Skip to main content
Erschienen in: Electrical Engineering 2/2021

30.09.2020 | Original Paper

Calculation of the overhead transmission line conductor temperature in real operating conditions

verfasst von: Ľubomír Beňa, Vladimír Gáll, Martin Kanálik, Michal Kolcun, Anastázia Margitová, Alexander Mészáros, Jakub Urbanský

Erschienen in: Electrical Engineering | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The integration of fluctuating renewable sources, load growth and aging of the current power system is the major reasons for the development of the electric power engineering. Transmission lines are recently facing new technical and economic challenges. The immediate utilization of advanced technologies and modern methods could solve these issues. This study deals with the transmission and distribution of electrical energy with orientation on the calculation of operating temperature on the conductor of transmission line, which is under actual current load. The load of the transmission line is limited with allowable operating temperature. The operating temperature should not exceed the allowable operating temperature because the conductors of the transmission line have mechanical limit from the standpoint of deflection of conductors. The operating temperature as well as operating conditions of the conductor is determined by the type and material of the ACSR conductor. This article aims to propose the suitable calculation methods of the operating temperature of the overhead transmission line conductor in real operating conditions (external weather influences, current loading and corona effect). The originality of this proposed method (by differential equation) lies in considering corona effect. This improves the accuracy of the calculation of the operating temperature of the conductor under real conditions. In this article, the calculations are compared according to methodology of differential equation and methodology described in CIGRE Technical Brochure 601—guide for thermal rating calculations of overhead lines. The methodology of differential equation counts with or without losses by corona. The article also compares these methods of operating temperature during days in various different weather conditions like environment temperature, solar irradiance, wind speed and direction. It was found that under the action of the corona, the temperature of the conductor increases to a small extent.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Black WZ, Byrd WR (1983) Real-time ampacity model for overhead lines. IEEE Trans Power Appar Syst 10:2289–2293CrossRef Black WZ, Byrd WR (1983) Real-time ampacity model for overhead lines. IEEE Trans Power Appar Syst 10:2289–2293CrossRef
2.
Zurück zum Zitat Staněk P, Ivanová P (2015) Present trends in economic globalization. Bratislava, Slovakia (in Slovak) Staněk P, Ivanová P (2015) Present trends in economic globalization. Bratislava, Slovakia (in Slovak)
3.
Zurück zum Zitat Mészáros A, Gáll V (2018) Economic analysis of transmission line operation. In: International IEEE conference and workshop in Obuda on electrical and power engineering, Budapest, Hungary, pp 243–248. ISBN: 978-1-7281-1155-1 Mészáros A, Gáll V (2018) Economic analysis of transmission line operation. In: International IEEE conference and workshop in Obuda on electrical and power engineering, Budapest, Hungary, pp 243–248. ISBN: 978-1-7281-1155-1
4.
Zurück zum Zitat Beryozkina S (2019) Evaluation study of potential use of advanced conductors in transmission line projects. Energies 12(5):822–848CrossRef Beryozkina S (2019) Evaluation study of potential use of advanced conductors in transmission line projects. Energies 12(5):822–848CrossRef
5.
Zurück zum Zitat Beryozkina S, Sauhats A, Vanzovichs E (2011) Climate conditions impact on the permissible load current of the transmission line. In: Proceedings of the IEEE Trondheim PowerTech, pp 1–6 Beryozkina S, Sauhats A, Vanzovichs E (2011) Climate conditions impact on the permissible load current of the transmission line. In: Proceedings of the IEEE Trondheim PowerTech, pp 1–6
6.
Zurück zum Zitat Mészáros A, Gáll V, Tkáč J (2017) Analysis of operating temperature of the polycrystalline solar cell. Acta Electrotech Inf 4:57–62 Mészáros A, Gáll V, Tkáč J (2017) Analysis of operating temperature of the polycrystalline solar cell. Acta Electrotech Inf 4:57–62
7.
Zurück zum Zitat Jorge RS, Hertwich EG (2013) Environmental evaluation of power transmission in Norway. Appl Energy 101:513–520CrossRef Jorge RS, Hertwich EG (2013) Environmental evaluation of power transmission in Norway. Appl Energy 101:513–520CrossRef
8.
Zurück zum Zitat Mészáros A, Gáll V (2015) Calculation of operating temperature of the transmission line at different operating conditions. In: The 8th international scientific symposium Elektroenergetika, Technical University of Košice, Košice, Slovakia, pp 129–132, ISBN: 978-80-553-2187-5 Mészáros A, Gáll V (2015) Calculation of operating temperature of the transmission line at different operating conditions. In: The 8th international scientific symposium Elektroenergetika, Technical University of Košice, Košice, Slovakia, pp 129–132, ISBN: 978-80-553-2187-5
9.
