Skip to main content
Erschienen in: Journal of Polymer Research 11/2017

01.10.2017 | ORIGINAL PAPER

Butanol-mediated oven-drying of nanocellulose with enhanced dehydration rate and aqueous re-dispersion

verfasst von: Zahid Hanif, Hyeonyeol Jeon, Thang Hong Tran, Jonggeon Jegal, Seul-A. Park, Seon-Mi Kim, Jeyoung Park, Sung Yeon Hwang, Dongyeop X. Oh

Erschienen in: Journal of Polymer Research | Ausgabe 11/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The application potential of nanocellulose has been previously hindered by the costly and slow drying methods that this material requires, including freeze/supercritical drying process. The main issue for nanocellulose commercialization is how effectively and rapidly its high water contents (90–99%) can be removed, all of which raise its transportation and processing costs. Oven-drying is the fastest, most economical, and most scalable method for dehydrating nanocellulose, but causes strong interfibrillar aggregation and leads to poor aqueous re-dispersion. Here, we report that the problems of nanocellulose oven-drying are comprehensively overcome by adding tert-butanol (t-BuOH) to the nanocellulose solution at >90%. In a lab-scale comparison, the t-BuOH-mediated oven-drying of aqueous nanocellulose showed lower drying times by a factor of 2–12 compared to water only oven-drying and freeze drying of the same material. The dispersibility of this dried nanocellulose is as high as the never-dried material in terms of particle size, light transmittance, and sedimentation. t-BuOH reduces interfibrillar shrinkage due to the lower surface tension of t-BuOH compared to water, and a remaining t-BuOH/water mixture decreases interfibrillar adhesion and contact.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Habibi Y (2014) Key advances in the chemical modification of nanocelluloses. Chem Soc Rev 43:1519–1542CrossRef Habibi Y (2014) Key advances in the chemical modification of nanocelluloses. Chem Soc Rev 43:1519–1542CrossRef
2.
Zurück zum Zitat Dong S, Roman M (2007) Fluorescently labeled cellulose nanocrystals for bioimaging applications. J Am Chem Soc 129:13810–13811CrossRef Dong S, Roman M (2007) Fluorescently labeled cellulose nanocrystals for bioimaging applications. J Am Chem Soc 129:13810–13811CrossRef
3.
Zurück zum Zitat Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by tempo-mediated oxidation. Biomacromolecules 10:162–165CrossRef Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by tempo-mediated oxidation. Biomacromolecules 10:162–165CrossRef
4.
Zurück zum Zitat Li W, Zhao X, Huang Z, Liu S (2013) Nanocellulose fibrils isolated from BHKP using ultrasonication and their reinforcing properties in transparent poly(vinyl alcohol) films. J Polym Res 20:210–216CrossRef Li W, Zhao X, Huang Z, Liu S (2013) Nanocellulose fibrils isolated from BHKP using ultrasonication and their reinforcing properties in transparent poly(vinyl alcohol) films. J Polym Res 20:210–216CrossRef
5.
Zurück zum Zitat Saito T, Uematsu T, Kimura S, Enomae T, Isogai A (2011) Self-aligned integration of native cellulose nanofibrils towards producing diverse bulk materials. Soft Matter 7:8804–8809CrossRef Saito T, Uematsu T, Kimura S, Enomae T, Isogai A (2011) Self-aligned integration of native cellulose nanofibrils towards producing diverse bulk materials. Soft Matter 7:8804–8809CrossRef
6.
Zurück zum Zitat Lu B, Lin F, Jiang X, Cheng J, Lu Q, Song J, Chen C, Huang B (2017) One-pot assembly of microfibrillated cellulose reinforced pva–borax hydrogels with self-healing and ph-responsive properties. ACS Sustain Chem Eng 5:948–956CrossRef Lu B, Lin F, Jiang X, Cheng J, Lu Q, Song J, Chen C, Huang B (2017) One-pot assembly of microfibrillated cellulose reinforced pva–borax hydrogels with self-healing and ph-responsive properties. ACS Sustain Chem Eng 5:948–956CrossRef
7.
