Skip to main content

2021 | OriginalPaper | Buchkapitel

C(sp3)–H Bond Hetero-functionalization of Aliphatic Carboxylic Acid Equivalents Enabled by Transition Metals

verfasst von : Aniket Gupta, Sreedhar Gundekari, Sukalyan Bhadra

Erschienen in: Catalysis for Clean Energy and Environmental Sustainability

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Aliphatic carboxylic acids and their common derivatives such as amides and esters, particularly embracing heteroatom-based substituents, are widespread among natural and synthetic complex molecular frameworks, ratified drugs, and various tailored materials. Conventional synthetic processes to access these compounds comprise multistep protocols that are virtually inconvenient and unsafe, generating large mass of wastes within the synthetic sequence. The straightforward transition metal-catalyzed installation of a heteroatom-based function via transforming a selective C–H bond of an aliphatic carboxylic acid equivalent has recently materialized as an attractive substitute to those multistep processes. In the latter case, the carboxylate group, either directly or in the form of an interconvertible directing group, controls the highly selective metal-promoted hetero-functionalization process in the alkyl chain residue through extraordinarily ordered transition states.
The current chapter summarizes the advances in the field of transition metal-enabled C(sp3)–H bond hetero-functionalization of aliphatic carboxylic acids and their synthetic equivalents. Due to substantial progress in recent years, only frequently employed transition metals, including palladium, nickel, copper, iron, and cobalt, which promoted reactions have been described. The chapter has been divided into two key subtopics: (1) directed C(sp3)–H hetero-functionalization approaches, in which the carboxylic acid or a promptly adaptable carboxylate equivalent actively binds to the metal catalyst and brings it close to the cleavable C(sp3)–H bond to facilitate further functionalization, and (2) non-directed C(sp3)–H hetero-functionalization approaches, in which the carboxylic acid equivalents passively control the metal-promoted C(sp3)–H functionalization. Gratifyingly, both approaches lead to regiospecific functionalization of carboxylic acid synthons at either proximal-selective α-C–H bonds or distal β-, γ-, and even δ-C–H bonds with various heteroatom-based substituents, e.g., O-, N-, S-, Se-, halogen-, B-, Si-, and recently Ge-based groups.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Hansch C, Sammes PG, Taylor JB (eds) (1990) Comprehensive medicinal chemistry: the rational design, mechanistic study & therapeutic application of chemical compounds. Pergamon Press, Oxford, pp 12–27 Hansch C, Sammes PG, Taylor JB (eds) (1990) Comprehensive medicinal chemistry: the rational design, mechanistic study & therapeutic application of chemical compounds. Pergamon Press, Oxford, pp 12–27
2.
Zurück zum Zitat Harada N, Watanabe M, Kuwahara S, Sugio A, Kasai Y, Ichikawa A (2000) 2-Methoxy-2-(1-naphthyl)propionic acid, a powerful chiral auxiliary for enantioresolution of alcohols and determination of their absolute configurations by the 1H NMR anisotropy method. Tetrahedron Asymmetry 11:1249–1253 Harada N, Watanabe M, Kuwahara S, Sugio A, Kasai Y, Ichikawa A (2000) 2-Methoxy-2-(1-naphthyl)propionic acid, a powerful chiral auxiliary for enantioresolution of alcohols and determination of their absolute configurations by the 1H NMR anisotropy method. Tetrahedron Asymmetry 11:1249–1253
3.
Zurück zum Zitat Fraústo da Silva JR, RJP W (eds) (2001) The biological chemistry of the elements. Oxford University Press, New York Fraústo da Silva JR, RJP W (eds) (2001) The biological chemistry of the elements. Oxford University Press, New York
4.
Zurück zum Zitat Kasai Y, Watanabe M, Harada N (2003) Convenient method for determining the absolute configuration of chiral alcohols with racemic 1H NMR anisotropy reagent, MαNP acid: Use of HPLC‐CD detector. Chirality 15:295–299 Kasai Y, Watanabe M, Harada N (2003) Convenient method for determining the absolute configuration of chiral alcohols with racemic 1H NMR anisotropy reagent, MαNP acid: Use of HPLC‐CD detector. Chirality 15:295–299
5.
Zurück zum Zitat Seco JM, Quiñoá E, Riguera R (2004) The assignment of absolute configuration by NMR. Chem Rev 104:17–118 Seco JM, Quiñoá E, Riguera R (2004) The assignment of absolute configuration by NMR. Chem Rev 104:17–118
6.
Zurück zum Zitat Carballeira NM, Miranda C, Orellano EA, González FA (2005) Synthesis of a novel series of 2-methylsulfanyl fatty acids and their toxicity on the human K-562 and U-937 leukemia cell lines. Lipids 40:1063–1067 Carballeira NM, Miranda C, Orellano EA, González FA (2005) Synthesis of a novel series of 2-methylsulfanyl fatty acids and their toxicity on the human K-562 and U-937 leukemia cell lines. Lipids 40:1063–1067
7.
Zurück zum Zitat Mellah M, Voituriez A, Schulz E (2007) Chiral sulfur ligands for asymmetric catalysis. Chem Rev 107:5133–5209 Mellah M, Voituriez A, Schulz E (2007) Chiral sulfur ligands for asymmetric catalysis. Chem Rev 107:5133–5209
8.
Zurück zum Zitat Deaton DN, Gao EN, Graham KP, Gross JW, Miller AB, Strelow JM (2008) Thiol-based angiotensin-converting enzyme 2 inhibitors: P1 modifications for the exploration of the S1 subsite. Bioorg Med Chem Lett 18:732–737 Deaton DN, Gao EN, Graham KP, Gross JW, Miller AB, Strelow JM (2008) Thiol-based angiotensin-converting enzyme 2 inhibitors: P1 modifications for the exploration of the S1 subsite. Bioorg Med Chem Lett 18:732–737
9.
Zurück zum Zitat Maji B, Mayr H (2012) Structures and reactivities of O‐methylated breslow intermediates. Angew Chem Int Ed 51:10408–10412 Maji B, Mayr H (2012) Structures and reactivities of O‐methylated breslow intermediates. Angew Chem Int Ed 51:10408–10412
10.
Zurück zum Zitat Ilardi EA, Vitaku E, Njardarson JT (2014) Data-mining for sulfur and fluorine: an evaluation of pharmaceuticals to reveal opportunities for drug design and discovery. J Med Chem 57:2832–2842 Ilardi EA, Vitaku E, Njardarson JT (2014) Data-mining for sulfur and fluorine: an evaluation of pharmaceuticals to reveal opportunities for drug design and discovery. J Med Chem 57:2832–2842
11.
Zurück zum Zitat Labeeuw O, Levoin N, Billot X, Danvy D, Calmels T, Krief S, Ligneau X, Berrebi-Bertrand I, Robert P, Lecomte JM, Schwartz JC, Capet M (2016) Synthesis and evaluation of a 2-benzothiazolylphenylmethyl ether class of histamine H4 receptor antagonists. Bioorg Med Chem Lett 26:5263–5266 Labeeuw O, Levoin N, Billot X, Danvy D, Calmels T, Krief S, Ligneau X, Berrebi-Bertrand I, Robert P, Lecomte JM, Schwartz JC, Capet M (2016) Synthesis and evaluation of a 2-benzothiazolylphenylmethyl ether class of histamine H4 receptor antagonists. Bioorg Med Chem Lett 26:5263–5266
12.
Zurück zum Zitat Carballeira NM, Montano N, Morales C, Mooney J, Torres X, Díaz D, Sanabria-Rios DJ (2017) 2‐Methoxylated FA display unusual antibacterial activity towards clinical isolates of methicillin‐resistant staphylococcus aureus (CIMRSA) and escherichia coli. Lipids 52:535–548 Carballeira NM, Montano N, Morales C, Mooney J, Torres X, Díaz D, Sanabria-Rios DJ (2017) 2‐Methoxylated FA display unusual antibacterial activity towards clinical isolates of methicillin‐resistant staphylococcus aureus (CIMRSA) and escherichia coli. Lipids 52:535–548
13.
