Skip to main content
Erschienen in: Mathematical Models and Computer Simulations 4/2023

01.08.2023

Convergence of Some Iterative Algorithms for the Numerical Solution of Two-Dimensional Nonstationary Problems of Magnetic Hydrodynamics

verfasst von: A. Yu. Krukovskiy, Yu. A. Poveshchenko, V. O. Podryga

Erschienen in: Mathematical Models and Computer Simulations | Ausgabe 4/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper studies the convergence of methods of a combined and separate solution of difference equations groups, splitted by physical processes, applied to a family of completely conservative difference schemes (CCDSs) of two-dimensional magnetohydrodynamics (MHD). Estimates are obtained for the convergence of iterative processes for the entire family of CCDSs, both for the method of a separate and combined solution of groups of difference equations. These results are obtained for the first time; previously, such estimates were obtained only for a purely implicit difference scheme. The validity of the estimates obtained in this study is confirmed by the numerical calculations. Based on the estimates obtained in this study, recommendations are developed for any CCDS, whose numerical method is more appropriate to use to solve the system of difference equations. Depending on the ratio of the parameters of the substance and the electromagnetic field at each moment of time, the estimates obtained in this study, even for calculating one physical problem of two-dimensional MHD, make it possible to choose the optimal numerical method for each time integration step, which leads to a significant reduction in the computational time of the problem. This can be quite important, especially when conducting a large-scale computational experiment. Thus, the results obtained in this study have not only an interesting theoretical but also an important practical value.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A. A. Samarskii and Yu. P. Popov, Difference Methods for Solving Problems of Gas Dynamics (Nauka, Moscow, 1992) [in Russian]. A. A. Samarskii and Yu. P. Popov, Difference Methods for Solving Problems of Gas Dynamics (Nauka, Moscow, 1992) [in Russian].
3.
Zurück zum Zitat V. A. Gasilov, S. Yu. Guskov, S. V. Zakharov, A. Yu. Krukovskiy, and T. P. Novikova, “Mathematical model and method for calculating the implosion of an electrodynamically accelerated plasma,” Preprint No. 29 (Fiz. Inst. im. P. N. Lebedeva Russ. Akad. Nauk, Moscow, 1995). V. A. Gasilov, S. Yu. Guskov, S. V. Zakharov, A. Yu. Krukovskiy, and T. P. Novikova, “Mathematical model and method for calculating the implosion of an electrodynamically accelerated plasma,” Preprint No. 29 (Fiz. Inst. im. P. N. Lebedeva Russ. Akad. Nauk, Moscow, 1995).
4.
Zurück zum Zitat J. J. Duderstadt and G. A. Moses, Inertial Confinement Fusion (Wiley, New York, 1982). J. J. Duderstadt and G. A. Moses, Inertial Confinement Fusion (Wiley, New York, 1982).
5.
Zurück zum Zitat V. P. Smirnov, S. V. Zakharov, E. V. Grabovskii, S. L. Nedoseev, G. M. Oleinik, and V. I. Zaitsev, “Imploding liner as a driver for indirect driven target physics studies,” in Proc. IAEA Technical Committee Meeting on Drivers for Inertial Confinement Fusion, Paris, 1994 (International Atomic Energy Agency, Vienna, 1995), pp. 395–400. V. P. Smirnov, S. V. Zakharov, E. V. Grabovskii, S. L. Nedoseev, G. M. Oleinik, and V. I. Zaitsev, “Imploding liner as a driver for indirect driven target physics studies,” in Proc. IAEA Technical Committee Meeting on Drivers for Inertial Confinement Fusion, Paris, 1994 (International Atomic Energy Agency, Vienna, 1995), pp. 395–400.
6.
Zurück zum Zitat V. A. Gasilov, S. Yu. Guskov, S. V. Zakharov, A. Yu. Krukovskiy, T. P. Novikova, and V. B. Rozanov, “Numerical simulation of nonlinear heat conduction and radiative gas dynamics processes in the case of substance implosion in internal cavities of LTF targets,” Preprint No. 30 (Fiz. Inst. im. P. N. Lebedeva Russ. Akad. Nauk, Moscow, 1999). V. A. Gasilov, S. Yu. Guskov, S. V. Zakharov, A. Yu. Krukovskiy, T. P. Novikova, and V. B. Rozanov, “Numerical simulation of nonlinear heat conduction and radiative gas dynamics processes in the case of substance implosion in internal cavities of LTF targets,” Preprint No. 30 (Fiz. Inst. im. P. N. Lebedeva Russ. Akad. Nauk, Moscow, 1999).
