, Lindinger B, Lauterborn W (2002) Bjerknes-Instabilität levitierter Einzelblasen bei geringem statischen Druck (Bjerknes-instability of levitated single bubbles at low static pressure). In: Jekosch U (ed) Fortschritte der Akustik—DAGA 2002, Bochum. DEGA, Oldenburg, pp 264–265 Mettin R, Lindinger B, Lauterborn W (2002) Bjerknes-Instabilität levitierter Einzelblasen bei geringem statischen Druck (Bjerknes-instability of levitated single bubbles at low static pressure). In: Jekosch U (ed) Fortschritte der Akustik—DAGA 2002, Bochum. DEGA, Oldenburg, pp 264–265
87.
Zurück zum Zitat Rosselló JM, Dellavale D, Bonetto FJ (2013) Energy concentration and positional stability of sonoluminescent bubbles in sulfuric acid for different static pressures. Phys Rev E 88:033026CrossRef Rosselló JM, Dellavale D, Bonetto FJ (2013) Energy concentration and positional stability of sonoluminescent bubbles in sulfuric acid for different static pressures. Phys Rev E 88:033026CrossRef
88.
Zurück zum Zitat Matula TJ, Roy RA, Mourad PD, McNamara WB III, Suslick KS (1995) Comparison of multibubble and single-bubble sonoluminescence spectra. Phys Rev Lett 75:2602PubMedCrossRef Matula TJ, Roy RA, Mourad PD, McNamara WB III, Suslick KS (1995) Comparison of multibubble and single-bubble sonoluminescence spectra. Phys Rev Lett 75:2602PubMedCrossRef
89.
Zurück zum Zitat Benjamin TB, Ellis AT (1966) The collapse of cavitation bubbles and the pressures thereby produced against solid boundaries. Phil Trans Roy Soc Lond A 260:221–240CrossRef Benjamin TB, Ellis AT (1966) The collapse of cavitation bubbles and the pressures thereby produced against solid boundaries. Phil Trans Roy Soc Lond A 260:221–240CrossRef
90.
Zurück zum Zitat Calvisi M, Lindau O, Blake JR, Szeri AJ (2007) Shape stability and violent collapse of microbubbles in acoustic traveling waves. Phys Fluids 19:047101CrossRef Calvisi M, Lindau O, Blake JR, Szeri AJ (2007) Shape stability and violent collapse of microbubbles in acoustic traveling waves. Phys Fluids 19:047101CrossRef
91.
Zurück zum Zitat Vuong VQ, Szeri AJ, Young DA (1999) Shock formation within sonoluminescence bubbles. Phys Fluids 11:10–17CrossRef Vuong VQ, Szeri AJ, Young DA (1999) Shock formation within sonoluminescence bubbles. Phys Fluids 11:10–17CrossRef
92.
Zurück zum Zitat Schanz D, Metten B, Kurz T, Lauterborn W (2012) Molecular dynamics simulations of cavitation bubble collapse and sonoluminescence. New J Phys 14:113019CrossRef Schanz D, Metten B, Kurz T, Lauterborn W (2012) Molecular dynamics simulations of cavitation bubble collapse and sonoluminescence. New J Phys 14:113019CrossRef
93.
Zurück zum Zitat Xu H, Eddingsaas NC, Suslick KS (2009) Spatial separation of cavitating bubble populations: the nanodroplet injection model. J Am Chem Soc 131:6060–6061PubMedCrossRef Xu H, Eddingsaas NC, Suslick KS (2009) Spatial separation of cavitating bubble populations: the nanodroplet injection model. J Am Chem Soc 131:6060–6061PubMedCrossRef
94.
Zurück zum Zitat Xu H, Glumac NG, Suslick KS (2010) Temperature inhomogeneity during multibubble sonoluminescence. Angew. Chemie 122(6):1097–1100CrossRef Xu H, Glumac NG, Suslick KS (2010) Temperature inhomogeneity during multibubble sonoluminescence. Angew. Chemie 122(6):1097–1100CrossRef
95.
Zurück zum Zitat Lechner C, Koch M, Lauterborn W, Mettin R (2017) Pressure and tension waves from bubble collapse near a solid boundary: a numerical approach. J Acoust Soc Am 142(6):3649–3659PubMedCrossRef Lechner C, Koch M, Lauterborn W, Mettin R (2017) Pressure and tension waves from bubble collapse near a solid boundary: a numerical approach. J Acoust Soc Am 142(6):3649–3659PubMedCrossRef
96.
