Skip to main content
Erschienen in: Journal of Materials Science 23/2014

01.12.2014

Buckling of Cu–Zr-based metallic glasses nanowires: molecular dynamics study of surface effects

verfasst von: Javier Wachter, Gonzalo Gutiérrez, Alejandro Zúñiga, Rodrigo Palma

Erschienen in: Journal of Materials Science | Ausgabe 23/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The phenomenon of buckling in Cu45Zr45Al10 metallic glass nanowires with different slenderness ratios was studied by means of molecular dynamics simulation. The values of critical stress versus slenderness ratio for two nanowire diameters were obtained. We analyzed the results within the framework of the modified Euler theory of buckling, obtaining values for the surface elastic modulus and the residual surface stress for the two different diameters. Our results show that the Cu45Zr45Al10 metallic glass in nanometric size become stiffer and exhibits a lower Young’s modulus than that of a bulk sample.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Johnson W (1999) Bulk glass-forming metallic alloys: science and technology. MRS Bull 24:42–56CrossRef Johnson W (1999) Bulk glass-forming metallic alloys: science and technology. MRS Bull 24:42–56CrossRef
2.
Zurück zum Zitat Inoue A (2002) Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater 48:279–306CrossRef Inoue A (2002) Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater 48:279–306CrossRef
3.
Zurück zum Zitat Schroers J (2005) The superplastic forming of bulk metallic glasses. JOM 381:36–39 Schroers J (2005) The superplastic forming of bulk metallic glasses. JOM 381:36–39
4.
Zurück zum Zitat Schroers J, Pham Q, Peker A, Curtis RV (2007) Blow molding of bulk metallic glass. Scr Mater 57:341–344CrossRef Schroers J, Pham Q, Peker A, Curtis RV (2007) Blow molding of bulk metallic glass. Scr Mater 57:341–344CrossRef
5.
Zurück zum Zitat Ashby M, Greer A (2003) Metallic glasses as structural materials. Scr Mater 54:321–326CrossRef Ashby M, Greer A (2003) Metallic glasses as structural materials. Scr Mater 54:321–326CrossRef
6.
Zurück zum Zitat Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H (2003) One-dimensional nanostructures: synthesis, characterization and applications. Adv Mater 15:353–389CrossRef Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H (2003) One-dimensional nanostructures: synthesis, characterization and applications. Adv Mater 15:353–389CrossRef
7.
Zurück zum Zitat Ekinci KL, Roukes ML (2005) Nanoelectromechanical systems. Rev Sci Instrum 76:061101CrossRef Ekinci KL, Roukes ML (2005) Nanoelectromechanical systems. Rev Sci Instrum 76:061101CrossRef
8.
Zurück zum Zitat Wang CC, Mao YW, Shan ZW, Dao M, Li J, Jun Sun J, Evan Ma E, Suresh S (2013) Real-time, high-resolution study of nanocrystallization and fatigue cracking in a cyclically strained metallic glass. PNAS 110:19725–19730CrossRef Wang CC, Mao YW, Shan ZW, Dao M, Li J, Jun Sun J, Evan Ma E, Suresh S (2013) Real-time, high-resolution study of nanocrystallization and fatigue cracking in a cyclically strained metallic glass. PNAS 110:19725–19730CrossRef
9.
Zurück zum Zitat Shan ZW, Li J, Cheng YQ, Minor AM, Syed SA, Warren OL, Ma E (2008) Plastic flow and failure resistance of metallic glass: insight from in situ compression of nanopillars. Phys Rev B 77:155419CrossRef Shan ZW, Li J, Cheng YQ, Minor AM, Syed SA, Warren OL, Ma E (2008) Plastic flow and failure resistance of metallic glass: insight from in situ compression of nanopillars. Phys Rev B 77:155419CrossRef
10.
Zurück zum Zitat Guo H, Yan PF, Wang YB, Tan J, Zhang ZF, Sui ML, Ma E (2007) Tensile ductility and necking of metallic glass. Nat Mater 6:735–739CrossRef Guo H, Yan PF, Wang YB, Tan J, Zhang ZF, Sui ML, Ma E (2007) Tensile ductility and necking of metallic glass. Nat Mater 6:735–739CrossRef
11.
Zurück zum Zitat Liang H, Upmanyu M, Huang H (2005) Size-dependent elasticity of nanowires: nonlinear effects. Phys Rev B 71:241403CrossRef Liang H, Upmanyu M, Huang H (2005) Size-dependent elasticity of nanowires: nonlinear effects. Phys Rev B 71:241403CrossRef
12.
Zurück zum Zitat Kulkarni AJ, Zhou M, Ke FJ (2005) Orientation and size dependence of the elastic properties of zinc oxide nanobelts. Nanotechnology 16:2749CrossRef Kulkarni AJ, Zhou M, Ke FJ (2005) Orientation and size dependence of the elastic properties of zinc oxide nanobelts. Nanotechnology 16:2749CrossRef