Zurück zum Zitat Saito T, Kuramae R, Wohlert J, Berglund LA, Isogai A (2013) An ultrastrong nanofibrillar biomaterial: the strength of single cellulose nanofibrils revealed via sonication-induced fragmentation. Biomacromolecules 14:248–253CrossRef Saito T, Kuramae R, Wohlert J, Berglund LA, Isogai A (2013) An ultrastrong nanofibrillar biomaterial: the strength of single cellulose nanofibrils revealed via sonication-induced fragmentation. Biomacromolecules 14:248–253CrossRef
8.
Zurück zum Zitat Mi Q, Ma S, Yu J, He J, Zhang J (2016) Flexible and transparent cellulose aerogels with uniform nanoporous structure by a controlled regeneration process. ACS Sustain Chem Eng 4:656–660CrossRef Mi Q, Ma S, Yu J, He J, Zhang J (2016) Flexible and transparent cellulose aerogels with uniform nanoporous structure by a controlled regeneration process. ACS Sustain Chem Eng 4:656–660CrossRef
9.
Zurück zum Zitat Nguyen HL, Jo YK, Cha M, Cha YJ, Yoon DK, Sanandiya ND, Prajatelistia E, Oh DX, Hwang DS (2016) Mussel-inspired anisotropic nanocellulose and silver nanoparticle composite with improved mechanical properties, electrical conductivity and antibacterial activity. Polymers (Basel) 8:102–114CrossRef Nguyen HL, Jo YK, Cha M, Cha YJ, Yoon DK, Sanandiya ND, Prajatelistia E, Oh DX, Hwang DS (2016) Mussel-inspired anisotropic nanocellulose and silver nanoparticle composite with improved mechanical properties, electrical conductivity and antibacterial activity. Polymers (Basel) 8:102–114CrossRef
10.
Zurück zum Zitat Thielemans W, Warbey CR, Walsh DA (2009) Permselective nanostructured membranes based on cellulose nanowhiskers. Green Chem 11:531–537CrossRef Thielemans W, Warbey CR, Walsh DA (2009) Permselective nanostructured membranes based on cellulose nanowhiskers. Green Chem 11:531–537CrossRef
11.
Zurück zum Zitat Sehaqui H, Mushi NE, Morimune S, Salajkova M, Nishino T, Berglund LA (2012) Cellulose nanofiber orientation in nanopaper and nanocomposites by cold drawing. ACS Appl Mater Interfaces 4:1043–1049CrossRef Sehaqui H, Mushi NE, Morimune S, Salajkova M, Nishino T, Berglund LA (2012) Cellulose nanofiber orientation in nanopaper and nanocomposites by cold drawing. ACS Appl Mater Interfaces 4:1043–1049CrossRef
12.
Zurück zum Zitat Peng Y, Gardner DJ, Han Y (2012) Drying cellulose nanofibrils: in search of a suitable method. Cellulose 19:91–102CrossRef Peng Y, Gardner DJ, Han Y (2012) Drying cellulose nanofibrils: in search of a suitable method. Cellulose 19:91–102CrossRef
13.
Zurück zum Zitat Beck S, Bouchard J, Berry R (2012) Dispersibility in water of dried nanocrystalline cellulose. Biomacromolecules 13:1486–1494CrossRef Beck S, Bouchard J, Berry R (2012) Dispersibility in water of dried nanocrystalline cellulose. Biomacromolecules 13:1486–1494CrossRef
14.
Zurück zum Zitat Ávila HM, Feldmann EM, Pleumeekers MM, Nimeskern L, Kuo W, de Jong WC, Schwarz S, Müller R, Hendriks J, Rotter N, van Osch GJ, Stok KS, Gatenholm P (2015) Novel bilayer bacterial nanocellulose scaffold supports neocartilage formation in vitro and in vivo. Biomaterials 44:122–133CrossRef Ávila HM, Feldmann EM, Pleumeekers MM, Nimeskern L, Kuo W, de Jong WC, Schwarz S, Müller R, Hendriks J, Rotter N, van Osch GJ, Stok KS, Gatenholm P (2015) Novel bilayer bacterial nanocellulose scaffold supports neocartilage formation in vitro and in vivo. Biomaterials 44:122–133CrossRef
15.
