Skip to main content
Erschienen in: Journal of Materials Science 23/2014

01.12.2014 | Original Paper

Controlled hydrothermal growth of multi-length-scale ZnO nanowires using liquid masking layers

verfasst von: Hun Soo Jang, Bokyeong Son, Hui Song, Gun Young Jung, Heung Cho Ko

Erschienen in: Journal of Materials Science | Ausgabe 23/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this study, we demonstrate a method for creating multi-length-scale ZnO nanowires in a controllable manner on diverse planar and curvilinear substrates by introducing immiscible liquid masking layers (LMLs) above and beneath a nutrient solution used in hydrothermal growth. The confinement of volatile reactants by the LMLs stabilizes the pH, which is an important parameter in determining the shape of the nanowires, to enable growth in a stable manner. The conformal wettability of the LMLs provides freedom in the choice of target substrates and allows for the possibility of mounting spatially moving stages without the use of a specially designed solid lid. Selective growth within the growth zone defined by the LMLs in a dynamic- and/or static-mode can create various types of ZnO nanowires with gradual or terraced length profiles in two- or three-dimensional geometries. For a device application, we developed cylindrical photodetectors with the configuration of Cr/ZnO seed/ZnO nanowires/poly(3-hexylthiophene-2,5-diyl)/poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) to show the ability to spatially modulate the photo-sensitivity by controlled hydrothermal growth of diverse length scales of ZnO nanowires using the LML method.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Ng HT, Han J, Yamada T, Nguyen P, Chen YP, Meyyappan M (2004) Single crystal nanowire vertical surround-gate field-effect transistor. Nano Lett 4:1247–1252CrossRef Ng HT, Han J, Yamada T, Nguyen P, Chen YP, Meyyappan M (2004) Single crystal nanowire vertical surround-gate field-effect transistor. Nano Lett 4:1247–1252CrossRef
2.
Zurück zum Zitat Goldberger J, Sirbuly DJ, Law M, Yang P (2005) ZnO nanowire transistor. J Phys Chem B 109:9–14CrossRef Goldberger J, Sirbuly DJ, Law M, Yang P (2005) ZnO nanowire transistor. J Phys Chem B 109:9–14CrossRef
3.
Zurück zum Zitat Law M, Greene LE, Johnson JC, Saykally R, Yang P (2005) Nanowire dye-sensitized solar cells. Nat Mater 4:455–459CrossRef Law M, Greene LE, Johnson JC, Saykally R, Yang P (2005) Nanowire dye-sensitized solar cells. Nat Mater 4:455–459CrossRef
4.
Zurück zum Zitat Jeong M-C, Oh B-Y, Ham M-H, Myoung J-M (2006) Electroluminescence from ZnO nanowires in n-ZnO film/ZnO nanowire array/p-GaN film heterojunction light-emitting diodes. Appl Phys Lett 88:202105CrossRef Jeong M-C, Oh B-Y, Ham M-H, Myoung J-M (2006) Electroluminescence from ZnO nanowires in n-ZnO film/ZnO nanowire array/p-GaN film heterojunction light-emitting diodes. Appl Phys Lett 88:202105CrossRef
5.
Zurück zum Zitat Wei A, Sun XW, Wang JX, Lei Y, Cai XP, Li CM, Dong ZL, Huang W (2006) Enzymatic glucose biosensor based on ZnO nanorod array grown by hydrothremal decomposition. Appl Phys Lett 89:123902CrossRef Wei A, Sun XW, Wang JX, Lei Y, Cai XP, Li CM, Dong ZL, Huang W (2006) Enzymatic glucose biosensor based on ZnO nanorod array grown by hydrothremal decomposition. Appl Phys Lett 89:123902CrossRef
6.
Zurück zum Zitat Yeh P-H, Li Z, Wang ZL (2009) Schottky-gated probe-free ZnO nanowire biosensor. Adv Mater 21:4975–4978CrossRef Yeh P-H, Li Z, Wang ZL (2009) Schottky-gated probe-free ZnO nanowire biosensor. Adv Mater 21:4975–4978CrossRef
7.
Zurück zum Zitat Kim K-H, Lee KY, Seo J-S, Kumar B, Kim S-W (2011) Paper-based piezoelectric nanogenerators with high thermal stability. Small 7:2577–2580CrossRef Kim K-H, Lee KY, Seo J-S, Kumar B, Kim S-W (2011) Paper-based piezoelectric nanogenerators with high thermal stability. Small 7:2577–2580CrossRef
8.