13.
Zurück zum Zitat Miller RE, Shenoy VB (2000) Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11:139–147CrossRef Miller RE, Shenoy VB (2000) Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11:139–147CrossRef
14.
Zurück zum Zitat Chen CQ, Shi Y, Zhang YS, Zhu J, Yan YJ (2006) Size dependence of Young’s modulus in ZnO nanowires. Phys Rev Lett 96:075505CrossRef Chen CQ, Shi Y, Zhang YS, Zhu J, Yan YJ (2006) Size dependence of Young’s modulus in ZnO nanowires. Phys Rev Lett 96:075505CrossRef
15.
Zurück zum Zitat He J, Lilley CM (2008) Surface effect on the elastic behavior of static bending nanowires. Nano Lett 8:1798–1802CrossRef He J, Lilley CM (2008) Surface effect on the elastic behavior of static bending nanowires. Nano Lett 8:1798–1802CrossRef
16.
Zurück zum Zitat Lee HL, Chang RP, Chang WJ (2011) Buckling analysis of nonuniform nanowires under axial compression, Proceedings of the World Congress on Engineering III:2466–2468, London, UK Lee HL, Chang RP, Chang WJ (2011) Buckling analysis of nonuniform nanowires under axial compression, Proceedings of the World Congress on Engineering III:2466–2468, London, UK
17.
Zurück zum Zitat Jiang W, Batra R (2009) Molecular statics simulations of buckling and yielding of gold nanowires deformed in axial compression. Acta Mater 57:4921–4932CrossRef Jiang W, Batra R (2009) Molecular statics simulations of buckling and yielding of gold nanowires deformed in axial compression. Acta Mater 57:4921–4932CrossRef
18.
Zurück zum Zitat Zhan H, Gu Y (2011) Molecular dynamics study of dynamic buckling properties of nanowires with defects, 14th Asia Pacific Vib. Conf. pp 1–7 Zhan H, Gu Y (2011) Molecular dynamics study of dynamic buckling properties of nanowires with defects, 14th Asia Pacific Vib. Conf. pp 1–7
19.
Zurück zum Zitat Olsson PAT, Park HS (2011) Atomistic study of the buckling of gold nanowires. Acta Mater 59:3883–3894CrossRef Olsson PAT, Park HS (2011) Atomistic study of the buckling of gold nanowires. Acta Mater 59:3883–3894CrossRef
20.
Zurück zum Zitat Yao H, Yun G (2012) The effect of nonuniform surface elasticity on buckling of ZnO nanowires. Phys E 44:1916–1919CrossRef Yao H, Yun G (2012) The effect of nonuniform surface elasticity on buckling of ZnO nanowires. Phys E 44:1916–1919CrossRef
21.
Zurück zum Zitat Wang Y, Song J, Xiao J (2013) Surface effects on in-plane buckling of nanowires on elastomeric substrates. J Appl Phys 46:125309 Wang Y, Song J, Xiao J (2013) Surface effects on in-plane buckling of nanowires on elastomeric substrates. J Appl Phys 46:125309
22.
Zurück zum Zitat Valencia-Balvín C, Loyola C, Osorio-Guillen J, Gutiérrez G (2010) Structural and dynamical properties of the Cu46Zr54 alloy in crystalline, amorphous and liquid state: a molecular dynamic study. Phys B 405:4970–4977CrossRef Valencia-Balvín C, Loyola C, Osorio-Guillen J, Gutiérrez G (2010) Structural and dynamical properties of the Cu46Zr54 alloy in crystalline, amorphous and liquid state: a molecular dynamic study. Phys B 405:4970–4977CrossRef
23.
Zurück zum Zitat Cheng YQ, Ma E, Sheng HW (2009) Atomic level structure in multicomponent bulk metallic glass. Phys Rev Lett 102:245501CrossRef Cheng YQ, Ma E, Sheng HW (2009) Atomic level structure in multicomponent bulk metallic glass. Phys Rev Lett 102:245501CrossRef
25.
Zurück zum Zitat Wang Z, Zu X, Gao F, Weber WJ (2008) Atomistic simulations of the mechanical properties of silicon carbide nanowires. Phys Rev B 77:224113CrossRef Wang Z, Zu X, Gao F, Weber WJ (2008) Atomistic simulations of the mechanical properties of silicon carbide nanowires. Phys Rev B 77:224113CrossRef
26.
Zurück zum Zitat Park H, Gall K, Zimmerman J (2006) Deformation of FCC nanowires by twinning and slip. J Mech Phys Solids 54:1862–1881CrossRef Park H, Gall K, Zimmerman J (2006) Deformation of FCC nanowires by twinning and slip. J Mech Phys Solids 54:1862–1881CrossRef
27.
Zurück zum Zitat Riaz M, Nur O, Willander M, Klason P (2008) Buckling of ZnO nanowires under uniaxial compression. Appl Phys Lett 92:103118CrossRef Riaz M, Nur O, Willander M, Klason P (2008) Buckling of ZnO nanowires under uniaxial compression. Appl Phys Lett 92:103118CrossRef