Zurück zum Zitat Kotni L (2014) A proposed algorithm for an overhead transmission line conductor temperature rise calculation. Int Trans Electr Energy Syst 24:578–596CrossRef Kotni L (2014) A proposed algorithm for an overhead transmission line conductor temperature rise calculation. Int Trans Electr Energy Syst 24:578–596CrossRef
10.
Zurück zum Zitat Yan Z, Wang Y, Liang L (2017) Analysis on ampacity of overhead transmission lines being operated. J Inf Process Syst 13:1358–1371 Yan Z, Wang Y, Liang L (2017) Analysis on ampacity of overhead transmission lines being operated. J Inf Process Syst 13:1358–1371
11.
Zurück zum Zitat Šnajdr J, Sedláček J, Vostracký Z (2014) Application of a line ampacity model and its use in transmission lines operations. J. Electr. Eng. 65:221–227 Šnajdr J, Sedláček J, Vostracký Z (2014) Application of a line ampacity model and its use in transmission lines operations. J. Electr. Eng. 65:221–227
12.
Zurück zum Zitat Kanálik M, Margitová A, Beňa Ľ (2019) Comparison of the temperature calculated by CIGRE technical brochure 601 with real temperature measurement on ACSR conductors in the Slovak Republic. Electr Eng 101(3):921–933CrossRef Kanálik M, Margitová A, Beňa Ľ (2019) Comparison of the temperature calculated by CIGRE technical brochure 601 with real temperature measurement on ACSR conductors in the Slovak Republic. Electr Eng 101(3):921–933CrossRef
13.
Zurück zum Zitat Kanálik M, Margitová A, Urbanský J, Beňa Ľ (2019) Temperature calculation of overhead power line conductors according to the CIGRE technical brochure 207. In: Proceedings of the 20th international scientific conference on electric power engineering (EPE), pp 24–28 Kanálik M, Margitová A, Urbanský J, Beňa Ľ (2019) Temperature calculation of overhead power line conductors according to the CIGRE technical brochure 207. In: Proceedings of the 20th international scientific conference on electric power engineering (EPE), pp 24–28
14.
Zurück zum Zitat Miura M, Satoh T, Iwamoto S, Kurihara I (2009) Application of dynamic rating to increase the available transfer capability. Electr Eng Jpn 166(4):40–47CrossRef Miura M, Satoh T, Iwamoto S, Kurihara I (2009) Application of dynamic rating to increase the available transfer capability. Electr Eng Jpn 166(4):40–47CrossRef
15.
Zurück zum Zitat Quaia S (2018) Critical analysis of line loadability constraints. Int Trans Electr Energy Syst 24:1–11 Quaia S (2018) Critical analysis of line loadability constraints. Int Trans Electr Energy Syst 24:1–11
16.
Zurück zum Zitat Klimenta DO, Perović BD, Jevtić MD, Radosavljević JN (2016) An analytical algorithm to determine allowable ampacities of horizontally installed rectangular bus bars. Therm Sci 20(2):717–730CrossRef Klimenta DO, Perović BD, Jevtić MD, Radosavljević JN (2016) An analytical algorithm to determine allowable ampacities of horizontally installed rectangular bus bars. Therm Sci 20(2):717–730CrossRef
17.
Zurück zum Zitat Medveď D, Mišenčík L, Kolcun M, Zbojovský J, Pavlík M (2015) Measuring of magnetic field around power lines. In: Proceedings of the 8th international scientific symposium Elektroenergetika, pp 148–151 Medveď D, Mišenčík L, Kolcun M, Zbojovský J, Pavlík M (2015) Measuring of magnetic field around power lines. In: Proceedings of the 8th international scientific symposium Elektroenergetika, pp 148–151
18.
Zurück zum Zitat Hu J, Xiong X, Chen J, Wang W, Wang J (2018) Transient temperature calculation and multi-parameter thermal protection of overhead transmission lines based on an equivalent thermal network. Energies 12(1):66–91CrossRef Hu J, Xiong X, Chen J, Wang W, Wang J (2018) Transient temperature calculation and multi-parameter thermal protection of overhead transmission lines based on an equivalent thermal network. Energies 12(1):66–91CrossRef
19.