Zurück zum Zitat Lee DJ, Jangam S, Mujumdar AS (2013) Some recent advances in drying technologies to produce particulate solids. KONA Powder Part J 30:69–83CrossRef Lee DJ, Jangam S, Mujumdar AS (2013) Some recent advances in drying technologies to produce particulate solids. KONA Powder Part J 30:69–83CrossRef
16.
Zurück zum Zitat Korhonen JT, Hiekkataipale P, Malm J, Karppinen M, Ikkala O, Ras RH (2011) Inorganic hollow nanotube aerogels by atomic layer deposition onto native nanocellulose templates. ACS Nano 5:1967–1974CrossRef Korhonen JT, Hiekkataipale P, Malm J, Karppinen M, Ikkala O, Ras RH (2011) Inorganic hollow nanotube aerogels by atomic layer deposition onto native nanocellulose templates. ACS Nano 5:1967–1974CrossRef
17.
Zurück zum Zitat Nakasaka Y, Yoshikawa T, Kawamata Y, Tago T, Sato S, Takanohashi T, Koyama Y, Masuda T (2017) Fractonation of degraded lignin by using a water/1-butanol mixture with a solid-acid catalyst: A potential sources of phenolic compounds. ChemCatChem 9:2875–2880CrossRef Nakasaka Y, Yoshikawa T, Kawamata Y, Tago T, Sato S, Takanohashi T, Koyama Y, Masuda T (2017) Fractonation of degraded lignin by using a water/1-butanol mixture with a solid-acid catalyst: A potential sources of phenolic compounds. ChemCatChem 9:2875–2880CrossRef
18.
Zurück zum Zitat Feng J, Hsieh Y-L (2014) Assembling and redispersibility of rice straw nanocellulose: Effect of tert-butanol. ACS Appl Mater Interfaces 6:20075–20084CrossRef Feng J, Hsieh Y-L (2014) Assembling and redispersibility of rice straw nanocellulose: Effect of tert-butanol. ACS Appl Mater Interfaces 6:20075–20084CrossRef
19.
Zurück zum Zitat Nemoto J, Saito T, Isogai A (2015) Simple freeze-drying procedure for producing nanocellulose aerogel-containing, high-performance air filters. ACS Appl Mater Interfaces 7:19809–19815CrossRef Nemoto J, Saito T, Isogai A (2015) Simple freeze-drying procedure for producing nanocellulose aerogel-containing, high-performance air filters. ACS Appl Mater Interfaces 7:19809–19815CrossRef
20.
Zurück zum Zitat Chen Y, Dutta S, K-W W (2014) Integrated, cascading enzyme−/chemocatalytic cellulose conversion using catalysts based on mesoporous silica nanoparticles. ChemSusChem 7:3241–3246CrossRef Chen Y, Dutta S, K-W W (2014) Integrated, cascading enzyme−/chemocatalytic cellulose conversion using catalysts based on mesoporous silica nanoparticles. ChemSusChem 7:3241–3246CrossRef
21.
Zurück zum Zitat Dutta S, K-W W (2014) Enzymatic breakdown of biomass: enzyme active sites, immobilization, and biofuel production. Green Chem 16:4615–4626CrossRef Dutta S, K-W W (2014) Enzymatic breakdown of biomass: enzyme active sites, immobilization, and biofuel production. Green Chem 16:4615–4626CrossRef
22.
Zurück zum Zitat Dutta S, Bhaumik A, K-W W (2014) Hierarchically porous carbon derived from polymers and biomass: effect of interconnected pores on energy applications. Energy Environ Sci 7:3574–3592CrossRef Dutta S, Bhaumik A, K-W W (2014) Hierarchically porous carbon derived from polymers and biomass: effect of interconnected pores on energy applications. Energy Environ Sci 7:3574–3592CrossRef
23.
Zurück zum Zitat Lee Y, Chen C, Chiu Y, K-W W (2013) An effective cellulose-to-glucose-to-fructose conversion sequence by using enzyme immobilized Fe3O4-loaded mesoporous silica nanoparticles as recyclable biocatalysts. ChemCatChem 5:2153–2157CrossRef Lee Y, Chen C, Chiu Y, K-W W (2013) An effective cellulose-to-glucose-to-fructose conversion sequence by using enzyme immobilized Fe3O4-loaded mesoporous silica nanoparticles as recyclable biocatalysts. ChemCatChem 5:2153–2157CrossRef
24.