Zurück zum Zitat Zimmermann SC, Duvall B, Tsukamoto T (2019) Recent progress in the discovery of allosteric inhibitors of kidney-type glutaminase. J Med Chem 62:46–59 Zimmermann SC, Duvall B, Tsukamoto T (2019) Recent progress in the discovery of allosteric inhibitors of kidney-type glutaminase. J Med Chem 62:46–59
14.
Zurück zum Zitat Daugulis O, Roane J, Tran LD (2015) Bidentate, monoanionic auxiliary-directed functionalization of carbon–hydrogen bonds. Acc Chem Res 48:1053–1064 Daugulis O, Roane J, Tran LD (2015) Bidentate, monoanionic auxiliary-directed functionalization of carbon–hydrogen bonds. Acc Chem Res 48:1053–1064
15.
Zurück zum Zitat He J, Wasa M, Chan KSL, Shao Q, Yu JQ (2017) Palladium-catalyzed transformations of alkyl C–H bonds. Chem Rev 117:8754–8786 He J, Wasa M, Chan KSL, Shao Q, Yu JQ (2017) Palladium-catalyzed transformations of alkyl C–H bonds. Chem Rev 117:8754–8786
16.
Zurück zum Zitat Baudoin O (2011) Transition metal-catalyzed arylation of unactivated C(sp3)–H bonds. Chem Soc Rev 40:4902–4911 Baudoin O (2011) Transition metal-catalyzed arylation of unactivated C(sp3)–H bonds. Chem Soc Rev 40:4902–4911
17.
Zurück zum Zitat Dastbaravardeh N, Christakakou M, Haider M, Schnürch M (2014) Recent advances in palladium-catalyzed C(sp3)–H activation for the formation of carbon–carbon and carbon–heteroatom bonds. Synthesis 46:1421–1439 Dastbaravardeh N, Christakakou M, Haider M, Schnürch M (2014) Recent advances in palladium-catalyzed C(sp3)–H activation for the formation of carbon–carbon and carbon–heteroatom bonds. Synthesis 46:1421–1439
18.
Zurück zum Zitat He G, Wang B, Nack WA, Chen G (2016) Syntheses and transformations of α-amino acids via palladium-catalyzed auxiliary-directed sp3 C–H functionalization. Acc Chem Res 49:635–645 He G, Wang B, Nack WA, Chen G (2016) Syntheses and transformations of α-amino acids via palladium-catalyzed auxiliary-directed sp3 C–H functionalization. Acc Chem Res 49:635–645
19.
Zurück zum Zitat Alberico D, Scott ME, Lautens M (2007) Aryl− aryl bond formation by transition-metal-catalyzed direct arylation. Chem Rev 107:174–238 Alberico D, Scott ME, Lautens M (2007) Aryl− aryl bond formation by transition-metal-catalyzed direct arylation. Chem Rev 107:174–238
20.
Zurück zum Zitat Wencel-Delord J, Glorius F (2013) C–H bond activation enables the rapid construction and late-stage diversification of functional molecules. Nat Chem 5:369–375 Wencel-Delord J, Glorius F (2013) C–H bond activation enables the rapid construction and late-stage diversification of functional molecules. Nat Chem 5:369–375
21.
Zurück zum Zitat Ackermann L (2014) Carboxylate-assisted ruthenium-catalyzed alkyne annulations by C–H/Het–H bond functionalizations. Acc Chem Res 47:281–295 Ackermann L (2014) Carboxylate-assisted ruthenium-catalyzed alkyne annulations by C–H/Het–H bond functionalizations. Acc Chem Res 47:281–295
22.
Zurück zum Zitat Jazzar R, Hitce J, Renaudat A, Sofack-Kreutzer J, Baudoin O (2010) Functionalization of organic molecules by transition‐metal‐catalyzed C(sp3)–H activation. Chem Eur J 16:2654–2672 Jazzar R, Hitce J, Renaudat A, Sofack-Kreutzer J, Baudoin O (2010) Functionalization of organic molecules by transition‐metal‐catalyzed C(sp3)–H activation. Chem Eur J 16:2654–2672
23.
Zurück zum Zitat Lyons TW, Sanford MS (2010) Palladium-catalyzed ligand-directed C−H functionalization reactions. Chem Rev 110:1147–1169 Lyons TW, Sanford MS (2010) Palladium-catalyzed ligand-directed C−H functionalization reactions. Chem Rev 110:1147–1169
24.
Zurück zum Zitat Bhadra S, Yamamoto H (2018) Substrate directed asymmetric reactions. Chem Rev 118:3391–3446 Bhadra S, Yamamoto H (2018) Substrate directed asymmetric reactions. Chem Rev 118:3391–3446
25.
Zurück zum Zitat Mulzer J (1999) Basic principles of asymmetric synthesis. In: Jacobsen EN, Pfaltz A, Yamamoto H (eds) Comprehensive asymmetric catalysis, vol 1. Springer, Berlin, pp 42–79 Mulzer J (1999) Basic principles of asymmetric synthesis. In: Jacobsen EN, Pfaltz A, Yamamoto H (eds) Comprehensive asymmetric catalysis, vol 1. Springer, Berlin, pp 42–79
26.
Zurück zum Zitat Kapdi A, Maiti D (eds) (2017) Strategies for palladium-catalyzed non-directed and directed C bond H bond functionalization. Elsevier, Amsterdam Kapdi A, Maiti D (eds) (2017) Strategies for palladium-catalyzed non-directed and directed C bond H bond functionalization. Elsevier, Amsterdam
27.
Zurück zum Zitat Uttry A, van Gemmeren M (2020) Direct C(sp3)–H activation of carboxylic acids. Synthesis 52: 479-488 Uttry A, van Gemmeren M (2020) Direct C(sp3)–H activation of carboxylic acids. Synthesis 52: 479-488
28.
Zurück zum Zitat Kao LC, Sen A (1991) Platinum(II) catalysed selective remote oxidation of unactivated C–H bonds in aliphatic carboxylic acids. J Chem Soc Chem Commun 1242–1243 Kao LC, Sen A (1991) Platinum(II) catalysed selective remote oxidation of unactivated C–H bonds in aliphatic carboxylic acids. J Chem Soc Chem Commun 1242–1243
29.
Zurück zum Zitat Dangel BD, Johnson JA, Sames D (2001) Selective functionalization of amino acids in water: a synthetic method via catalytic C−H bond activation. J Am Chem Soc 123:8149–8150 Dangel BD, Johnson JA, Sames D (2001) Selective functionalization of amino acids in water: a synthetic method via catalytic C−H bond activation. J Am Chem Soc 123:8149–8150
30.
Zurück zum Zitat Janssen M, de Vos DE (2019) PtII‐catalyzed hydroxylation of terminal aliphatic C(sp3)−H bonds with molecular oxygen. Chem Eur J 25:10724–10734 Janssen M, de Vos DE (2019) PtII‐catalyzed hydroxylation of terminal aliphatic C(sp3)−H bonds with molecular oxygen. Chem Eur J 25:10724–10734
31.
Zurück zum Zitat Goldshleger NF, Tyabin MB, Shilov AE, Shteinman AA (1969) Zh Fiz Khim 43:2174 Goldshleger NF, Tyabin MB, Shilov AE, Shteinman AA (1969) Zh Fiz Khim 43:2174
32.
Zurück zum Zitat Goldshleger NF, Eskova VV, Shilov AE, Shteinman AA (1972) Zh Fiz Khim 46:1353–1354 Goldshleger NF, Eskova VV, Shilov AE, Shteinman AA (1972) Zh Fiz Khim 46:1353–1354
33.