Zurück zum Zitat Wu W, Wen X, Wang ZL (2013) Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imaging. Science 340:952–957CrossRef Wu W, Wen X, Wang ZL (2013) Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imaging. Science 340:952–957CrossRef
9.
Zurück zum Zitat Lee CJ, Lee TJ, Lyu SC, Zhang Y, Ruh H, Lee H (2002) Field emission from well-aligned zinc oxide nanowires grown at low temperature. Appl Phys Lett 81:3648–3650CrossRef Lee CJ, Lee TJ, Lyu SC, Zhang Y, Ruh H, Lee H (2002) Field emission from well-aligned zinc oxide nanowires grown at low temperature. Appl Phys Lett 81:3648–3650CrossRef
10.
Zurück zum Zitat Sun XW, Wang JX (2008) Fast switching electrochromic display using a viologen-modified ZnO nanowire array electrode. Nano Lett 8:1884–1889CrossRef Sun XW, Wang JX (2008) Fast switching electrochromic display using a viologen-modified ZnO nanowire array electrode. Nano Lett 8:1884–1889CrossRef
11.
Zurück zum Zitat Ohshima E, Ogino H, Niikura I, Maeda K, Sato M, Ito M, Fukuda T (2004) Growth of the 2-in-size bulk ZnO single crystals by the hydrothermal method. J Cryst Growth 260:166–170CrossRef Ohshima E, Ogino H, Niikura I, Maeda K, Sato M, Ito M, Fukuda T (2004) Growth of the 2-in-size bulk ZnO single crystals by the hydrothermal method. J Cryst Growth 260:166–170CrossRef
12.
Zurück zum Zitat Liu J, She J, Deng S, Chen J, Xu N (2008) Ultrathin seed-layer for tuning density of ZnO nanowire array and their field emission characteristics. J Phys Chem C 112:11685–11690CrossRef Liu J, She J, Deng S, Chen J, Xu N (2008) Ultrathin seed-layer for tuning density of ZnO nanowire array and their field emission characteristics. J Phys Chem C 112:11685–11690CrossRef
13.
Zurück zum Zitat Conings B, Baeten L, Boyen H-G, D’Haen J, Van Bael MK, Manca JV (2012) Relation between morphology and recombination kinetics in nanostructured hybrid solar cells. J Phys Chem C 116:14237–14242CrossRef Conings B, Baeten L, Boyen H-G, D’Haen J, Van Bael MK, Manca JV (2012) Relation between morphology and recombination kinetics in nanostructured hybrid solar cells. J Phys Chem C 116:14237–14242CrossRef
14.
Zurück zum Zitat Xu C, Shin P, Cao L, Gao D (2010) Preferential growth of long ZnO nanowire array and its application in dye-sensitized solar cells. J Phys Chem C 114:125–129CrossRef Xu C, Shin P, Cao L, Gao D (2010) Preferential growth of long ZnO nanowire array and its application in dye-sensitized solar cells. J Phys Chem C 114:125–129CrossRef
15.
Zurück zum Zitat Huang MH, Wu Y, Feick H, Tran N, Weber E, Yang P (2001) Catalytic growth of zinc oxide nanowires by vapor transport. Adv Mater 13:113–116CrossRef Huang MH, Wu Y, Feick H, Tran N, Weber E, Yang P (2001) Catalytic growth of zinc oxide nanowires by vapor transport. Adv Mater 13:113–116CrossRef
16.
Zurück zum Zitat Park WI, Yi G-C, Kim M, Pennycook SJ (2002) ZnO nanoneedles grown vertically on Si substrates by non-catalytic vapor-phase epitaxy. Adv Mater 14:1841–1843CrossRef Park WI, Yi G-C, Kim M, Pennycook SJ (2002) ZnO nanoneedles grown vertically on Si substrates by non-catalytic vapor-phase epitaxy. Adv Mater 14:1841–1843CrossRef
17.
Zurück zum Zitat Vayssieres L (2003) Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Adv Mater 15:464–466CrossRef Vayssieres L (2003) Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Adv Mater 15:464–466CrossRef
18.