Zurück zum Zitat Lhendup T, Lhundup S (2007) Comparison of methodologies for generating a typical meteorological year (TMY). Energy Sustain Dev 11(3):5–10CrossRef Lhendup T, Lhundup S (2007) Comparison of methodologies for generating a typical meteorological year (TMY). Energy Sustain Dev 11(3):5–10CrossRef
20.
Zurück zum Zitat Karimi S, Knight AM, Musilek P, Heckenbergerova J (2016) A probabilistic estimation for dynamic thermal rating of transmission lines. In: Proceedings of the IEEE 16th international conference on environment and electrical engineering (EEEIC), pp 1–6 Karimi S, Knight AM, Musilek P, Heckenbergerova J (2016) A probabilistic estimation for dynamic thermal rating of transmission lines. In: Proceedings of the IEEE 16th international conference on environment and electrical engineering (EEEIC), pp 1–6
21.
Zurück zum Zitat Michiorri A, Nguyen HM, Alessandrini S, Bremnes JB, Dierer S, Ferrero E, Nygaard BE, Pinson P, Thomaidis N, Uski S (2015) Forecasting for dynamic line rating. Renew Sustain Energy Rev 52:1713–1730CrossRef Michiorri A, Nguyen HM, Alessandrini S, Bremnes JB, Dierer S, Ferrero E, Nygaard BE, Pinson P, Thomaidis N, Uski S (2015) Forecasting for dynamic line rating. Renew Sustain Energy Rev 52:1713–1730CrossRef
22.
Zurück zum Zitat Liu G, Li Y, Liu S, Dong X, Qu F, Li Y (2016) Real-time solar radiation intensity modeling for dynamic rating of overhead transmission lines. In: Proceedings of the Australasian universities power engineering conference (AUPEC), pp 1–6 Liu G, Li Y, Liu S, Dong X, Qu F, Li Y (2016) Real-time solar radiation intensity modeling for dynamic rating of overhead transmission lines. In: Proceedings of the Australasian universities power engineering conference (AUPEC), pp 1–6
23.
Zurück zum Zitat Teh J, Cotton I (2016) Reliability impact of dynamic thermal rating system in wind power integrated network. IEEE Trans Reliab 65(2):1081–1089CrossRef Teh J, Cotton I (2016) Reliability impact of dynamic thermal rating system in wind power integrated network. IEEE Trans Reliab 65(2):1081–1089CrossRef
24.
Zurück zum Zitat Karimi S, Knight A, Musilek P (2016) A comparison between fuzzy and probabilistic estimation of dynamic thermal rating of transmission lines. In: Proceedings of the IEEE international conference on fuzzy systems (FUZZ-IEEE), pp 1740–1744 Karimi S, Knight A, Musilek P (2016) A comparison between fuzzy and probabilistic estimation of dynamic thermal rating of transmission lines. In: Proceedings of the IEEE international conference on fuzzy systems (FUZZ-IEEE), pp 1740–1744
25.
Zurück zum Zitat Du Y, Liao Y (2012) On-line estimation of transmission line parameters, temperature and sag using PMU measurements. Electr Power Syst Res 93:39–45CrossRef Du Y, Liao Y (2012) On-line estimation of transmission line parameters, temperature and sag using PMU measurements. Electr Power Syst Res 93:39–45CrossRef
26.
Zurück zum Zitat Black CR, Chisholm WA (2015) Key considerations for the selection of dynamic thermal line rating systems. IEEE Trans Power Delivery 30(5):2154–2162CrossRef Black CR, Chisholm WA (2015) Key considerations for the selection of dynamic thermal line rating systems. IEEE Trans Power Delivery 30(5):2154–2162CrossRef
27.
Zurück zum Zitat De Nazare FV, Werneck MM (2010) Temperature and current monitoring system for transmission lines using power-over-fiber technology. In: Proceedings of the IEEE instrumentation and measurement technology conference (I2MTC), pp 779–784 De Nazare FV, Werneck MM (2010) Temperature and current monitoring system for transmission lines using power-over-fiber technology. In: Proceedings of the IEEE instrumentation and measurement technology conference (I2MTC), pp 779–784
28.
Zurück zum Zitat Teh J, Cotton I (2015) Critical span identification model for dynamic thermal rating system placement. IET Gener Transm Distrib 9(16):2644–2652CrossRef Teh J, Cotton I (2015) Critical span identification model for dynamic thermal rating system placement. IET Gener Transm Distrib 9(16):2644–2652CrossRef
29.