Zurück zum Zitat Alam MI, De S, Singh B, Saha B, Abu-Omar MM (2014) Titanium hydrogenphosphaste: An efficient dual acidic catalyst for 5-hydroxymethylfurfural (HMF) production. Appl Catal, A 486:42–48CrossRef Alam MI, De S, Singh B, Saha B, Abu-Omar MM (2014) Titanium hydrogenphosphaste: An efficient dual acidic catalyst for 5-hydroxymethylfurfural (HMF) production. Appl Catal, A 486:42–48CrossRef
25.
Zurück zum Zitat Jeong G, Ra CH, Hong Y, Kim JK, Song I, Kim S, Park D (2015) Conversion of red-algae Gracilaria verrucosa to sugars, levulinic acid and 5-hydroxymethylfurfural. Bioprocess Biosyst Eng 38:207–217CrossRef Jeong G, Ra CH, Hong Y, Kim JK, Song I, Kim S, Park D (2015) Conversion of red-algae Gracilaria verrucosa to sugars, levulinic acid and 5-hydroxymethylfurfural. Bioprocess Biosyst Eng 38:207–217CrossRef
26.
Zurück zum Zitat Kuo I, Suzuki N, Yamauchi Y, K-W W (2013) Cellulose-to-HMF conversion using crystalline mesoporous titania and zirconia nanocatalysts in ionic liquid suystems. RSC Adv 3:2028–2034CrossRef Kuo I, Suzuki N, Yamauchi Y, K-W W (2013) Cellulose-to-HMF conversion using crystalline mesoporous titania and zirconia nanocatalysts in ionic liquid suystems. RSC Adv 3:2028–2034CrossRef
27.
Zurück zum Zitat Hsu W, Lee Y, Peng W, K-W W (2011) Cellulosic cenversion in ionic liquids (ILs): Effects of H2O/cellulose molar ratios, temperatures, times, and different ILs on the production of monosaccharides and 5-hydroxymethylfurfural (HMF). Catal Today 174:65–69CrossRef Hsu W, Lee Y, Peng W, K-W W (2011) Cellulosic cenversion in ionic liquids (ILs): Effects of H2O/cellulose molar ratios, temperatures, times, and different ILs on the production of monosaccharides and 5-hydroxymethylfurfural (HMF). Catal Today 174:65–69CrossRef
28.
Zurück zum Zitat Peng Y, Gardner DJ, Han Y, Kiziltas A, Cai Z, Tshabalala MA (2013) Influence of drying method on the material properties of nanocellulose I: thermostability and crystallinity. Cellulose 20:2379–2392CrossRef Peng Y, Gardner DJ, Han Y, Kiziltas A, Cai Z, Tshabalala MA (2013) Influence of drying method on the material properties of nanocellulose I: thermostability and crystallinity. Cellulose 20:2379–2392CrossRef
29.
30.
Zurück zum Zitat Sehaqui H, Zhou Q, Berglund LA (2011) High-porosity aerogels of high specific surface area prepared from nanofibrillated cellulose (NFC). Compos Sci Technol 71:1593–1599CrossRef Sehaqui H, Zhou Q, Berglund LA (2011) High-porosity aerogels of high specific surface area prepared from nanofibrillated cellulose (NFC). Compos Sci Technol 71:1593–1599CrossRef
31.
Zurück zum Zitat Gardner DJ, Oporto GS, Mills R, Samir MASA (2008) Adhesion and Surface Issues in Cellulose and Nanocellulose. J Adhes Sci Technol 22:545–567CrossRef Gardner DJ, Oporto GS, Mills R, Samir MASA (2008) Adhesion and Surface Issues in Cellulose and Nanocellulose. J Adhes Sci Technol 22:545–567CrossRef
32.
Zurück zum Zitat Lewis L, Derakhshandeh M, Hatzikiriakos SG, Hamad WY, MacLachlan MJ (2016) Hydrothermal gelation of aqueous cellulose nanocrystal suspensions. Biomacromolecules 17:2747–2754CrossRef Lewis L, Derakhshandeh M, Hatzikiriakos SG, Hamad WY, MacLachlan MJ (2016) Hydrothermal gelation of aqueous cellulose nanocrystal suspensions. Biomacromolecules 17:2747–2754CrossRef
33.