Zurück zum Zitat Greene LE, Law M, Goldberger J, Kim F, Johnson JC, Zhang Y, Saykally RJ, Yang P (2003) Low-temperature wafer-scale production of ZnO nanowire arrays. Angew Chem Int Ed 42:3031–3034CrossRef Greene LE, Law M, Goldberger J, Kim F, Johnson JC, Zhang Y, Saykally RJ, Yang P (2003) Low-temperature wafer-scale production of ZnO nanowire arrays. Angew Chem Int Ed 42:3031–3034CrossRef
19.
Zurück zum Zitat Boercker JE, Schmidt JB, Aydil ES (2009) Transport limited growth of zinc oxide nanowires. Cryst Growth Des 9:2783–2789CrossRef Boercker JE, Schmidt JB, Aydil ES (2009) Transport limited growth of zinc oxide nanowires. Cryst Growth Des 9:2783–2789CrossRef
20.
Zurück zum Zitat Greene LE, Law M, Tan DH, Montano M, Goldberger J, Somorjai G, Yang P (2005) General route to vertical ZnO nanowire array using textured ZnO seeds. Nano Lett 5:1231–1236CrossRef Greene LE, Law M, Tan DH, Montano M, Goldberger J, Somorjai G, Yang P (2005) General route to vertical ZnO nanowire array using textured ZnO seeds. Nano Lett 5:1231–1236CrossRef
21.
Zurück zum Zitat Zhu R, Zhang W, Li C, Yang R (2013) Uniform zinc oxide nanowire arrays grown on nonepitaxial surface with general orientation control. Nano Lett 13:5171–5176CrossRef Zhu R, Zhang W, Li C, Yang R (2013) Uniform zinc oxide nanowire arrays grown on nonepitaxial surface with general orientation control. Nano Lett 13:5171–5176CrossRef
22.
Zurück zum Zitat Bulliard X, Yun S, Ihn S-G, Choi YS, Kim Y, Choi D, Choi J-Y, Choi W (2010) Density control of ZnO nanorod arrays on mixed self-assembled monolayers. Cryst Growth Des 10:4697–4700CrossRef Bulliard X, Yun S, Ihn S-G, Choi YS, Kim Y, Choi D, Choi J-Y, Choi W (2010) Density control of ZnO nanorod arrays on mixed self-assembled monolayers. Cryst Growth Des 10:4697–4700CrossRef
23.
Zurück zum Zitat Kim KS, Jeong H, Jeong MS, Jung GY (2010) Polymer-templated hydrothermal growth of vertically aligned single-crystal ZnO nanorods and morphological transformations using structural polarity. Adv Funct Mater 20:3055–3063CrossRef Kim KS, Jeong H, Jeong MS, Jung GY (2010) Polymer-templated hydrothermal growth of vertically aligned single-crystal ZnO nanorods and morphological transformations using structural polarity. Adv Funct Mater 20:3055–3063CrossRef
24.
Zurück zum Zitat Tian ZR, Voigt JA, Liu J, Mckenzie B, Mcdermott MJ (2002) Biomimetic arrays of oriented helical ZnO nanorods and columns. J Am Chem Soc 124:12954–12955CrossRef Tian ZR, Voigt JA, Liu J, Mckenzie B, Mcdermott MJ (2002) Biomimetic arrays of oriented helical ZnO nanorods and columns. J Am Chem Soc 124:12954–12955CrossRef
25.
Zurück zum Zitat Joo J, Chow BY, Prakash M, Boyden ES, Jacobson JM (2011) Face-selective electrostatic control of hydrothermal zinc oxide nanowire synthesis. Nat Mater 10:596–601CrossRef Joo J, Chow BY, Prakash M, Boyden ES, Jacobson JM (2011) Face-selective electrostatic control of hydrothermal zinc oxide nanowire synthesis. Nat Mater 10:596–601CrossRef
26.
Zurück zum Zitat Hu X, Masuda Y, Ohji T, Kato K (2008) Micropatterning of ZnO nanoarrays by forced hydrolysis of anhydrous zinc acetate. Langmuir 24:7614–7617CrossRef Hu X, Masuda Y, Ohji T, Kato K (2008) Micropatterning of ZnO nanoarrays by forced hydrolysis of anhydrous zinc acetate. Langmuir 24:7614–7617CrossRef
27.