Zurück zum Zitat Matus M, Saez D, Favley M, Martinez CS, Moya J, Behnke RP, Olguin G, Jorquera P (2012) Identification of critical spans for monitoring systems in dynamic thermal rating. IEEE Trans Power Deliv 27(2):1002–1009CrossRef Matus M, Saez D, Favley M, Martinez CS, Moya J, Behnke RP, Olguin G, Jorquera P (2012) Identification of critical spans for monitoring systems in dynamic thermal rating. IEEE Trans Power Deliv 27(2):1002–1009CrossRef
30.
Zurück zum Zitat Musilek P, Heckenbergerova J, Bhuiyan M (2012) Spatial analysis of thermal aging of overhead transmission conductors. IEEE Trans Power Deliv 27(3):1196–1204CrossRef Musilek P, Heckenbergerova J, Bhuiyan M (2012) Spatial analysis of thermal aging of overhead transmission conductors. IEEE Trans Power Deliv 27(3):1196–1204CrossRef
31.
Zurück zum Zitat Bhuiyan M, Musilek P, Heckenbergerova J, Koval D (2010) Evaluating thermal aging characteristics of electric power transmission lines. In: Proceedings of the 23rd Canadian conference of electrical and computer engineering (CCECE), pp 1–4 Bhuiyan M, Musilek P, Heckenbergerova J, Koval D (2010) Evaluating thermal aging characteristics of electric power transmission lines. In: Proceedings of the 23rd Canadian conference of electrical and computer engineering (CCECE), pp 1–4
32.
Zurück zum Zitat Heckenbergerova J, Musilek P, Bhuiyan M, Koval D, Pelikan E (2010) Identification of critical aging segments and hotspots of power transmission lines. In: Proceedings of the 9th international conference on environment and electrical engineering, pp 1–4 Heckenbergerova J, Musilek P, Bhuiyan M, Koval D, Pelikan E (2010) Identification of critical aging segments and hotspots of power transmission lines. In: Proceedings of the 9th international conference on environment and electrical engineering, pp 1–4
33.
Zurück zum Zitat STN EN 50341-1: Overhead electrical lines exceeding AC 45 kV. Part 1: general requirements. Common Specifications (2013) STN EN 50341-1: Overhead electrical lines exceeding AC 45 kV. Part 1: general requirements. Common Specifications (2013)
34.
Zurück zum Zitat Heckenbergerova J, Musilek P, Filimonenkov K (2013) Quantification of gains and risks of static thermal rating based on typical meteorological year. Int J Electr Power Energy Syst 44(1):227–235CrossRef Heckenbergerova J, Musilek P, Filimonenkov K (2013) Quantification of gains and risks of static thermal rating based on typical meteorological year. Int J Electr Power Energy Syst 44(1):227–235CrossRef
35.
Zurück zum Zitat Dynamic line rating for overhead lines – V6, CE TSOs Current Practice, RGCE SPD WG, ENTSO-E (2015) Dynamic line rating for overhead lines – V6, CE TSOs Current Practice, RGCE SPD WG, ENTSO-E (2015)
36.
Zurück zum Zitat Heckenbergerova J, Musilek P, Filimonenkov K (2011) Assessment of seasonal static thermal ratings of overhead transmission conductors. In: Proceedings of the IEEE power and energy society general meeting, pp 1–8 Heckenbergerova J, Musilek P, Filimonenkov K (2011) Assessment of seasonal static thermal ratings of overhead transmission conductors. In: Proceedings of the IEEE power and energy society general meeting, pp 1–8
37.
Zurück zum Zitat Karimi S, Musilek P, Knight AM (2018) Dynamic thermal rating of transmission lines: a review. Renew Sustain Energy Rev 91:600–612CrossRef Karimi S, Musilek P, Knight AM (2018) Dynamic thermal rating of transmission lines: a review. Renew Sustain Energy Rev 91:600–612CrossRef
38.
Zurück zum Zitat Arroyo A, Castro P, Martinez R, Manana M, Madrazo A, Lecuna R, Gonzalez A (2015) Comparison between IEEE and CIGRE thermal behavior standards and measured temperature on a 132-kV overhead power line. Energies 8(12):13660–13671CrossRef Arroyo A, Castro P, Martinez R, Manana M, Madrazo A, Lecuna R, Gonzalez A (2015) Comparison between IEEE and CIGRE thermal behavior standards and measured temperature on a 132-kV overhead power line. Energies 8(12):13660–13671CrossRef
39.