Zurück zum Zitat Ghosh KK, Uttry A, Koldemir A, Ong M, van Gemmeren M (2019) Direct β-C(sp3)–H acetoxylation of aliphatic carboxylic acids. Org Lett 21:7154–7157 Ghosh KK, Uttry A, Koldemir A, Ong M, van Gemmeren M (2019) Direct β-C(sp3)–H acetoxylation of aliphatic carboxylic acids. Org Lett 21:7154–7157
34.
Zurück zum Zitat Giri R, Liang J, Lei JG, Li JJ, Wang DH, Chen X, Naggar IC, Guo C, Foxman BM, Yu JQ (2005) Pd‐catalyzed stereoselective oxidation of methyl groups by inexpensive oxidants under mild conditions: a dual role for carboxylic anhydrides in catalytic C-H bond oxidation. Angew Chem Int Ed 44:7420–7424 Giri R, Liang J, Lei JG, Li JJ, Wang DH, Chen X, Naggar IC, Guo C, Foxman BM, Yu JQ (2005) Pd‐catalyzed stereoselective oxidation of methyl groups by inexpensive oxidants under mild conditions: a dual role for carboxylic anhydrides in catalytic C-H bond oxidation. Angew Chem Int Ed 44:7420–7424
35.
Zurück zum Zitat He J, Shigenari T, Yu JQ (2015) Palladium(0)/PAr3‐catalyzed intermolecular amination of C(sp3)–H bonds: synthesis of β‐amino acids. Angew Chem Int Ed 54:6545–6549 He J, Shigenari T, Yu JQ (2015) Palladium(0)/PAr3‐catalyzed intermolecular amination of C(sp3)–H bonds: synthesis of β‐amino acids. Angew Chem Int Ed 54:6545–6549
36.
Zurück zum Zitat Wasa M, Engle KM, Yu JQ (2009) Pd(0)/PR3-catalyzed intermolecular arylation of sp3 C−H bonds. J Am Chem Soc 131:9886–9887 Wasa M, Engle KM, Yu JQ (2009) Pd(0)/PR3-catalyzed intermolecular arylation of sp3 C−H bonds. J Am Chem Soc 131:9886–9887
37.
Zurück zum Zitat Tan Y, Hartwig JF (2010) Palladium-catalyzed amination of aromatic C−H bonds with oxime esters. J Am Chem Soc 132:3676–3677 Tan Y, Hartwig JF (2010) Palladium-catalyzed amination of aromatic C−H bonds with oxime esters. J Am Chem Soc 132:3676–3677
38.
Zurück zum Zitat Fürstner A, Seidel G (2002) Microwave-assisted synthesis of pinacol boronates from aryl chlorides catalyzed by a palladium/imidazolium salt system. Org Lett 4:541–543 Fürstner A, Seidel G (2002) Microwave-assisted synthesis of pinacol boronates from aryl chlorides catalyzed by a palladium/imidazolium salt system. Org Lett 4:541–543
39.
Zurück zum Zitat Billingsley KL, Barder TE, Buchwald SL (2007) Palladium‐catalyzed borylation of aryl chlorides: Scope, applications, and computational studies. Angew Chem Int Ed 46:5359–5363 Billingsley KL, Barder TE, Buchwald SL (2007) Palladium‐catalyzed borylation of aryl chlorides: Scope, applications, and computational studies. Angew Chem Int Ed 46:5359–5363
40.
Zurück zum Zitat Billingsley KL, Buchwald SL (2008) An improved system for the palladium-catalyzed borylation of aryl halides with pinacol borane. J Org Chem 73:5589–5591 Billingsley KL, Buchwald SL (2008) An improved system for the palladium-catalyzed borylation of aryl halides with pinacol borane. J Org Chem 73:5589–5591
41.
Zurück zum Zitat Molander GA, Trice SLJ, Dreher SD (2010) Palladium-catalyzed, direct boronic acid synthesis from aryl chlorides: A simplified route to diverse boronate ester derivatives. J Am Chem Soc 132:17701–17703 Molander GA, Trice SLJ, Dreher SD (2010) Palladium-catalyzed, direct boronic acid synthesis from aryl chlorides: A simplified route to diverse boronate ester derivatives. J Am Chem Soc 132:17701–17703
42.
Zurück zum Zitat Dai HX, Yu JQ (2012) Pd-catalyzed oxidative ortho-C–H borylation of arenes. J Am Chem Soc 134:134–137 Dai HX, Yu JQ (2012) Pd-catalyzed oxidative ortho-C–H borylation of arenes. J Am Chem Soc 134:134–137
43.
Zurück zum Zitat Zhang LS, Chen G, Wang X, Guo QY, Zhang XS, Pan F, Chen K, Shi ZJ (2014) Direct borylation of primary C–H bonds in functionalized molecules by palladium catalysis. Angew Chem Int Ed 53:3899–3903 Zhang LS, Chen G, Wang X, Guo QY, Zhang XS, Pan F, Chen K, Shi ZJ (2014) Direct borylation of primary C–H bonds in functionalized molecules by palladium catalysis. Angew Chem Int Ed 53:3899–3903
44.
Zurück zum Zitat He J, Jiang H, Takise R, Zhu RY, Chen G, Dai HX, Murali Dhar TG, Shi J, Zhang H, Cheng PTW, Yu JQ (2016) Ligand‐promoted borylation of C(sp3)–H bonds with palladium(II) catalysts. Angew Chem Int Ed 55:785–789 He J, Jiang H, Takise R, Zhu RY, Chen G, Dai HX, Murali Dhar TG, Shi J, Zhang H, Cheng PTW, Yu JQ (2016) Ligand‐promoted borylation of C(sp3)–H bonds with palladium(II) catalysts. Angew Chem Int Ed 55:785–789
45.
Zurück zum Zitat He J, Shao Q, Wu Q, Yu JQ (2017) Pd(II)-Catalyzed enantioselective C(sp3)–H borylation. J Am Chem Soc 139:3344–3347 He J, Shao Q, Wu Q, Yu JQ (2017) Pd(II)-Catalyzed enantioselective C(sp3)–H borylation. J Am Chem Soc 139:3344–3347
46.
Zurück zum Zitat Shi Y, Gao Q, Xu S (2019) Chiral bidentate boryl ligand enabled iridium-catalyzed enantioselective C(sp3)–H borylation of cyclopropanes. J Am Chem Soc 141:10599–10604 Shi Y, Gao Q, Xu S (2019) Chiral bidentate boryl ligand enabled iridium-catalyzed enantioselective C(sp3)–H borylation of cyclopropanes. J Am Chem Soc 141:10599–10604
47.
Zurück zum Zitat Murakami R, Iwai T, Sawamura M (2016) Site-selective and stereoselective C(sp3)-H borylation of alkyl side chains of 1,3-azoles with a silica-supported monophosphine-iridium catalyst. Synlett 27:1187–1192 Murakami R, Iwai T, Sawamura M (2016) Site-selective and stereoselective C(sp3)-H borylation of alkyl side chains of 1,3-azoles with a silica-supported monophosphine-iridium catalyst. Synlett 27:1187–1192
48.
Zurück zum Zitat Giri R, Chen X, Yu JQ (2005) Palladium‐catalyzed asymmetric iodination of unactivated C–H bonds under mild conditions. Angew Chem Int Ed 44:2112–2115 Giri R, Chen X, Yu JQ (2005) Palladium‐catalyzed asymmetric iodination of unactivated C–H bonds under mild conditions. Angew Chem Int Ed 44:2112–2115
49.
