Skip to main content
Erschienen in: Thermal Engineering 2/2021

01.02.2021 | STEAM-TURBINE, GAS-TURBINE, AND COMBINED-CYCLE POWER PLANTS AND THEIR AUXILIARY EQUIPMENT

Calculating Incidence Losses in the Turbine Cascade

verfasst von: B. I. Mamaev, A. V. Starodumov

Erschienen in: Thermal Engineering | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The flow in turbine cascades with incidences is accompanied by a separated flow around the airfoils, which is difficult to calculate with acceptable accuracy. Therefore, in practice, empirical formulas are used to estimate losses from the incidence. The analysis of these formulas made it possible to identify the geometric and operating parameters of the cascade that have the greatest influence on the losses: the inlet metal angle, thickness of the leading edge of the profile, thickness of the profile, relative pitch, incidence, and exit flow velocity. It is unrealistic to obtain a reliable analytical expression for losses that takes into account the influence of all these parameters. Therefore, the path consisting in creating a program that uses the data of numerous experiments and finds an equation for calculating the losses in a group of cascades close to the specified one in terms of geometric parameters was chosen. Accordingly, a bank of experimental data on losses in a large number of cascades was formed and tested at different incidences and flow velocities. According to the test results, an increase in the flow velocity out of the cascade leads to a decrease in losses from a positive incidence. All cascades are clearly divided into three large groups according to the nature of losses. For the cascades of each group, the ranges of variation of the angles of the flow inlet and outlet and the thickness of the profile and its leading edge are determined. The set of these parameters determines the form of the approximating polynomial for each given cascade. To reflect the effect of the pitch and exit velocity and find the design equation, cascades with narrow deviations of the parameters from the given value are selected from the group, and the unknown polynomial coefficients are calculated using the least squares method. Calculations according to the developed program give smaller deviations from experiments than the known formulas.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat G. Yu. Stepanov, The Hydrodynamics of the Cascades of Turbomachines (Gos. Izd. Fiz.-Mat. Lit., Moscow, 1962) [in Russian]. G. Yu. Stepanov, The Hydrodynamics of the Cascades of Turbomachines (Gos. Izd. Fiz.-Mat. Lit., Moscow, 1962) [in Russian].
2.
Zurück zum Zitat M. K. Maksutova and G. A. Vavilov, “Influence of the flow entry angle on the profile losses of the turbine cascade,” Tr. KAI, No. 153, 33–40 (1973). M. K. Maksutova and G. A. Vavilov, “Influence of the flow entry angle on the profile losses of the turbine cascade,” Tr. KAI, No. 153, 33–40 (1973).
4.
Zurück zum Zitat B. I. Mamaev and I. L. Osipov, “Influence of the incidence on profile losses in turbine cascades,” Izv. Vyssh. Uchebn. Zaved., Aviats. Tekh., No. 1, 66–68 (2006). B. I. Mamaev and I. L. Osipov, “Influence of the incidence on profile losses in turbine cascades,” Izv. Vyssh. Uchebn. Zaved., Aviats. Tekh., No. 1, 66–68 (2006).
5.
Zurück zum Zitat M. E. Deich, G. A. Filippov, and L. Ya. Lazarev, Atlas of the Cascade Profiles of Axial-Flows Turbine (Mashinostroenie, Moscow, 1965; Defense Technical Information Center, Ft. Belvoir, 1976). M. E. Deich, G. A. Filippov, and L. Ya. Lazarev, Atlas of the Cascade Profiles of Axial-Flows Turbine (Mashinostroenie, Moscow, 1965; Defense Technical Information Center, Ft. Belvoir, 1976).
6.
Zurück zum Zitat V. D. Venediktov, A. V. Granovskii, A. M. Karelin, A. N. Kolesov, and M. Kh. Mukhtarov, Atlas of Experimental Characteristics of Flat Cascades of Cooled Gas Turbines (Tsentr. Inst. Aviats. Motorostr., Moscow, 1990) [in Russian]. V. D. Venediktov, A. V. Granovskii, A. M. Karelin, A. N. Kolesov, and M. Kh. Mukhtarov, Atlas of Experimental Characteristics of Flat Cascades of Cooled Gas Turbines (Tsentr. Inst. Aviats. Motorostr., Moscow, 1990) [in Russian].
7.
Zurück zum Zitat V. D. Venediktov and N. E. Sokolova, Atlas of Experimental Characteristics of Flat Cascades of Axial Turbines (Tsentr. Inst. Aviats. Motorostr., Moscow, 1996) [in Russian]. V. D. Venediktov and N. E. Sokolova, Atlas of Experimental Characteristics of Flat Cascades of Axial Turbines (Tsentr. Inst. Aviats. Motorostr., Moscow, 1996) [in Russian].
8.
Zurück zum Zitat M. E. Deich, Gas Dynamics of Turbomachine Cascades (Energoatomizdat, Moscow, 1996) [in Russian]. M. E. Deich, Gas Dynamics of Turbomachine Cascades (Energoatomizdat, Moscow, 1996) [in Russian].
9.
Zurück zum Zitat B. M. Aronov, M. I. Zhukovskii, and V. A. Zhuravlev, Profiling of Aircraft Gas Turbine Blades (Mashinostroenie, Moscow, 1975) [in Russian]. B. M. Aronov, M. I. Zhukovskii, and V. A. Zhuravlev, Profiling of Aircraft Gas Turbine Blades (Mashinostroenie, Moscow, 1975) [in Russian].
10.
Zurück zum Zitat V. D. Venediktov, Gas Dynamics of Cooled Turbines (Mashinostroenie, Moscow, 1990) [in Russian]. V. D. Venediktov, Gas Dynamics of Cooled Turbines (Mashinostroenie, Moscow, 1990) [in Russian].
Metadaten
Titel
Calculating Incidence Losses in the Turbine Cascade
verfasst von
B. I. Mamaev
A. V. Starodumov
Publikationsdatum
01.02.2021
Verlag
Pleiades Publishing
Erschienen in
Thermal Engineering / Ausgabe 2/2021
Print ISSN: 0040-6015
Elektronische ISSN: 1555-6301
DOI
https://doi.org/10.1134/S0040601521020038

Weitere Artikel der Ausgabe 2/2021

Thermal Engineering 2/2021 Zur Ausgabe

STEAM-TURBINE, GAS-TURBINE, AND COMBINED-CYCLE POWER PLANTS AND THEIR AUXILIARY EQUIPMENT

The Upgrading of the Combined-Cycle Cogeneration Plant with Heat-Recovery Steam Generators for Large Cities of the Russian Federation

    Premium Partner