Zurück zum Zitat Kwon SJ, Park J-H, Park J-G (2005) Patterned growth of ZnO nanorods by micromolding of sol-gel-derived seed layer. Appl Phys Lett 87:133112CrossRef Kwon SJ, Park J-H, Park J-G (2005) Patterned growth of ZnO nanorods by micromolding of sol-gel-derived seed layer. Appl Phys Lett 87:133112CrossRef
28.
Zurück zum Zitat Hsu JWP, Tian ZR, Simmons NC, Matzke CM, Voigt JA, Liu J (2005) Direct spatial organization of zinc oxide nanorods. Nano Lett 5:83–86CrossRef Hsu JWP, Tian ZR, Simmons NC, Matzke CM, Voigt JA, Liu J (2005) Direct spatial organization of zinc oxide nanorods. Nano Lett 5:83–86CrossRef
29.
Zurück zum Zitat Wang CH, Wong ASW, Ho GW (2007) Facile solution route to vertically aligned, selective growth of ZnO nanostructure arrays. Langmuir 23:11960–11963CrossRef Wang CH, Wong ASW, Ho GW (2007) Facile solution route to vertically aligned, selective growth of ZnO nanostructure arrays. Langmuir 23:11960–11963CrossRef
30.
Zurück zum Zitat Ko SH, Lee D, Hotz N, Yeo J, Hong S, Nam KH, Grigoropoulos CP (2012) Digital selective growth of ZnO nanowire arrays from inkjet-printed nanoparticle seeds on a flexible substrate. Langmuir 28:4787–4792CrossRef Ko SH, Lee D, Hotz N, Yeo J, Hong S, Nam KH, Grigoropoulos CP (2012) Digital selective growth of ZnO nanowire arrays from inkjet-printed nanoparticle seeds on a flexible substrate. Langmuir 28:4787–4792CrossRef
31.
Zurück zum Zitat Chen CC, Lin YS, Sang CH, Sheu J-T (2011) Localized joule heating as a mask-free technique for the local synthesis of ZnO nanowires on silicon nanodevices. Nano Lett 11:4736–4741CrossRef Chen CC, Lin YS, Sang CH, Sheu J-T (2011) Localized joule heating as a mask-free technique for the local synthesis of ZnO nanowires on silicon nanodevices. Nano Lett 11:4736–4741CrossRef
32.
Zurück zum Zitat Yeo J, Hong S, Wanit M, Kang HW, Lee D, Grigoropoulos CP, Sung HJ, Ko SH (2013) Rapid, one-Step, digital selective growth of ZnO nanowires on 3D structures using laser induced hydrothermal growth. Adv Funct Mater 23:3316–3323CrossRef Yeo J, Hong S, Wanit M, Kang HW, Lee D, Grigoropoulos CP, Sung HJ, Ko SH (2013) Rapid, one-Step, digital selective growth of ZnO nanowires on 3D structures using laser induced hydrothermal growth. Adv Funct Mater 23:3316–3323CrossRef
33.
Zurück zum Zitat Morin SA, Amos FF, Jin S (2007) Biomimetic assembly of zinc oxide nanorods onto flexible polymers. J Am Chem Soc 129:13776–13777CrossRef Morin SA, Amos FF, Jin S (2007) Biomimetic assembly of zinc oxide nanorods onto flexible polymers. J Am Chem Soc 129:13776–13777CrossRef
34.
Zurück zum Zitat Manekkathodi A, Lu M-Y, Wang CW, Chen L-J (2010) Direct growth of aligned zinc oxide nanorods on paper substrates for low-cost flexible electronics. Adv Mater 22:4059–4063CrossRef Manekkathodi A, Lu M-Y, Wang CW, Chen L-J (2010) Direct growth of aligned zinc oxide nanorods on paper substrates for low-cost flexible electronics. Adv Mater 22:4059–4063CrossRef
35.
Zurück zum Zitat Qin Y, Wang X, Wang ZL (2008) Microfibre-nanowire hybrid structure for energy scavenging. Nature 451:809–813CrossRef Qin Y, Wang X, Wang ZL (2008) Microfibre-nanowire hybrid structure for energy scavenging. Nature 451:809–813CrossRef
36.