Zurück zum Zitat He J, Li S, Deng Y, Fu H, Laforteza BN, Spangler JE, Homs A, Yu JQ (2014) Ligand-controlled C(sp3)–H arylation and olefination in synthesis of unnatural chiral α–amino acids. Science 343:1216–1220 He J, Li S, Deng Y, Fu H, Laforteza BN, Spangler JE, Homs A, Yu JQ (2014) Ligand-controlled C(sp3)–H arylation and olefination in synthesis of unnatural chiral α–amino acids. Science 343:1216–1220
50.
Zurück zum Zitat Zhu RY, Saint-Denis TG, Shao Y, He J, Sieber JD, Senanayake CH, Yu JQ (2017) Ligand-enabled Pd(II)-catalyzed bromination and iodination of C(sp3)–H bonds. J Am Chem Soc 139:5724–5727 Zhu RY, Saint-Denis TG, Shao Y, He J, Sieber JD, Senanayake CH, Yu JQ (2017) Ligand-enabled Pd(II)-catalyzed bromination and iodination of C(sp3)–H bonds. J Am Chem Soc 139:5724–5727
51.
Zurück zum Zitat Zhu RY, Tanaka K, Li GC, He J, Fu HY, Li SH, Yu JQ (2015) Ligand-enabled stereoselective β-C(sp3)–H fluorination: Synthesis of unnatural enantiopure anti-β-fluoro-α-amino acids. J Am Chem Soc 137:7067–7070 Zhu RY, Tanaka K, Li GC, He J, Fu HY, Li SH, Yu JQ (2015) Ligand-enabled stereoselective β-C(sp3)–H fluorination: Synthesis of unnatural enantiopure anti-β-fluoro-α-amino acids. J Am Chem Soc 137:7067–7070
52.
Zurück zum Zitat Zaitsev VG, Shabashov D, Daugulis O (2005) Highly regioselective arylation of sp3 C−H bonds catalyzed by palladium acetate. J Am Chem Soc 127:13154–13155 Zaitsev VG, Shabashov D, Daugulis O (2005) Highly regioselective arylation of sp3 C−H bonds catalyzed by palladium acetate. J Am Chem Soc 127:13154–13155
53.
Zurück zum Zitat Rouquet G, Chatani N (2013) Catalytic functionalization of C(sp2)–H and C(sp3)–H bonds by using bidentate directing groups. Angew Chem Int Ed 52:11726–11743 Rouquet G, Chatani N (2013) Catalytic functionalization of C(sp2)–H and C(sp3)–H bonds by using bidentate directing groups. Angew Chem Int Ed 52:11726–11743
54.
Zurück zum Zitat Castro LCM, Chatani N (2015) Nickel catalysts/N,N′-bidentate directing groups: an excellent partnership in directed C–H activation reactions. Chem Lett 44:410–421 Castro LCM, Chatani N (2015) Nickel catalysts/N,N′-bidentate directing groups: an excellent partnership in directed C–H activation reactions. Chem Lett 44:410–421
55.
Zurück zum Zitat Liu J, Chen G, Tan Z (2016) Copper‐catalyzed or‐mediated C–H bond functionalizations assisted by bidentate directing groups. Adv Synth Catal 358:1174–1194 Liu J, Chen G, Tan Z (2016) Copper‐catalyzed or‐mediated C–H bond functionalizations assisted by bidentate directing groups. Adv Synth Catal 358:1174–1194
56.
Zurück zum Zitat Reddy BVS, Reddy LR, Corey EJ (2006) Novel acetoxylation and C−C coupling reactions at unactivated positions in α-amino acid derivatives. Org Lett 8:3391–3394 Reddy BVS, Reddy LR, Corey EJ (2006) Novel acetoxylation and C−C coupling reactions at unactivated positions in α-amino acid derivatives. Org Lett 8:3391–3394
57.
Zurück zum Zitat Caldwell CG, Bondy SS (1990) A convenient synthesis of enantiomerically pure (2S,3S)- or (2R,3R)-3-hydroxyleucine. Synthesis 34–36 Caldwell CG, Bondy SS (1990) A convenient synthesis of enantiomerically pure (2S,3S)- or (2R,3R)-3-hydroxyleucine. Synthesis 34–36
58.
Zurück zum Zitat Panek JS, Masse CE (1998) An improved synthesis of (4S,5S)-2-phenyl-4-(methoxycarbonyl)-5-isopropyloxazoline from (S)-phenylglycinol. J Org Chem 63:2382–2384 Panek JS, Masse CE (1998) An improved synthesis of (4S,5S)-2-phenyl-4-(methoxycarbonyl)-5-isopropyloxazoline from (S)-phenylglycinol. J Org Chem 63:2382–2384
59.
Zurück zum Zitat MacMillan JB, Molinsky TF (2002) Lobocyclamide B from Lyngbya confervoides. configuration and asymmetric synthesis of β-hydroxy-α-amino acids by (−)-Sparteine-mediated aldol addition. Org Lett 4:1883–1886 MacMillan JB, Molinsky TF (2002) Lobocyclamide B from Lyngbya confervoides. configuration and asymmetric synthesis of β-hydroxy-α-amino acids by (−)-Sparteine-mediated aldol addition. Org Lett 4:1883–1886
60.
Zurück zum Zitat Saravanan P, Corey EJ (2003) A short, stereocontrolled, and practical synthesis of α-methylomuralide, a potent inhibitor of proteasome function. J Org Chem 68:2760–2764 Saravanan P, Corey EJ (2003) A short, stereocontrolled, and practical synthesis of α-methylomuralide, a potent inhibitor of proteasome function. J Org Chem 68:2760–2764
61.
Zurück zum Zitat Wang Z, Kuninobu Y, Kanai M (2014) Copper-mediated direct C(sp3)–H and C(sp2)–H acetoxylation. Org Lett 16:4790–4793 Wang Z, Kuninobu Y, Kanai M (2014) Copper-mediated direct C(sp3)–H and C(sp2)–H acetoxylation. Org Lett 16:4790–4793
62.
Zurück zum Zitat Rit RK, Yadav MR, Sahoo AK (2012) Pd(II)-catalyzed primary-C(sp3)–H acyloxylation at room temperature. Org Lett 14:3724–3727 Rit RK, Yadav MR, Sahoo AK (2012) Pd(II)-catalyzed primary-C(sp3)–H acyloxylation at room temperature. Org Lett 14:3724–3727
63.
Zurück zum Zitat Rit RK, Yadav MR, Ghosh K, Sahoo AK (2015) Reusable directing groups [8-aminoquinoline, picolinamide, sulfoximine] in C(sp3)–H bond activation: present and future. Tetrahedron 71:4450–4459 Rit RK, Yadav MR, Ghosh K, Sahoo AK (2015) Reusable directing groups [8-aminoquinoline, picolinamide, sulfoximine] in C(sp3)–H bond activation: present and future. Tetrahedron 71:4450–4459
64.
Zurück zum Zitat Shan G, Yang X, Zong Y, Rao Y (2013) An efficient palladium‐catalyzed C-H alkoxylation of unactivated methylene and methyl groups with cyclic hypervalent iodine (I3+) oxidants. Angew Chem Int Ed 52:13606–13610 Shan G, Yang X, Zong Y, Rao Y (2013) An efficient palladium‐catalyzed C-H alkoxylation of unactivated methylene and methyl groups with cyclic hypervalent iodine (I3+) oxidants. Angew Chem Int Ed 52:13606–13610
65.
Zurück zum Zitat Zong Y, Rao Y (2014) Developing Pd(II) catalyzed double sp3 C–H alkoxylation for synthesis of symmetric and unsymmetric acetals. Org Lett 16:5278–5281 Zong Y, Rao Y (2014) Developing Pd(II) catalyzed double sp3 C–H alkoxylation for synthesis of symmetric and unsymmetric acetals. Org Lett 16:5278–5281
66.