Zurück zum Zitat Blake JR, Hooton MC, Robinson PB, Tong RP (1997) Collapsing cavities, toroidal bubbles and jet impact. Phil Trans Roy Soc Lond A 355:537–550CrossRef Blake JR, Hooton MC, Robinson PB, Tong RP (1997) Collapsing cavities, toroidal bubbles and jet impact. Phil Trans Roy Soc Lond A 355:537–550CrossRef
97.
Zurück zum Zitat Reuter F, Gonzalez-Avila SR, Mettin R, Ohl C-D (2017) Flow fields and vortex dynamics of bubbles collapsing near a solid boundary. Phys Rev Fluids 2:064202CrossRef Reuter F, Gonzalez-Avila SR, Mettin R, Ohl C-D (2017) Flow fields and vortex dynamics of bubbles collapsing near a solid boundary. Phys Rev Fluids 2:064202CrossRef
98.
Zurück zum Zitat Reuter F, Mettin R (2018) Electrochemical wall shear rate microscopy of collapsing bubbles. Phys Rev Fluids 3:063601CrossRef Reuter F, Mettin R (2018) Electrochemical wall shear rate microscopy of collapsing bubbles. Phys Rev Fluids 3:063601CrossRef
99.
Zurück zum Zitat Plesset MS, Chapman RB (1971) Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary. J Fluid Mech 47(2):283–290CrossRef Plesset MS, Chapman RB (1971) Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary. J Fluid Mech 47(2):283–290CrossRef
100.
Zurück zum Zitat Lauterborn W, Bolle H (1975) Experimental investigations of cavitation-bubble collapse in the neighbourhood of a solid boundary. J Fluid Mech 72(2):391–399CrossRef Lauterborn W, Bolle H (1975) Experimental investigations of cavitation-bubble collapse in the neighbourhood of a solid boundary. J Fluid Mech 72(2):391–399CrossRef
101.
Zurück zum Zitat Philipp A, Lauterborn W (1998) Cavitation erosion by single laser-produced bubbles. J Fluid Mech 361:75–116CrossRef Philipp A, Lauterborn W (1998) Cavitation erosion by single laser-produced bubbles. J Fluid Mech 361:75–116CrossRef
102.
Zurück zum Zitat Krefting D, Mettin R, Lauterborn W (2004) High-speed observation of acoustic cavitation erosion in multibubble systems. Ultrason Sonochem 11:119–123PubMedCrossRef Krefting D, Mettin R, Lauterborn W (2004) High-speed observation of acoustic cavitation erosion in multibubble systems. Ultrason Sonochem 11:119–123PubMedCrossRef
103.
Zurück zum Zitat Fuchs FJ (2015) Ultrasonic cleaning and washing of surfaces. In: Gallego-Juárez JA, Graff KF (eds) Power ultrasonics. Elsevier, pp 577–610 Fuchs FJ (2015) Ultrasonic cleaning and washing of surfaces. In: Gallego-Juárez JA, Graff KF (eds) Power ultrasonics. Elsevier, pp 577–610
104.
Zurück zum Zitat Mason TJ (2016) Ultrasonic cleaning: an historical perspective. Ultrason Sonochem 29:519–523PubMedCrossRef Mason TJ (2016) Ultrasonic cleaning: an historical perspective. Ultrason Sonochem 29:519–523PubMedCrossRef
105.
Zurück zum Zitat Reuter F, Mettin R (2016) Mechanisms of single bubble cleaning. Ultrason Sonochem 29:550–562PubMedCrossRef Reuter F, Mettin R (2016) Mechanisms of single bubble cleaning. Ultrason Sonochem 29:550–562PubMedCrossRef
106.
Zurück zum Zitat Blake JR, Keen GS, Tong RP, Wilson M (1999) Acoustic cavitation: the fluid dynamics of non–spherical bubbles. Phil Trans R Soc Lond A 357:251CrossRef Blake JR, Keen GS, Tong RP, Wilson M (1999) Acoustic cavitation: the fluid dynamics of non–spherical bubbles. Phil Trans R Soc Lond A 357:251CrossRef
107.
Zurück zum Zitat Pearson A, Blake JR, Otto SR (2004) Jets in bubbles. J Eng Math 48:391–412CrossRef Pearson A, Blake JR, Otto SR (2004) Jets in bubbles. J Eng Math 48:391–412CrossRef
108.
Zurück zum Zitat Lauterborn W, Lechner C, Koch M, Mettin R (2018) Bubble models and real bubbles: Rayleigh and energy-deposit cases in a Tait-compressible liquid. IMA J. Appl. Math 83(4):556–589CrossRef Lauterborn W, Lechner C, Koch M, Mettin R (2018) Bubble models and real bubbles: Rayleigh and energy-deposit cases in a Tait-compressible liquid. IMA J. Appl. Math 83(4):556–589CrossRef
109.