Zurück zum Zitat Xiao X, Yuan L, Zhong J, Ding T, Liu Y, Cai Z, Rong Y, Han H, Zhou J, Wang ZL (2011) High-strain sensors based on ZnO nanowire/polystyrene hybridized flexible film. Adv Mater 23:5440–5444CrossRef Xiao X, Yuan L, Zhong J, Ding T, Liu Y, Cai Z, Rong Y, Han H, Zhou J, Wang ZL (2011) High-strain sensors based on ZnO nanowire/polystyrene hybridized flexible film. Adv Mater 23:5440–5444CrossRef
37.
Zurück zum Zitat Liu Y, Das A, Xu S, Lin Z, Xu C, Wang ZL, Rohatgi A, Wong CP (2012) Hybridizing ZnO nanowires with micropyramid silicon wafers as superhydrophobic high-efficiency solar cells. Adv Energy Mater 2:47–51CrossRef Liu Y, Das A, Xu S, Lin Z, Xu C, Wang ZL, Rohatgi A, Wong CP (2012) Hybridizing ZnO nanowires with micropyramid silicon wafers as superhydrophobic high-efficiency solar cells. Adv Energy Mater 2:47–51CrossRef
38.
Zurück zum Zitat Wang L, Tsan D, Stoeber B, Walus K (2012) Substrate-free fabrication of self-supporting ZnO nanowire arrays. Adv Mater 24:3999–4004CrossRef Wang L, Tsan D, Stoeber B, Walus K (2012) Substrate-free fabrication of self-supporting ZnO nanowire arrays. Adv Mater 24:3999–4004CrossRef
39.
Zurück zum Zitat Wen X, Wu W, Ding Y, Wang ZL (2012) Seedless synthesis of patterned ZnO nanowire arrays on metal thin films (Au, Ag, Cu, Sn) and their application for flexible electromechanical sensing. J Mater Chem 22:9469–9476CrossRef Wen X, Wu W, Ding Y, Wang ZL (2012) Seedless synthesis of patterned ZnO nanowire arrays on metal thin films (Au, Ag, Cu, Sn) and their application for flexible electromechanical sensing. J Mater Chem 22:9469–9476CrossRef
40.
Zurück zum Zitat Shaw DG, Maczynski A, Goral M, Wisniewska-Goclowska B, Skrzecz A, Owczarek I et al (2006) IUPAC-NIST solubility data series. 81. hydrocarbons with water and seawater-revised and updated. Part 11. C13–C36 hydrocarbons with water. J Phys Chem Ref Data 35:687–784CrossRef Shaw DG, Maczynski A, Goral M, Wisniewska-Goclowska B, Skrzecz A, Owczarek I et al (2006) IUPAC-NIST solubility data series. 81. hydrocarbons with water and seawater-revised and updated. Part 11. C13–C36 hydrocarbons with water. J Phys Chem Ref Data 35:687–784CrossRef
41.
Zurück zum Zitat Miller DJ, Hawthorne SB (2000) Solubility of liquid organics of environmental interest in subcritical (hot/liquid) water from 298 K to 473 K. J Chem Eng Data 45:78–81CrossRef Miller DJ, Hawthorne SB (2000) Solubility of liquid organics of environmental interest in subcritical (hot/liquid) water from 298 K to 473 K. J Chem Eng Data 45:78–81CrossRef
42.
Zurück zum Zitat Park SY, Kim BJ, Kim K, Kang MS, Lim K-H, Lee TI, Myoung JM, Baik HK, Cho JH, Kim YS (2012) Low-temperature, solution-processed and alkali metal doped ZnO for high-performance thin-film transistors. Adv Mater 24:834–838CrossRef Park SY, Kim BJ, Kim K, Kang MS, Lim K-H, Lee TI, Myoung JM, Baik HK, Cho JH, Kim YS (2012) Low-temperature, solution-processed and alkali metal doped ZnO for high-performance thin-film transistors. Adv Mater 24:834–838CrossRef
43.
Zurück zum Zitat Walter A, Gutknecht J (1986) Permeability of small nonelectrolytes through lipid bilayer membranes. J Membrane Biol 90:207–217CrossRef Walter A, Gutknecht J (1986) Permeability of small nonelectrolytes through lipid bilayer membranes. J Membrane Biol 90:207–217CrossRef
44.
Zurück zum Zitat Xu S, Wang ZL (2011) One-dimensional ZnO nanostructures: solution growth and functional properties. Nano Res 4:1013–1098CrossRef Xu S, Wang ZL (2011) One-dimensional ZnO nanostructures: solution growth and functional properties. Nano Res 4:1013–1098CrossRef
45.