Zurück zum Zitat Saito T, Isogai A (2006) Introduction of aldehyde groups on surfaces of native cellulose fibers by TEMPO-mediated oxidation. Colloids Surf A Physicochem Eng Asp 289:219–225CrossRef Saito T, Isogai A (2006) Introduction of aldehyde groups on surfaces of native cellulose fibers by TEMPO-mediated oxidation. Colloids Surf A Physicochem Eng Asp 289:219–225CrossRef
34.
Zurück zum Zitat Jaušovec D, Vogrinčič R, Kokol V (2015) Introduction of aldehyde vs. carboxylic groups to cellulose nanofibers using laccase/TEMPO mediated oxidation. Carbohydr Polym 116:74–85CrossRef Jaušovec D, Vogrinčič R, Kokol V (2015) Introduction of aldehyde vs. carboxylic groups to cellulose nanofibers using laccase/TEMPO mediated oxidation. Carbohydr Polym 116:74–85CrossRef
35.
Zurück zum Zitat Agustin MB, Nakatsubo F, Yano H (2017) Improved resistance of chemically-modified nanocellulose against thermally-induced depolymerization. Carbohydr Polym 164:1–7CrossRef Agustin MB, Nakatsubo F, Yano H (2017) Improved resistance of chemically-modified nanocellulose against thermally-induced depolymerization. Carbohydr Polym 164:1–7CrossRef
36.
Zurück zum Zitat Zhou S, Wang M, Chen X, Xu F (2015) Facile template synthesis of microfibrillated cellulose/polypyrrole/silver nanoparticles hybrid aerogels with electrical conductive and pressure responsive properties. ACS Sustain Chem Eng 3:3346–3354CrossRef Zhou S, Wang M, Chen X, Xu F (2015) Facile template synthesis of microfibrillated cellulose/polypyrrole/silver nanoparticles hybrid aerogels with electrical conductive and pressure responsive properties. ACS Sustain Chem Eng 3:3346–3354CrossRef
37.
Zurück zum Zitat Heath L, Thielemans W (2010) Cellulose nanowhisker aerogels. Green Chem 12:1448–1453CrossRef Heath L, Thielemans W (2010) Cellulose nanowhisker aerogels. Green Chem 12:1448–1453CrossRef
38.
Zurück zum Zitat Sehaqui H, Salajková M, Zhou Q, Berglund LA (2010) Mechanical performance tailoring of tough ultra-high porosity foams prepared from cellulose I nanofiber suspensions. Soft Matter 6:1824–1832CrossRef Sehaqui H, Salajková M, Zhou Q, Berglund LA (2010) Mechanical performance tailoring of tough ultra-high porosity foams prepared from cellulose I nanofiber suspensions. Soft Matter 6:1824–1832CrossRef
39.
Zurück zum Zitat Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nano 3:71–85 Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nano 3:71–85
40.
Zurück zum Zitat Lu Q, Cai Z, Lin F, Tang L, Wang S, Huang B (2016) Extraction of cellulose nanocrystals with a high yield of 88% by simultaneous mechanochemical activation and phosphotungstic acid hydrolysis. ACS Sustain Chem Eng 4:2165–2172CrossRef Lu Q, Cai Z, Lin F, Tang L, Wang S, Huang B (2016) Extraction of cellulose nanocrystals with a high yield of 88% by simultaneous mechanochemical activation and phosphotungstic acid hydrolysis. ACS Sustain Chem Eng 4:2165–2172CrossRef
41.
Zurück zum Zitat Huang P, Wu M, Kuga S, Wang D, Wu D, Huang Y (2012) One-step dispersion of cellulose nanofibers by mechanochemical esterification in an organic solvent. ChemSusChem 5:2319–2322CrossRef Huang P, Wu M, Kuga S, Wang D, Wu D, Huang Y (2012) One-step dispersion of cellulose nanofibers by mechanochemical esterification in an organic solvent. ChemSusChem 5:2319–2322CrossRef
42.