28.
Zurück zum Zitat Stukowski A (2010) Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool, Modelling and Simulation in Materials Science and Engineering 18:015012. http://www.ovito.org. Accessed 08 Aug 2014 Stukowski A (2010) Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool, Modelling and Simulation in Materials Science and Engineering 18:015012. http://​www.​ovito.​org. Accessed 08 Aug 2014
29.
Zurück zum Zitat Amigo N, Gutierrez G, Ignat M (2014) Atomistic simulation of single crystal copper nanowires under tensile stress: influence of silver impurities in the emission of dislocations. Comput Mater Sci 87:76–82CrossRef Amigo N, Gutierrez G, Ignat M (2014) Atomistic simulation of single crystal copper nanowires under tensile stress: influence of silver impurities in the emission of dislocations. Comput Mater Sci 87:76–82CrossRef
30.
Zurück zum Zitat Shimizu F, Ogata S, Li J (2007) Theory of shear banding in metallic glasses and molecular dynamics calculations. Mater Trans 48:2923–2927CrossRef Shimizu F, Ogata S, Li J (2007) Theory of shear banding in metallic glasses and molecular dynamics calculations. Mater Trans 48:2923–2927CrossRef
31.
Zurück zum Zitat Wang GF, Feng XQ (2009) Surface effects on buckling of nanowires under uniaxial compression. Appl Phys Lett 94:141913CrossRef Wang GF, Feng XQ (2009) Surface effects on buckling of nanowires under uniaxial compression. Appl Phys Lett 94:141913CrossRef
32.
Zurück zum Zitat Wang Z, Zu X, Yang L, Gao F, Weber WJ (2008) Molecular dynamics simulation on the buckling behavior of GaN nanowires under uniaxial compression. Phys E 40:561–566CrossRef Wang Z, Zu X, Yang L, Gao F, Weber WJ (2008) Molecular dynamics simulation on the buckling behavior of GaN nanowires under uniaxial compression. Phys E 40:561–566CrossRef
33.
Zurück zum Zitat Wen YH, Wang Q, Liew KM, Zhu ZZ (2010) Compressive mechanical behavior of Au nanowires. Phys Lett A 374:2949–2952CrossRef Wen YH, Wang Q, Liew KM, Zhu ZZ (2010) Compressive mechanical behavior of Au nanowires. Phys Lett A 374:2949–2952CrossRef
34.
Zurück zum Zitat Timoshenko SP, Gere JM (1985) Theory of elastic stability. McGraw-Hill, New York Timoshenko SP, Gere JM (1985) Theory of elastic stability. McGraw-Hill, New York
35.
Zurück zum Zitat Ji LW, Young SJ, Fang TH, Liu CH (2007) Buckling characterization of vertical ZnO nanowires using nanoindentation. Appl Phys Lett 90:033109CrossRef Ji LW, Young SJ, Fang TH, Liu CH (2007) Buckling characterization of vertical ZnO nanowires using nanoindentation. Appl Phys Lett 90:033109CrossRef
36.
Zurück zum Zitat Shenoy V (2005) Atomistic calculations of elastic properties of metallic FCC crystal surfaces. Phys Rev B 71:094104CrossRef Shenoy V (2005) Atomistic calculations of elastic properties of metallic FCC crystal surfaces. Phys Rev B 71:094104CrossRef
37.
Zurück zum Zitat Izumi S, Hara S, Kumagai T, Sakai S (2004) A method for calculating surface stress and surface elastic constants by molecular dynamics: application to the surface of crystal and amorphous silicon. Thin Solid Films 467:253–260CrossRef Izumi S, Hara S, Kumagai T, Sakai S (2004) A method for calculating surface stress and surface elastic constants by molecular dynamics: application to the surface of crystal and amorphous silicon. Thin Solid Films 467:253–260CrossRef
38.
Zurück zum Zitat Jing GY, Duan HL, Sun XM, Zhang ZS, Xu J, Li YD, Wang JX, Yu DP (2006) Surface effects on elastic properties of silver nanowires: contact atomic-force microscopy. Phys Rev B 73:235409CrossRef Jing GY, Duan HL, Sun XM, Zhang ZS, Xu J, Li YD, Wang JX, Yu DP (2006) Surface effects on elastic properties of silver nanowires: contact atomic-force microscopy. Phys Rev B 73:235409CrossRef
Metadaten
Titel
Buckling of Cu–Zr-based metallic glasses nanowires: molecular dynamics study of surface effects
verfasst von
Javier Wachter
Gonzalo Gutiérrez
Alejandro Zúñiga
Rodrigo Palma
Publikationsdatum
01.12.2014
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 23/2014
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-014-8512-9

Weitere Artikel der Ausgabe 23/2014

Journal of Materials Science 23/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.