Zurück zum Zitat Chen FJ, Zhao S, Hu F, Chen K, Zhang Q, Zhang SQ, Shi BF (2013) Pd(II)-catalyzed alkoxylation of unactivated C(sp3)–H and C(sp2)–H bonds using a removable directing group: efficient synthesis of alkyl ethers. Chem Sci 4:4187–4192 Chen FJ, Zhao S, Hu F, Chen K, Zhang Q, Zhang SQ, Shi BF (2013) Pd(II)-catalyzed alkoxylation of unactivated C(sp3)–H and C(sp2)–H bonds using a removable directing group: efficient synthesis of alkyl ethers. Chem Sci 4:4187–4192
67.
Zurück zum Zitat Jerhaoui S, Djukic JP, Wencel-Delord J, Colobert F (2017) Stereoselective sulfinyl aniline‐promoted Pd‐catalyzed C−H arylation and acetoxylation of aliphatic amides. Chem Eur J 23:15594–15600 Jerhaoui S, Djukic JP, Wencel-Delord J, Colobert F (2017) Stereoselective sulfinyl aniline‐promoted Pd‐catalyzed C−H arylation and acetoxylation of aliphatic amides. Chem Eur J 23:15594–15600
68.
Zurück zum Zitat Kim Y, Kim S, Kang D, Sohn T, Jang E, Baik M, Hong S (2018) Stereoselective construction of sterically hindered oxaspirocycles via chiral bidentate directing group-mediated C(sp3)–O bond formation. Chem Sci 9:1473–1480 Kim Y, Kim S, Kang D, Sohn T, Jang E, Baik M, Hong S (2018) Stereoselective construction of sterically hindered oxaspirocycles via chiral bidentate directing group-mediated C(sp3)–O bond formation. Chem Sci 9:1473–1480
69.
Zurück zum Zitat Hegedus LL, McCabe RW (eds) (1984) Catalyst poisoning. Marcel Dekker, New York Hegedus LL, McCabe RW (eds) (1984) Catalyst poisoning. Marcel Dekker, New York
70.
Zurück zum Zitat Yan SY, Liu YJ, Liu B, Liu YH, Zhang ZZ, Shi BF (2015) Nickel-catalyzed direct thiolation of unactivated C(sp3)–H bonds with disulfides. Chem Commun 51:7341–7344 Yan SY, Liu YJ, Liu B, Liu YH, Zhang ZZ, Shi BF (2015) Nickel-catalyzed direct thiolation of unactivated C(sp3)–H bonds with disulfides. Chem Commun 51:7341–7344
71.
Zurück zum Zitat Wang X, Qiu R, Yan C, Reddy VP, Zhu L, Xu X, Yin SF (2015) Nickel-catalyzed direct thiolation of C(sp3)–H bonds in aliphatic amides. Org Lett 17:1970–1973 Wang X, Qiu R, Yan C, Reddy VP, Zhu L, Xu X, Yin SF (2015) Nickel-catalyzed direct thiolation of C(sp3)–H bonds in aliphatic amides. Org Lett 17:1970–1973
72.
Zurück zum Zitat Ye X, Petersen JL, Shi X (2015) Nickel-catalyzed directed sulfenylation of sp2 and sp3 C–H bonds. Chem Commun 51:7863–7866 Ye X, Petersen JL, Shi X (2015) Nickel-catalyzed directed sulfenylation of sp2 and sp3 C–H bonds. Chem Commun 51:7863–7866
73.
Zurück zum Zitat Rao WH, Zhan BB, Chen K, Ling PX, Zhang ZZ, Shi BF (2015) Pd(II)-catalyzed direct sulfonylation of unactivated C(sp3)–H bonds with sodium sulfinates. Org Lett 17:3552–3555 Rao WH, Zhan BB, Chen K, Ling PX, Zhang ZZ, Shi BF (2015) Pd(II)-catalyzed direct sulfonylation of unactivated C(sp3)–H bonds with sodium sulfinates. Org Lett 17:3552–3555
74.
Zurück zum Zitat Xiong HY, Besset T, Cahard D, Pannecoucke X (2015) Palladium(II)-catalyzed directed trifluoromethylthiolation of unactivated C(sp3)–H bonds. J Org Chem 80:4204–4212 Xiong HY, Besset T, Cahard D, Pannecoucke X (2015) Palladium(II)-catalyzed directed trifluoromethylthiolation of unactivated C(sp3)–H bonds. J Org Chem 80:4204–4212
75.
Zurück zum Zitat Topczewski JJ, Sanford MS (2015) Carbon–hydrogen (C–H) bond activation at PdIV: a Frontier in C–H functionalization catalysis. Chem Sci 6 :70–76 Topczewski JJ, Sanford MS (2015) Carbon–hydrogen (C–H) bond activation at PdIV: a Frontier in C–H functionalization catalysis. Chem Sci 6 :70–76
76.
Zurück zum Zitat Canty AJ, Ariafard A, Yates BF, Sanford MS (2015) Computational study of intramolecular arene palladation at a palladium(IV) center. Organometallics 34:1085–1090 Canty AJ, Ariafard A, Yates BF, Sanford MS (2015) Computational study of intramolecular arene palladation at a palladium(IV) center. Organometallics 34:1085–1090
77.
Zurück zum Zitat Guin S, Deb A, Dolui P, Chakraborty S, Singh VK, Maiti D (2018) Promoting highly diastereoselective γ-C–H chalcogenation of α-amino acids and aliphatic carboxylic acids. ACS Catal 8:2664–2669 Guin S, Deb A, Dolui P, Chakraborty S, Singh VK, Maiti D (2018) Promoting highly diastereoselective γ-C–H chalcogenation of α-amino acids and aliphatic carboxylic acids. ACS Catal 8:2664–2669
78.
Zurück zum Zitat He G, Zhang SY, Nack WA, Li Q, Chen G (2013) Use of a Readily Removable Auxiliary Group for the Synthesis of Pyrrolidones by the Palladium‐catalyzed intramolecular amination of unactivated γ C(sp3)-H bonds. Angew Chem Int Ed 52:11124–11128 He G, Zhang SY, Nack WA, Li Q, Chen G (2013) Use of a Readily Removable Auxiliary Group for the Synthesis of Pyrrolidones by the Palladium‐catalyzed intramolecular amination of unactivated γ C(sp3)-H bonds. Angew Chem Int Ed 52:11124–11128
79.
Zurück zum Zitat Zhang Q, Chen K, Rao W, Zhang Y, Chen FJ, Shi BF (2013) Stereoselective synthesis of chiral α‐amino‐β‐lactams through palladium(II)‐catalyzed sequential monoarylation/amidation of C(sp3)-H Bonds. Angew Chem Int Ed 52:13588–13592 Zhang Q, Chen K, Rao W, Zhang Y, Chen FJ, Shi BF (2013) Stereoselective synthesis of chiral α‐amino‐β‐lactams through palladium(II)‐catalyzed sequential monoarylation/amidation of C(sp3)-H Bonds. Angew Chem Int Ed 52:13588–13592
80.
Zurück zum Zitat Ling PX, Fang SL, Yin XS, Zhang Q, Chen K, Shi BF (2017) Palladium-catalyzed sequential monoarylation/amidation of C(sp3)–H bonds: stereoselective synthesis of α-amino-β-lactams and anti-α,β-diamino acid. Chem Commun 53:6351–6354 Ling PX, Fang SL, Yin XS, Zhang Q, Chen K, Shi BF (2017) Palladium-catalyzed sequential monoarylation/amidation of C(sp3)–H bonds: stereoselective synthesis of α-amino-β-lactams and anti-α,β-diamino acid. Chem Commun 53:6351–6354
81.
Zurück zum Zitat Sun WW, Cao P, Mei RQ, Li Y, Ma YL, Wu B (2014) Palladium-catalyzed unactivated C(sp3)–H bond activation and intramolecular amination of carboxamides: A new approach to β-lactams. Org Lett 16:480–483 Sun WW, Cao P, Mei RQ, Li Y, Ma YL, Wu B (2014) Palladium-catalyzed unactivated C(sp3)–H bond activation and intramolecular amination of carboxamides: A new approach to β-lactams. Org Lett 16:480–483
82.