Zurück zum Zitat Kacuráková M, Capek P, Sasinková V, Wellner N, Ebringerová A (2000) FT-IR study of plant cell wall model compounds: pectic polysaccharides and hemicelluloses. Carbohydr Polym 43:195–203CrossRef Kacuráková M, Capek P, Sasinková V, Wellner N, Ebringerová A (2000) FT-IR study of plant cell wall model compounds: pectic polysaccharides and hemicelluloses. Carbohydr Polym 43:195–203CrossRef
43.
Zurück zum Zitat Espino-Pérez E, Domenek S, Belgacem N, Sillard C, Bras J (2014) Green process for chemical functionalization of nanocellulose with carboxylic acids. Biomacromolecules 15:4551–4560CrossRef Espino-Pérez E, Domenek S, Belgacem N, Sillard C, Bras J (2014) Green process for chemical functionalization of nanocellulose with carboxylic acids. Biomacromolecules 15:4551–4560CrossRef
44.
Zurück zum Zitat Tardy BL, Yokota S, Ago M, Xiang W, Kondo T, Bordes R, Rojas OJ (2017) Nanocellulose–surfactant interactions. Curr Opin Colloid Interface Sci 29:57–67CrossRef Tardy BL, Yokota S, Ago M, Xiang W, Kondo T, Bordes R, Rojas OJ (2017) Nanocellulose–surfactant interactions. Curr Opin Colloid Interface Sci 29:57–67CrossRef
45.
Zurück zum Zitat Israelachvili J, Pashley RM (1984) Measurement of the hydrophobic interaction between two hydrophobic surfaces in aqueous electrolyte solutions. J Colloid Interface Sci 98:500–514CrossRef Israelachvili J, Pashley RM (1984) Measurement of the hydrophobic interaction between two hydrophobic surfaces in aqueous electrolyte solutions. J Colloid Interface Sci 98:500–514CrossRef
46.
Zurück zum Zitat Faghihnejad A, Zeng H (2012) Hydrophobic interactions between polymer surfaces: using polystyrene as a model system. Soft Matter 8:2746–2759CrossRef Faghihnejad A, Zeng H (2012) Hydrophobic interactions between polymer surfaces: using polystyrene as a model system. Soft Matter 8:2746–2759CrossRef
47.
Zurück zum Zitat Lu Q, Danner E, Waite JH, Israelachvili JN, Zeng H, Hwang DS (2012) Adhesion of mussel foot proteins to different substrate surfaces. J R Soc Interface 10:20120759CrossRef Lu Q, Danner E, Waite JH, Israelachvili JN, Zeng H, Hwang DS (2012) Adhesion of mussel foot proteins to different substrate surfaces. J R Soc Interface 10:20120759CrossRef
48.
Zurück zum Zitat Zeng H (2013) Polymer adhesion, friction, and lubrication. Wiley, HobokenCrossRef Zeng H (2013) Polymer adhesion, friction, and lubrication. Wiley, HobokenCrossRef
49.
Zurück zum Zitat Shi C, Cui X, Xie L, Liu Q, Chan DYC, Israelachvili JN, Zeng H (2015) Measuring forces and spatiotemporal evolution of thin water films between an air bubble and solid surfaces of different hydrophobicity. ACS Nano 9:95–104CrossRef Shi C, Cui X, Xie L, Liu Q, Chan DYC, Israelachvili JN, Zeng H (2015) Measuring forces and spatiotemporal evolution of thin water films between an air bubble and solid surfaces of different hydrophobicity. ACS Nano 9:95–104CrossRef
Metadaten
Titel
Butanol-mediated oven-drying of nanocellulose with enhanced dehydration rate and aqueous re-dispersion
verfasst von
Zahid Hanif
Hyeonyeol Jeon
Thang Hong Tran
Jonggeon Jegal
Seul-A. Park
Seon-Mi Kim
Jeyoung Park
Sung Yeon Hwang
Dongyeop X. Oh
Publikationsdatum
01.10.2017
Verlag
Springer Netherlands
Erschienen in
Journal of Polymer Research / Ausgabe 11/2017
Print ISSN: 1022-9760
Elektronische ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-017-1343-z

Weitere Artikel der Ausgabe 11/2017

Journal of Polymer Research 11/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.