7.
Zurück zum Zitat A. V. Branitskii, E. V. Grabovskii, S. V. Zakharov, N. V. Zurin, A. Yu. Krukovskii, G. M. Oleinik, V. P. Smirnov, and I. N. Frolov, “Penetration of an azimuthal magnetic flux during the implosion of a double liner,” Plasma Phys. Rep. 25 (12), 994–999 (1999). A. V. Branitskii, E. V. Grabovskii, S. V. Zakharov, N. V. Zurin, A. Yu. Krukovskii, G. M. Oleinik, V. P. Smirnov, and I. N. Frolov, “Penetration of an azimuthal magnetic flux during the implosion of a double liner,” Plasma Phys. Rep. 25 (12), 994–999 (1999).
8.
Zurück zum Zitat V. A. Gasilov, A. S. Chuvatin, A. Yu. Krukovskiy, E. A. Kartasheva, O. G. Ol’khovskaya, A. S. Boldarev, D. S. Tarasov, N. V. Serova, S. V. D’yachenko, and O. V. Fryazinov, “A program package “Razryad”: Modeling of plasma acceleration in pulsed-power systems,” Mat. Model. 15 (9), 107–124 (2003).MATH V. A. Gasilov, A. S. Chuvatin, A. Yu. Krukovskiy, E. A. Kartasheva, O. G. Ol’khovskaya, A. S. Boldarev, D. S. Tarasov, N. V. Serova, S. V. D’yachenko, and O. V. Fryazinov, “A program package “Razryad”: Modeling of plasma acceleration in pulsed-power systems,” Mat. Model. 15 (9), 107–124 (2003).MATH
9.
Zurück zum Zitat V. A. Gasilov, A. Yu. Krukovskiy, V. G. Novikov, I. V. Romanov, and I. P. Tsygvintsev, “Numerical modeling of current flow in a vacuum diode with laser ignition,” KIAM Preprint No. 78 (Keldysh Inst. Appl. Math. RAS, Moscow, 2013). V. A. Gasilov, A. Yu. Krukovskiy, V. G. Novikov, I. V. Romanov, and I. P. Tsygvintsev, “Numerical modeling of current flow in a vacuum diode with laser ignition,” KIAM Preprint No. 78 (Keldysh Inst. Appl. Math. RAS, Moscow, 2013).
10.
Zurück zum Zitat A. G. Kulikovskii and V. A. Lyubimov, Magnetic Hydrodynamics (Logos, Moscow, 2005) [in Russian]. A. G. Kulikovskii and V. A. Lyubimov, Magnetic Hydrodynamics (Logos, Moscow, 2005) [in Russian].
11.
12.
Zurück zum Zitat R. P. Fedorenko, Introduction to Computational Physics (Izd. Mosk. Fiz.-Tekh. Inst., Moscow, 1994) [in Russian]. R. P. Fedorenko, Introduction to Computational Physics (Izd. Mosk. Fiz.-Tekh. Inst., Moscow, 1994) [in Russian].
13.
Zurück zum Zitat A. A. Samarskii and A. V. Gulin, Numerical Methods (Nauka, Moscow, 1989) [in Russian]. A. A. Samarskii and A. V. Gulin, Numerical Methods (Nauka, Moscow, 1989) [in Russian].
14.
Zurück zum Zitat A. Yu. Krukovskiy, Yu. A. Poveshchenko, V. O. Podryga, and D. S. Boykov, “Convergence estimates of some iterative algorithms for numerical modeling of two-dimensional equations of magnetohydrodynamics,” KIAM Preprint No. 13 (Keldysh Inst. Appl. Math. RAS, Moscow, 2022). https://doi.org/10.20948/prepr-2022-13 A. Yu. Krukovskiy, Yu. A. Poveshchenko, V. O. Podryga, and D. S. Boykov, “Convergence estimates of some iterative algorithms for numerical modeling of two-dimensional equations of magnetohydrodynamics,” KIAM Preprint No. 13 (Keldysh Inst. Appl. Math. RAS, Moscow, 2022). https://​doi.​org/​10.​20948/​prepr-2022-13
15.
Zurück zum Zitat A. F. Nikiforov, V. G. Novikov, and V. B. Uvarov, Quantum-Statistical Models of Hot Dense Matter: Methods for Computation Opacity and Equation of State (Fizmatlit, Moscow, 2000; Birkhäuser, Basel, 2005). https://doi.org/10.1007/b137687 A. F. Nikiforov, V. G. Novikov, and V. B. Uvarov, Quantum-Statistical Models of Hot Dense Matter: Methods for Computation Opacity and Equation of State (Fizmatlit, Moscow, 2000; Birkhäuser, Basel, 2005). https://​doi.​org/​10.​1007/​b137687
Metadaten
Titel
Convergence of Some Iterative Algorithms for the Numerical Solution of Two-Dimensional Nonstationary Problems of Magnetic Hydrodynamics
verfasst von
A. Yu. Krukovskiy
Yu. A. Poveshchenko
V. O. Podryga
Publikationsdatum
01.08.2023
Verlag
Pleiades Publishing
Erschienen in
Mathematical Models and Computer Simulations / Ausgabe 4/2023
Print ISSN: 2070-0482
Elektronische ISSN: 2070-0490
DOI
https://doi.org/10.1134/S2070048223040087

Weitere Artikel der Ausgabe 4/2023

Mathematical Models and Computer Simulations 4/2023 Zur Ausgabe

Premium Partner