Zurück zum Zitat Zhang SJ, Sun WW, Cao P, Dong XP, Liu JK, Wu B (2016) Stereoselective synthesis of diazabicyclic β-lactams through intramolecular amination of unactivated C(sp3)–H bonds of carboxamides by palladium catalysis. J Org Chem 81:956–968 Zhang SJ, Sun WW, Cao P, Dong XP, Liu JK, Wu B (2016) Stereoselective synthesis of diazabicyclic β-lactams through intramolecular amination of unactivated C(sp3)–H bonds of carboxamides by palladium catalysis. J Org Chem 81:956–968
83.
Zurück zum Zitat Wang Z, Ni J, Kuninobu Y, Kanai M (2014) Copper‐catalyzed intramolecular C(sp3)-H and C(sp2)-H amidation by oxidative cyclization. Angew Chem Int Ed 53:3496–3499 Wang Z, Ni J, Kuninobu Y, Kanai M (2014) Copper‐catalyzed intramolecular C(sp3)-H and C(sp2)-H amidation by oxidative cyclization. Angew Chem Int Ed 53:3496–3499
84.
Zurück zum Zitat Wu X, Zhao Y, Zhang G, Ge H (2014) Copper‐catalyzed site‐selective intramolecular amidation of unactivated C(sp3)-H bonds. Angew Chem Int Ed 53:3706–3710 Wu X, Zhao Y, Zhang G, Ge H (2014) Copper‐catalyzed site‐selective intramolecular amidation of unactivated C(sp3)-H bonds. Angew Chem Int Ed 53:3706–3710
85.
Zurück zum Zitat Wang C, Yang Y, Qin D, He Z, You J (2015) Copper-catalyzed intramolecular dehydrogenative amidation of unactivated C(sp3)–H bonds using O2 as the sole oxidant. J Org Chem 80:8424–8429 Wang C, Yang Y, Qin D, He Z, You J (2015) Copper-catalyzed intramolecular dehydrogenative amidation of unactivated C(sp3)–H bonds using O2 as the sole oxidant. J Org Chem 80:8424–8429
86.
Zurück zum Zitat Desai LV, Malik HA, Sanford MS (2006) Oxone as an inexpensive, safe, and environmentally benign oxidant for C−H bond oxygenation. Org Lett 8:1141–1144 Desai LV, Malik HA, Sanford MS (2006) Oxone as an inexpensive, safe, and environmentally benign oxidant for C−H bond oxygenation. Org Lett 8:1141–1144
87.
Zurück zum Zitat Wang GW, Yuan TT (2010) Palladium-catalyzed alkoxylation of N-methoxybenzamides via direct sp2 C−H bond activation. J Org Chem 75:476–479 Wang GW, Yuan TT (2010) Palladium-catalyzed alkoxylation of N-methoxybenzamides via direct sp2 C−H bond activation. J Org Chem 75:476–479
88.
Zurück zum Zitat Suess AM, Ertem MZ, Cramer CJ, Stahl SS (2013) Divergence between organometallic and single-electron-transfer mechanisms in copper(II)-mediated aerobic C–H oxidation. J Am Chem Soc 135:9797–9804 Suess AM, Ertem MZ, Cramer CJ, Stahl SS (2013) Divergence between organometallic and single-electron-transfer mechanisms in copper(II)-mediated aerobic C–H oxidation. J Am Chem Soc 135:9797–9804
89.
Zurück zum Zitat Aihara Y, Chatani N (2014) Nickel-catalyzed direct arylation of C(sp3)–H bonds in aliphatic amides via bidentate-chelation assistance. J Am Chem Soc 136:898–901 Aihara Y, Chatani N (2014) Nickel-catalyzed direct arylation of C(sp3)–H bonds in aliphatic amides via bidentate-chelation assistance. J Am Chem Soc 136:898–901
90.
Zurück zum Zitat Wu XS, Zhao Y, Ge HB (2014) Nickel-catalyzed site-selective alkylation of unactivated C(sp3)–H bonds. J Am Chem Soc 136:1789–1792 Wu XS, Zhao Y, Ge HB (2014) Nickel-catalyzed site-selective alkylation of unactivated C(sp3)–H bonds. J Am Chem Soc 136:1789–1792
91.
Zurück zum Zitat Li ML, Dong JX, Huang XL, Li KZ, Wu Q, Song FJ, You JS (2014) Nickel-catalyzed chelation-assisted direct arylation of unactivated C(sp3)–H bonds with aryl halides. Chem Commun 50:3944–3946 Li ML, Dong JX, Huang XL, Li KZ, Wu Q, Song FJ, You JS (2014) Nickel-catalyzed chelation-assisted direct arylation of unactivated C(sp3)–H bonds with aryl halides. Chem Commun 50:3944–3946
92.
Zurück zum Zitat Wu X, Zhao Y, Ge H (2014) Nickel‐catalyzed site‐selective amidation of unactivated C(sp3)-H bonds. Chem Eur J 20:9530–9533 Wu X, Zhao Y, Ge H (2014) Nickel‐catalyzed site‐selective amidation of unactivated C(sp3)-H bonds. Chem Eur J 20:9530–9533
93.
Zurück zum Zitat Aihara Y, Chatani N (2016) Nickel-catalyzed reaction of C–H bonds in amides with I2: ortho-iodination via the cleavage of C(sp2)–H bonds and oxidative cyclization to β-lactams via the cleavage of C(sp3)–H bonds. ACS Catal 6:4323–4329 Aihara Y, Chatani N (2016) Nickel-catalyzed reaction of C–H bonds in amides with I2: ortho-iodination via the cleavage of C(sp2)–H bonds and oxidative cyclization to β-lactams via the cleavage of C(sp3)–H bonds. ACS Catal 6:4323–4329
95.
Zurück zum Zitat Gou Q, Liu G, Liu ZN, Qin J (2015) PdII‐catalyzed intermolecular amination of unactivated C(sp3)-H bonds. Chem Eur J 21:15491–15495 Gou Q, Liu G, Liu ZN, Qin J (2015) PdII‐catalyzed intermolecular amination of unactivated C(sp3)-H bonds. Chem Eur J 21:15491–15495
96.
Zurück zum Zitat Bai HY, Ma ZG, Yi M, Lin JB, Zhang SY (2017) Palladium-catalyzed direct intermolecular amination of unactivated methylene C(sp3)–H bonds with azodiformates via bidentate-chelation assistance. ACS Catal 7:2042–2046 Bai HY, Ma ZG, Yi M, Lin JB, Zhang SY (2017) Palladium-catalyzed direct intermolecular amination of unactivated methylene C(sp3)–H bonds with azodiformates via bidentate-chelation assistance. ACS Catal 7:2042–2046
97.
Zurück zum Zitat Kanyiva KS, Kuninobu Y, Kanai M (2014) Palladium-catalyzed direct C–H silylation and germanylation of benzamides and carboxamides. Org Lett 16:1968–1971 Kanyiva KS, Kuninobu Y, Kanai M (2014) Palladium-catalyzed direct C–H silylation and germanylation of benzamides and carboxamides. Org Lett 16:1968–1971
98.
Zurück zum Zitat Liu YJ, Liu YH, Zhang ZZ, Yan SY, Chen K, Shi BF (2016) Divergent and stereoselective synthesis of β-silyl-α-amino acids through palladium-catalyzed intermolecular silylation of unactivated primary and secondary C-H bonds. Angew Chem Int Ed 55:13859–13862 Liu YJ, Liu YH, Zhang ZZ, Yan SY, Chen K, Shi BF (2016) Divergent and stereoselective synthesis of β-silyl-α-amino acids through palladium-catalyzed intermolecular silylation of unactivated primary and secondary C-H bonds. Angew Chem Int Ed 55:13859–13862
99.
