Skip to main content
Erschienen in: Mathematical Models and Computer Simulations 4/2023

01.08.2023

Calculation of the Initial Elevation of the Water Surface at the Source of a Tsunami in a Basin with Arbitrary Bottom Topography

verfasst von: K. A. Semenstov, M. A. Nosov

Erschienen in: Mathematical Models and Computer Simulations | Ausgabe 4/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A two-dimensional (0xz) numerical model that makes it possible to calculate the initial elevation of the water surface in the source of a tsunami in a basin of variable depth is developed in the potential theory of an incompressible fluid under the approximation of an instantaneous deformation of the sea bottom. The model makes it possible to take into account the contribution of the horizontal component of the bottom deformation and the smoothing effect of the water layer through the use of the σ coordinate. To test the numerical model, we obtained an analytical solution to the problem of the initial elevation in a basin with a flat sloping bottom with a bottom deformation of a triangular shape. The results of the test show that for a spatial step typical for numerical tsunami models, there is close agreement between the numerical and analytical solutions. Using the developed σ model, we calculate the initial elevations of the water surface during the Kuril earthquake on January 13, 2007 and the Great East Japan Tohoku earthquake on March 11, 2011 (along the selected 2D sections). The results obtained are used to test an approximate method for calculating the initial elevation, known as the Kajiura filter, in which the ocean depth is assumed to be constant throughout the area of the source of the tsunami.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat A. R. Gusman, I. E. Mulia, K. Satake, S. Watada, M. Heidarzadeh, and A. F. Sheehan, “Estimate of tsunami source using optimized unit sources and including dispersion effects during tsunami propagation: The 2012 Haida Gwaii earthquake,” Geophys. Res. Lett. 43 (18), 9819–9828 (2016). https://doi.org/10.1002/2016GL070140CrossRef A. R. Gusman, I. E. Mulia, K. Satake, S. Watada, M. Heidarzadeh, and A. F. Sheehan, “Estimate of tsunami source using optimized unit sources and including dispersion effects during tsunami propagation: The 2012 Haida Gwaii earthquake,” Geophys. Res. Lett. 43 (18), 9819–9828 (2016). https://​doi.​org/​10.​1002/​2016GL070140CrossRef
8.
Zurück zum Zitat S. Iwasaki, “Experimental study of a tsunami generated by a horizontal motion of a sloping bottom,” Bull. Earthquake Res. Inst. 57, 239–262 (1982). S. Iwasaki, “Experimental study of a tsunami generated by a horizontal motion of a sloping bottom,” Bull. Earthquake Res. Inst. 57, 239–262 (1982).
12.
Zurück zum Zitat M. A. Nosov, A. V. Bolshakova, and K. A. Sementsov, “Energy characteristics of tsunami sources and the mechanism of wave generation by seismic movements of the ocean floor,” Moscow Univ. Phys. Bull. 76, S136–S142 (2021). https://doi.org/10.3103/S0027134922010076CrossRef M. A. Nosov, A. V. Bolshakova, and K. A. Sementsov, “Energy characteristics of tsunami sources and the mechanism of wave generation by seismic movements of the ocean floor,” Moscow Univ. Phys. Bull. 76, S136–S142 (2021). https://doi.org/10.3103/S0027134922010076CrossRef
13.
Zurück zum Zitat R. Takahashi, “On seismic sea waves caused by deformations of the sea bottom,” Bull. Earthquake Res. Inst. 20, 357–400 (1942).MathSciNetMATH R. Takahashi, “On seismic sea waves caused by deformations of the sea bottom,” Bull. Earthquake Res. Inst. 20, 357–400 (1942).MathSciNetMATH