Zurück zum Zitat Supponen O, Obreschkow D, Tinguely M, Kobel P, Dorsaz N, Farhat M (2016) Scaling laws for jets of single cavitation bubbles. J Fluid Mech 802:263–293CrossRef Supponen O, Obreschkow D, Tinguely M, Kobel P, Dorsaz N, Farhat M (2016) Scaling laws for jets of single cavitation bubbles. J Fluid Mech 802:263–293CrossRef
110.
Zurück zum Zitat Brujan EA, Noda T, Ishigami A, Ogasawara T, Takahira H (2018) Dynamics of laser-induced cavitation bubbles near two perpendicular rigid walls. J Fluid Mech 841:28–49CrossRef Brujan EA, Noda T, Ishigami A, Ogasawara T, Takahira H (2018) Dynamics of laser-induced cavitation bubbles near two perpendicular rigid walls. J Fluid Mech 841:28–49CrossRef
111.
Zurück zum Zitat Ohl SW, Ohl CD (2016) Acoustic cavitation in a microchannel. In: Ashokkumar M et al (eds) Handbook of ultrasonics and sonochemistry. Springer Science + Business Media, Singapore, pp 99–135CrossRef Ohl SW, Ohl CD (2016) Acoustic cavitation in a microchannel. In: Ashokkumar M et al (eds) Handbook of ultrasonics and sonochemistry. Springer Science + Business Media, Singapore, pp 99–135CrossRef
112.
Zurück zum Zitat Koch M, Lechner Ch, Reuter F, Köhler K, Mettin R, Lauterborn W (2016) Numerical modeling of laser generated cavitation bubbles with the finite volume and volume of fluid method, using OpenFOAM. Comput Fluids 126:71–90CrossRef Koch M, Lechner Ch, Reuter F, Köhler K, Mettin R, Lauterborn W (2016) Numerical modeling of laser generated cavitation bubbles with the finite volume and volume of fluid method, using OpenFOAM. Comput Fluids 126:71–90CrossRef
113.
Zurück zum Zitat Lindau O, Lauterborn W (2003) Cinematographic observation of the collapse and rebound of a laser-produced cavitation bubble near a wall. J Fluid Mech 479:327–348CrossRef Lindau O, Lauterborn W (2003) Cinematographic observation of the collapse and rebound of a laser-produced cavitation bubble near a wall. J Fluid Mech 479:327–348CrossRef
114.
Zurück zum Zitat Falkovich G (2011) Fluid mechanics, a short course for physicists. Cambridge University Press Falkovich G (2011) Fluid mechanics, a short course for physicists. Cambridge University Press
115.
116.
Zurück zum Zitat Wang QX, Blake JR (2010) Non-spherical bubble dynamics in a compressible liquid. Part 1. Travelling acoustic wave. J Fluid Mech 659:191–224CrossRef Wang QX, Blake JR (2010) Non-spherical bubble dynamics in a compressible liquid. Part 1. Travelling acoustic wave. J Fluid Mech 659:191–224CrossRef
117.
Zurück zum Zitat Nowak T, Mettin R (2014) Unsteady translation and repetitive jetting of acoustic cavitation bubbles. Phys Rev E 90:033016CrossRef Nowak T, Mettin R (2014) Unsteady translation and repetitive jetting of acoustic cavitation bubbles. Phys Rev E 90:033016CrossRef
118.
Zurück zum Zitat Hatanaka S, Hayashi S, Choi P-K (2010) Sonoluminescence of alkali-metal atoms in sulfuric acid: comparison with that in water. Jpn J Appl Phys 49:07HE01CrossRef Hatanaka S, Hayashi S, Choi P-K (2010) Sonoluminescence of alkali-metal atoms in sulfuric acid: comparison with that in water. Jpn J Appl Phys 49:07HE01CrossRef
119.
Zurück zum Zitat Yasui K (2018) Acoustic cavitation and bubble dynamics. Springer Briefs in Molecular Science—Ultrasound and Sonochemistry, Springer International Publishing Yasui K (2018) Acoustic cavitation and bubble dynamics. Springer Briefs in Molecular Science—Ultrasound and Sonochemistry, Springer International Publishing
Metadaten
Titel
Bubble Dynamics
verfasst von
Rachel Pflieger
Sergey I. Nikitenko
Carlos Cairós
Robert Mettin
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-11717-7_1

Neuer Inhalt