Zurück zum Zitat Pan JL, Li QZ, Zhang TY, Hou SH, Kang JC, Zhang SY (2016) Palladium-catalyzed direct intermolecular silylation of remote unactivated C(sp3)–H bonds. Chem Commun 52:13151–13154 Pan JL, Li QZ, Zhang TY, Hou SH, Kang JC, Zhang SY (2016) Palladium-catalyzed direct intermolecular silylation of remote unactivated C(sp3)–H bonds. Chem Commun 52:13151–13154
100.
Zurück zum Zitat Deb A, Singh S, Seth K, Pimparkar S, Bhaskararao B, Guin S, Sunoj RB, Maiti D (2017) Experimental and computational studies on remote γ-C(sp3)–H silylation and germanylation of aliphatic carboxamides. ACS Catal 7:8171–8175 Deb A, Singh S, Seth K, Pimparkar S, Bhaskararao B, Guin S, Sunoj RB, Maiti D (2017) Experimental and computational studies on remote γ-C(sp3)–H silylation and germanylation of aliphatic carboxamides. ACS Catal 7:8171–8175
101.
Zurück zum Zitat Wheelaghan OR, Ortuño MA, Díez J, Garrido SEG, Maya C, Lledos A, Conejero S (2012) Characterization of a paramagnetic, mononuclear Pt(III)–alkyl complex intermediate in carbon–halogen bond coupling reactions. J Am Chem Soc 134:15261–15264 Wheelaghan OR, Ortuño MA, Díez J, Garrido SEG, Maya C, Lledos A, Conejero S (2012) Characterization of a paramagnetic, mononuclear Pt(III)–alkyl complex intermediate in carbon–halogen bond coupling reactions. J Am Chem Soc 134:15261–15264
102.
Zurück zum Zitat Kaspi AW, Goldberg I, Vigalok A (2010) Reagent-dependent formation of C−C and C−F bonds in Pt complexes: An unexpected twist in the electrophilic fluorination chemistry. J Am Chem Soc 132:10626–10627 Kaspi AW, Goldberg I, Vigalok A (2010) Reagent-dependent formation of C−C and C−F bonds in Pt complexes: An unexpected twist in the electrophilic fluorination chemistry. J Am Chem Soc 132:10626–10627
103.
Zurück zum Zitat Roy AH, Hartwig JF (2004) Reductive elimination of aryl halides upon addition of hindered alkylphosphines to dimeric arylpalladium(II) halide complexes. Organometallics 23:1533–1541 Roy AH, Hartwig JF (2004) Reductive elimination of aryl halides upon addition of hindered alkylphosphines to dimeric arylpalladium(II) halide complexes. Organometallics 23:1533–1541
104.
Zurück zum Zitat Canty AJ (1992) Development of organopalladium(IV) chemistry: fundamental aspects and systems for studies of mechanism in organometallic chemistry and catalysis. Acc Chem Res 25:83–90 Canty AJ (1992) Development of organopalladium(IV) chemistry: fundamental aspects and systems for studies of mechanism in organometallic chemistry and catalysis. Acc Chem Res 25:83–90
105.
Zurück zum Zitat Rit RK, Yadav MR, Ghosh K, Shankar M, Sahoo AK (2014) Sulfoximine assisted Pd(II)-catalyzed bromination and chlorination of primary β-C(sp3)–H bond. Org Lett 16:5258–5261 Rit RK, Yadav MR, Ghosh K, Shankar M, Sahoo AK (2014) Sulfoximine assisted Pd(II)-catalyzed bromination and chlorination of primary β-C(sp3)–H bond. Org Lett 16:5258–5261
106.
Zurück zum Zitat Yang X, Sun Y, Sun T, Rao Y (2016) Auxiliary-assisted palladium-catalyzed halogenation of unactivated C(sp3)–H bonds at room temperature. Chem Commun 52:6423–6426 Yang X, Sun Y, Sun T, Rao Y (2016) Auxiliary-assisted palladium-catalyzed halogenation of unactivated C(sp3)–H bonds at room temperature. Chem Commun 52:6423–6426
107.
Zurück zum Zitat Xiong HY, Cahard D, Pannecoucke X, Besset T (2016) Pd‐catalyzed directed chlorination of unactivated C(sp3)–H bonds at room temperature. Eur J Org Chem 3625–3630 Xiong HY, Cahard D, Pannecoucke X, Besset T (2016) Pd‐catalyzed directed chlorination of unactivated C(sp3)–H bonds at room temperature. Eur J Org Chem 3625–3630
108.
Zurück zum Zitat Zhu Q, Ji D, Liang T, Wang X, Xu Y (2015) Efficient palladium-catalyzed C–H fluorination of C(sp3)–H bonds: Synthesis of β-fluorinated carboxylic acids. Org Lett 17:3798–3801 Zhu Q, Ji D, Liang T, Wang X, Xu Y (2015) Efficient palladium-catalyzed C–H fluorination of C(sp3)–H bonds: Synthesis of β-fluorinated carboxylic acids. Org Lett 17:3798–3801
109.
Zurück zum Zitat Sun H, Zhang Y, Chen P, Wu YD, Zhang X, Huang Y (2016) Ligand‐assisted palladium(II)/(IV) oxidation for sp3 C–H Fluorination. Adv Synth Catal 358:1946–1957 Sun H, Zhang Y, Chen P, Wu YD, Zhang X, Huang Y (2016) Ligand‐assisted palladium(II)/(IV) oxidation for sp3 C–H Fluorination. Adv Synth Catal 358:1946–1957
110.
Zurück zum Zitat Zhang Q, Yin XS, Chen K, Zhang SQ, Shi BF (2015) Stereoselective synthesis of chiral β-fluoro α-amino acids via Pd(II)-catalyzed fluorination of unactivated methylene C(sp3)–H bonds: Scope and mechanistic studies. J Am Chem Soc 137:8219–8226 Zhang Q, Yin XS, Chen K, Zhang SQ, Shi BF (2015) Stereoselective synthesis of chiral β-fluoro α-amino acids via Pd(II)-catalyzed fluorination of unactivated methylene C(sp3)–H bonds: Scope and mechanistic studies. J Am Chem Soc 137:8219–8226
111.
Zurück zum Zitat Miao J, Yang K, Kurek M, Ge H (2015) Palladium-catalyzed site-selective fluorination of unactivated C(sp3)–H bonds. Org Lett 17:3738–3741 Miao J, Yang K, Kurek M, Ge H (2015) Palladium-catalyzed site-selective fluorination of unactivated C(sp3)–H bonds. Org Lett 17:3738–3741
112.
Zurück zum Zitat Evans RW, Zbieg JR, Zhu S, Li W, MacMillan DWC (2013) Simple catalytic mechanism for the direct coupling of α-carbonyls with functionalized amines: A one-step synthesis of plavix. J Am Chem Soc 135:16074–16077 Evans RW, Zbieg JR, Zhu S, Li W, MacMillan DWC (2013) Simple catalytic mechanism for the direct coupling of α-carbonyls with functionalized amines: A one-step synthesis of plavix. J Am Chem Soc 135:16074–16077
113.
Zurück zum Zitat Tokumasu K, Yazaki R, Ohshima T (2016) Direct catalytic chemoselective α-amination of acylpyrazoles: A concise route to unnatural α-amino acid derivatives. J Am Chem Soc 138:2664–2669 Tokumasu K, Yazaki R, Ohshima T (2016) Direct catalytic chemoselective α-amination of acylpyrazoles: A concise route to unnatural α-amino acid derivatives. J Am Chem Soc 138:2664–2669
114.