14.
Zurück zum Zitat K. Kajiura, “The leading wave of a tsunami,” Bull. Earthquake Res. Inst. 41, 535–571 (1963). K. Kajiura, “The leading wave of a tsunami,” Bull. Earthquake Res. Inst. 41, 535–571 (1963).
17.
Zurück zum Zitat M. A. Nosov, Introduction to Tsunami Wave Theory (Yanus-K, Moscow, 2019) [in Russian]. M. A. Nosov, Introduction to Tsunami Wave Theory (Yanus-K, Moscow, 2019) [in Russian].
18.
Zurück zum Zitat K. Aki and P. G. Richards, Quantitative Seismology, 2nd ed. (Univ. Sci. Books, Sausalito, CA, 2002). K. Aki and P. G. Richards, Quantitative Seismology, 2nd ed. (Univ. Sci. Books, Sausalito, CA, 2002).
19.
Zurück zum Zitat C. Ji, D. J. Wald, and D. V. Helmberger, “Source description of the 1999 Hector Mine, California, earthquake, Part I: Wavelet domain inversion theory and resolution analysis,” Bull. Seismol. Soc. Am. 92 (4), 1192–1207 (2002). https://doi.org/10.1785/0120000916CrossRef C. Ji, D. J. Wald, and D. V. Helmberger, “Source description of the 1999 Hector Mine, California, earthquake, Part I: Wavelet domain inversion theory and resolution analysis,” Bull. Seismol. Soc. Am. 92 (4), 1192–1207 (2002). https://​doi.​org/​10.​1785/​0120000916CrossRef
20.
21.
Zurück zum Zitat S. Kawamoto, Y. Ohta, Y. Hiyama, M. Todoriki, T. Nishimura, T. Furuya, Y. Sato, T. Yahagi, and K. Miyagawa, “REGARD: A new GNSS-based real-time finite fault modeling system for GEONET,” J. Geophys. Res.: Solid Earth 122, 1324–1349 (2017).CrossRef S. Kawamoto, Y. Ohta, Y. Hiyama, M. Todoriki, T. Nishimura, T. Furuya, Y. Sato, T. Yahagi, and K. Miyagawa, “REGARD: A new GNSS-based real-time finite fault modeling system for GEONET,” J. Geophys. Res.: Solid Earth 122, 1324–1349 (2017).CrossRef
22.
Zurück zum Zitat S. Watada, S. Kusumoto, and K. Satake, “Traveltime delay and initial phase reversal of distant tsunamis coupled with the self-gravitating elastic Earth,” J. Geophys. Res.: Solid Earth 119, 4287–4310 (2014).CrossRef S. Watada, S. Kusumoto, and K. Satake, “Traveltime delay and initial phase reversal of distant tsunamis coupled with the self-gravitating elastic Earth,” J. Geophys. Res.: Solid Earth 119, 4287–4310 (2014).CrossRef
23.
Zurück zum Zitat T.-C. Ho, K. Satake, and S. Watada, “Improved phase corrections for transoceanic tsunami data in spatial and temporal source estimation: Application to the 2011 Tohoku earthquake,” J. Geophys. Res.: Solid Earth 122 (12), 10155–10175 (2017). https://doi.org/10.1002/2017JB015070CrossRef T.-C. Ho, K. Satake, and S. Watada, “Improved phase corrections for transoceanic tsunami data in spatial and temporal source estimation: Application to the 2011 Tohoku earthquake,” J. Geophys. Res.: Solid Earth 122 (12), 10155–10175 (2017). https://​doi.​org/​10.​1002/​2017JB015070CrossRef
25.
Zurück zum Zitat S. N. Ward, “Tsunamis,” in The Encyclopedia of Physical Science and Technology, 3rd ed., Ed. by R. A. Meyers (Academic Press, San Diego, 2001), Vol. 17, pp. 175–191. S. N. Ward, “Tsunamis,” in The Encyclopedia of Physical Science and Technology, 3rd ed., Ed. by R. A. Meyers (Academic Press, San Diego, 2001), Vol. 17, pp. 175–191.
30.
32.
Zurück zum Zitat T. Baba, S. Allgeyer, J. Hossen, P. R. Cummins, H. Tsushima, K. Imai, K. Yamashita, and T. Kato, “Accurate numerical simulation of the far-field tsunami caused by the 2011 Tohoku earthquake, including the effects of Boussinesq dispersion, seawater density stratification, elastic loading, and gravitational potential change,” Ocean Modell. 111, 46–54 (2017). https://doi.org/10.1016/j.ocemod.2017.01.002CrossRef T. Baba, S. Allgeyer, J. Hossen, P. R. Cummins, H. Tsushima, K. Imai, K. Yamashita, and T. Kato, “Accurate numerical simulation of the far-field tsunami caused by the 2011 Tohoku earthquake, including the effects of Boussinesq dispersion, seawater density stratification, elastic loading, and gravitational potential change,” Ocean Modell. 111, 46–54 (2017). https://​doi.​org/​10.​1016/​j.​ocemod.​2017.​01.​002CrossRef