Zurück zum Zitat Richardson JJ, Lange FF (2009) Controlling low temperature aqueous synthesis of ZnO. 1. thermodynamic analysis. Cryst Growth Des 9:2570–2575CrossRef Richardson JJ, Lange FF (2009) Controlling low temperature aqueous synthesis of ZnO. 1. thermodynamic analysis. Cryst Growth Des 9:2570–2575CrossRef
46.
Zurück zum Zitat Ashfold MNR, Doherty RP, Ndifor-Angwafor NG, Riley DJ, Sun Y (2007) The kinetics of the hydrothermal growth of ZnO nanostructures. Thin Solid Films 515:8679–8683CrossRef Ashfold MNR, Doherty RP, Ndifor-Angwafor NG, Riley DJ, Sun Y (2007) The kinetics of the hydrothermal growth of ZnO nanostructures. Thin Solid Films 515:8679–8683CrossRef
47.
Zurück zum Zitat Santos FJV, Castro CAN, Dymond JH, Dalaouti NK, Assael MJ, Nagashima A (2005) Standard reference data for the viscosity of toluene. J Phys Chem Ref Data 35:1–8CrossRef Santos FJV, Castro CAN, Dymond JH, Dalaouti NK, Assael MJ, Nagashima A (2005) Standard reference data for the viscosity of toluene. J Phys Chem Ref Data 35:1–8CrossRef
48.
Zurück zum Zitat McLinden MO, Splett JD (2008) A liquid density standard over wide ranges of temperature and pressure based on toluene. J Res Natl Inst Stand Technol 113:29–67CrossRef McLinden MO, Splett JD (2008) A liquid density standard over wide ranges of temperature and pressure based on toluene. J Res Natl Inst Stand Technol 113:29–67CrossRef
49.
Zurück zum Zitat Peiró AM, Ravirajan P, Govender K, Boyle DS, O’Brien P, Baradley DDC, Nelson J, Durrant JR (2006) Hybrid polymer/metal oxide solar cells based on ZnO columnar structures. J Mater Chem 16:2088–2096CrossRef Peiró AM, Ravirajan P, Govender K, Boyle DS, O’Brien P, Baradley DDC, Nelson J, Durrant JR (2006) Hybrid polymer/metal oxide solar cells based on ZnO columnar structures. J Mater Chem 16:2088–2096CrossRef
50.
Zurück zum Zitat Baeten L, Conings B, Boyen H-G, D’Haen J, Hardy A, D’Olieslaeger M, Manca JV, Van Bael MK (2011) Toward efficient hybrid solar cells based on fully polymer infiltrated ZnO nanorod arrays. Adv Mater 23:2802–2805CrossRef Baeten L, Conings B, Boyen H-G, D’Haen J, Hardy A, D’Olieslaeger M, Manca JV, Van Bael MK (2011) Toward efficient hybrid solar cells based on fully polymer infiltrated ZnO nanorod arrays. Adv Mater 23:2802–2805CrossRef
51.
Zurück zum Zitat Gonzalez-Valls I, Lira-Canti M (2009) Vertically-aligned nanostructures of ZnO for excitonic solar cells: a review. Energy Environ Sci 2:19–34CrossRef Gonzalez-Valls I, Lira-Canti M (2009) Vertically-aligned nanostructures of ZnO for excitonic solar cells: a review. Energy Environ Sci 2:19–34CrossRef
52.
Zurück zum Zitat Takanezawa K, Tajima K, Hashimoto K (2008) Charge separation interfaces in polymer photovoltaic devices hybridized with ZnO nanorod arrays. Jpn J Appl Phys 47:8049–8053CrossRef Takanezawa K, Tajima K, Hashimoto K (2008) Charge separation interfaces in polymer photovoltaic devices hybridized with ZnO nanorod arrays. Jpn J Appl Phys 47:8049–8053CrossRef
Metadaten
Titel
Controlled hydrothermal growth of multi-length-scale ZnO nanowires using liquid masking layers
verfasst von
Hun Soo Jang
Bokyeong Son
Hui Song
Gun Young Jung
Heung Cho Ko
Publikationsdatum
01.12.2014
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 23/2014
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-014-8507-6

Weitere Artikel der Ausgabe 23/2014

Journal of Materials Science 23/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.