Zurück zum Zitat TMU T, Tejo C, DLY T, PWH C (2012) Copper(II) triflate catalyzed amination and aziridination of 2-alkyl substituted 1,3-dicarbonyl compounds. J Am Chem Soc 134:7344–7350 TMU T, Tejo C, DLY T, PWH C (2012) Copper(II) triflate catalyzed amination and aziridination of 2-alkyl substituted 1,3-dicarbonyl compounds. J Am Chem Soc 134:7344–7350
115.
Zurück zum Zitat Zhao B, Du H, Shi Y (2008) A Cu(I)-catalyzed C−H α-amination of esters. Direct synthesis of hydantoins. J Am Chem Soc 130:7220–7221 Zhao B, Du H, Shi Y (2008) A Cu(I)-catalyzed C−H α-amination of esters. Direct synthesis of hydantoins. J Am Chem Soc 130:7220–7221
116.
Zurück zum Zitat Ford RL, Alt I, Jana N, Driver TG (2019) Intramolecular Pd-catalyzed reductive amination of enolizable sp3-C–H bonds. Org Lett 21:8827–8831 Ford RL, Alt I, Jana N, Driver TG (2019) Intramolecular Pd-catalyzed reductive amination of enolizable sp3-C–H bonds. Org Lett 21:8827–8831
117.
Zurück zum Zitat Zhi H, Ung SPM, Liu Y, Zhao L, Li CJ (2016) Phosphorylation of glycine derivatives via copper(I)‐catalyzed Csp3−H bond functionalization. Adv Synth Catal 358:2553–2557 Zhi H, Ung SPM, Liu Y, Zhao L, Li CJ (2016) Phosphorylation of glycine derivatives via copper(I)‐catalyzed Csp3−H bond functionalization. Adv Synth Catal 358:2553–2557
118.
Zurück zum Zitat Huang LS, Han DY, Xu DZ (2019) Iron‐catalyzed cross‐dehydrogenative coupling of oxindoles with thiols/selenols for direct C(sp3)−S/Se bond formation. Adv Synth Catal 361:4016–4021 Huang LS, Han DY, Xu DZ (2019) Iron‐catalyzed cross‐dehydrogenative coupling of oxindoles with thiols/selenols for direct C(sp3)−S/Se bond formation. Adv Synth Catal 361:4016–4021
119.
Zurück zum Zitat Liu T, Myers MC, Yu JQ (2017) Copper‐catalyzed bromination of C(sp3)−H bonds distal to functional groups. Angew Chem Int Ed 56:306–309 Liu T, Myers MC, Yu JQ (2017) Copper‐catalyzed bromination of C(sp3)−H bonds distal to functional groups. Angew Chem Int Ed 56:306–309
120.
Zurück zum Zitat Kumar J, Gupta A, Bhadra S (2019) PdII-catalyzed methoxylation of C(sp3)–H bonds adjacent to benzoxazoles and benzothiazoles. Org Biomol Chem 17:3314–3318 Kumar J, Gupta A, Bhadra S (2019) PdII-catalyzed methoxylation of C(sp3)–H bonds adjacent to benzoxazoles and benzothiazoles. Org Biomol Chem 17:3314–3318
121.
Zurück zum Zitat Wei Y, Deb I, Yoshikai N (2012) Palladium-catalyzed aerobic oxidative cyclization of N-aryl imines: Indole synthesis from anilines and ketones. J Am Chem Soc 134:9098–9101 Wei Y, Deb I, Yoshikai N (2012) Palladium-catalyzed aerobic oxidative cyclization of N-aryl imines: Indole synthesis from anilines and ketones. J Am Chem Soc 134:9098–9101
122.
Zurück zum Zitat Shi Z, Suri M, Glorius F (2013) Aerobic synthesis of pyrroles and dihydropyrroles from imines: Palladium(II)‐catalyzed intramolecular C–H dehydrogenative cyclization. Angew Chem Int Ed 52:4892–4896 Shi Z, Suri M, Glorius F (2013) Aerobic synthesis of pyrroles and dihydropyrroles from imines: Palladium(II)‐catalyzed intramolecular C–H dehydrogenative cyclization. Angew Chem Int Ed 52:4892–4896
123.
Zurück zum Zitat Gupta A, Rahaman A, Bhadra S (2019) Direct α-chalcogenation of aliphatic carboxylic acid equivalents. Org Lett 21:6164–6168 Gupta A, Rahaman A, Bhadra S (2019) Direct α-chalcogenation of aliphatic carboxylic acid equivalents. Org Lett 21:6164–6168
124.
Zurück zum Zitat Hirano M, Fukumoto Y, Matsubara N, Chatani N (2018) A cationic iridium-catalyzed C(sp3)–H silylation of 2-alkyl-1,3-azoles at the α-position in the 2-alkyl group leading to 2-(1-silylalkyl)-1,3-azoles. Chem Lett 47:385–388 Hirano M, Fukumoto Y, Matsubara N, Chatani N (2018) A cationic iridium-catalyzed C(sp3)–H silylation of 2-alkyl-1,3-azoles at the α-position in the 2-alkyl group leading to 2-(1-silylalkyl)-1,3-azoles. Chem Lett 47:385–388
125.
Zurück zum Zitat Dohi T, Takenaga N, Goto A, Maruyama A, Kita Y (2007) Direct lactone formation by using hypervalent iodine(III) reagents with KBr viaselective C−H abstraction protocol. Org Lett 9:3129–3132 Dohi T, Takenaga N, Goto A, Maruyama A, Kita Y (2007) Direct lactone formation by using hypervalent iodine(III) reagents with KBr viaselective C−H abstraction protocol. Org Lett 9:3129–3132
126.
Zurück zum Zitat Liu H, Feng W, Kee CW, Zhao Y, Leow D, Pan Y, Tan CH (2010) Organic dye photocatalyzed α-oxyamination through irradiation with visible light. Green Chem 12:953–956 Liu H, Feng W, Kee CW, Zhao Y, Leow D, Pan Y, Tan CH (2010) Organic dye photocatalyzed α-oxyamination through irradiation with visible light. Green Chem 12:953–956
127.
Zurück zum Zitat Koike T, Yasu Y, Akita M (2012) Visible-light-driven oxidation of 1,3-dicarbonyl compounds via catalytic disproportionation of TEMPO by photoredox catalysis. Chem Lett 41:999–1001 Koike T, Yasu Y, Akita M (2012) Visible-light-driven oxidation of 1,3-dicarbonyl compounds via catalytic disproportionation of TEMPO by photoredox catalysis. Chem Lett 41:999–1001
128.
Zurück zum Zitat Im H, Kang D, Choi S, Shin S, Hong S (2018) Visible-light-induced C–O bond formation for the construction of five- and six-membered cyclic ethers and lactones. Org Lett 20:7437–7441 Im H, Kang D, Choi S, Shin S, Hong S (2018) Visible-light-induced C–O bond formation for the construction of five- and six-membered cyclic ethers and lactones. Org Lett 20:7437–7441
129.
Zurück zum Zitat Gonçalves CR, Lemmerer M, Teskey CJ, Adler P, Kaiser D, Maryasin B, González L, Maulide N (2019) Unified approach to the chemoselective α-functionalization of amides with heteroatom nucleophiles. J Am Chem Soc 141:18437–18443 Gonçalves CR, Lemmerer M, Teskey CJ, Adler P, Kaiser D, Maryasin B, González L, Maulide N (2019) Unified approach to the chemoselective α-functionalization of amides with heteroatom nucleophiles. J Am Chem Soc 141:18437–18443
Metadaten
Titel
C(sp3)–H Bond Hetero-functionalization of Aliphatic Carboxylic Acid Equivalents Enabled by Transition Metals
verfasst von
Aniket Gupta
Sreedhar Gundekari
Sukalyan Bhadra
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-65017-9_13