33.
Zurück zum Zitat I. V. Fine and E. A. Kulikov, “Calculation of sea surface displacements in a tsunami source area caused by instantaneous vertical deformation of the seabed due to an underwater earthquake,” Vychisl. Tekhnol. 16 (2), 111–118 (2011). I. V. Fine and E. A. Kulikov, “Calculation of sea surface displacements in a tsunami source area caused by instantaneous vertical deformation of the seabed due to an underwater earthquake,” Vychisl. Tekhnol. 16 (2), 111–118 (2011).
42.
Zurück zum Zitat A. V. Gusev, “Numerical model of ocean hydrodynamics in curvilinear coordinates for reproducing the circulation of the world ocean and its separate water areas,” Candidate’s Dissertation in Physics and Mathematics (Inst. Vychisl. Mat., Moscow, 2009). A. V. Gusev, “Numerical model of ocean hydrodynamics in curvilinear coordinates for reproducing the circulation of the world ocean and its separate water areas,” Candidate’s Dissertation in Physics and Mathematics (Inst. Vychisl. Mat., Moscow, 2009).
43.
Zurück zum Zitat N. A. Dianskii, Modeling Ocean Circulation and Studying Its Response to Short-Term and Long-Term Atmospheric Impacts (Fizmatlit, Moscow, 2013) [in Russian]. N. A. Dianskii, Modeling Ocean Circulation and Studying Its Response to Short-Term and Long-Term Atmospheric Impacts (Fizmatlit, Moscow, 2013) [in Russian].
45.
Zurück zum Zitat K. A. Sementsov, M. A. Nosov, S. V. Kolesov, V. A. Karpov, H. Matsumoto, and Y. Kaneda, “Free gravity waves in the ocean excited by seismic surface waves: Observations and numerical simulations,” J. Geophys. Res. Oceans 124 (11), 8468–8484 (2019). https://doi.org/10.1029/2019JC015115CrossRef K. A. Sementsov, M. A. Nosov, S. V. Kolesov, V. A. Karpov, H. Matsumoto, and Y. Kaneda, “Free gravity waves in the ocean excited by seismic surface waves: Observations and numerical simulations,” J. Geophys. Res. Oceans 124 (11), 8468–8484 (2019). https://​doi.​org/​10.​1029/​2019JC015115CrossRef
49.
Zurück zum Zitat A. A. Samarskii, Introduction to the Theory of Difference Schemes (Nauka, Moscow, 1971) [in Russian]. A. A. Samarskii, Introduction to the Theory of Difference Schemes (Nauka, Moscow, 1971) [in Russian].
50.
Zurück zum Zitat K. A. Sementsov, “Dynamic and static models of generation of surface gravity waves in the ocean by earthquakes,” Candidate’s Dissertation in Physics and Mathematics (Mosk. Gos. Univ. im. M. V. Lomonosova, Moscow, 2017). K. A. Sementsov, “Dynamic and static models of generation of surface gravity waves in the ocean by earthquakes,” Candidate’s Dissertation in Physics and Mathematics (Mosk. Gos. Univ. im. M. V. Lomonosova, Moscow, 2017).
Metadaten
Titel
Calculation of the Initial Elevation of the Water Surface at the Source of a Tsunami in a Basin with Arbitrary Bottom Topography
verfasst von
K. A. Semenstov
M. A. Nosov
Publikationsdatum
01.08.2023
Verlag
Pleiades Publishing
Erschienen in
Mathematical Models and Computer Simulations / Ausgabe 4/2023
Print ISSN: 2070-0482
Elektronische ISSN: 2070-0490
DOI
https://doi.org/10.1134/S2070048223040166

Weitere Artikel der Ausgabe 4/2023

Mathematical Models and Computer Simulations 4/2023 Zur Ausgabe

Premium Partner