Zurück zum Zitat Khaki M, Musilek P, Heckenbergerova J, Koval D (2010) Electric power system cost/loss optimization using dynamic thermal rating and linear programming. In: Proceedings of the IEEE electrical power and energy conference, pp 1–6 Khaki M, Musilek P, Heckenbergerova J, Koval D (2010) Electric power system cost/loss optimization using dynamic thermal rating and linear programming. In: Proceedings of the IEEE electrical power and energy conference, pp 1–6
40.
Zurück zum Zitat Heckenbergerova J, Hosek J (2012) Dynamic thermal rating of power transmission lines related to wind energy integration. In: Proceedings of the 11th international conference on environment and electrical engineering, pp 798–801 Heckenbergerova J, Hosek J (2012) Dynamic thermal rating of power transmission lines related to wind energy integration. In: Proceedings of the 11th international conference on environment and electrical engineering, pp 798–801
41.
Zurück zum Zitat Fu J, Morrow DJ, Abdelkader SM (2012) Integration of wind power into existing transmission network by dynamic overhead line rating. In: Proceedings of the 11th international workshop on large-scale integration of wind power into power systems, pp 1–5 Fu J, Morrow DJ, Abdelkader SM (2012) Integration of wind power into existing transmission network by dynamic overhead line rating. In: Proceedings of the 11th international workshop on large-scale integration of wind power into power systems, pp 1–5
42.
Zurück zum Zitat Spoor DJ, Roberts JP (2011) Development and experimental validation of a weather-based dynamic line rating system. In: Proceedings of the IEEE PES innovative smart grid technologies, pp 1–7 Spoor DJ, Roberts JP (2011) Development and experimental validation of a weather-based dynamic line rating system. In: Proceedings of the IEEE PES innovative smart grid technologies, pp 1–7
43.
Zurück zum Zitat Hosek J, Musilek P, Lozowski E, Pytlak P (2011) Effect of time resolution of meteorological inputs on dynamic thermal rating calculations. IET Gener Transm Distrib 5(9):941–947CrossRef Hosek J, Musilek P, Lozowski E, Pytlak P (2011) Effect of time resolution of meteorological inputs on dynamic thermal rating calculations. IET Gener Transm Distrib 5(9):941–947CrossRef
44.
Zurück zum Zitat Morrow DJ, Fu J, Abdelkader SM (2014) Experimentally validated partial least squares model for dynamic line rating. IET Renew Power Gener 8(3):260–268CrossRef Morrow DJ, Fu J, Abdelkader SM (2014) Experimentally validated partial least squares model for dynamic line rating. IET Renew Power Gener 8(3):260–268CrossRef
45.
Zurück zum Zitat Pytlak P, Musilek P, Lozowski E, Toth J (2011) Modelling precipitation cooling of overhead conductors. Electr Power Syst Res 81:2147–2154CrossRef Pytlak P, Musilek P, Lozowski E, Toth J (2011) Modelling precipitation cooling of overhead conductors. Electr Power Syst Res 81:2147–2154CrossRef
46.
Zurück zum Zitat Pytlak P, Musilek P, Doucet J (2011) Using Dynamic Thermal Rating systems to reduce power generation emissions. In: Proceedings of the IEEE power and energy society general meeting, pp 1–7 Pytlak P, Musilek P, Doucet J (2011) Using Dynamic Thermal Rating systems to reduce power generation emissions. In: Proceedings of the IEEE power and energy society general meeting, pp 1–7
47.
Zurück zum Zitat IEEE (2012) Standard for calculating the current-temperature relationship of bare overhead conductors., Std 738 IEEE (2012) Standard for calculating the current-temperature relationship of bare overhead conductors., Std 738
48.
Zurück zum Zitat CIGRE, Working Group 22.12 (2002) Thermal behaviour of overhead conductors, Technical Brochure 207 CIGRE, Working Group 22.12 (2002) Thermal behaviour of overhead conductors, Technical Brochure 207
49.
Zurück zum Zitat CIGRE, Working Group B2.43 (2014) Guide for thermal rating calculation of overhead lines, Technical Brochure 601 CIGRE, Working Group B2.43 (2014) Guide for thermal rating calculation of overhead lines, Technical Brochure 601
50.
Zurück zum Zitat Schmidt N (1999) Comparison between IEEE and CIGRE ampacity standards. IEEE Trans Power Deliv 14:1555–1559CrossRef Schmidt N (1999) Comparison between IEEE and CIGRE ampacity standards. IEEE Trans Power Deliv 14:1555–1559CrossRef
51.
Zurück zum Zitat Abbott S, Abdelkader S, Bryans L, Flynn D (2010) Experimental validation and comparison of IEEE and CIGRE dynamic line models. In: Proceedings of the 45th international universities power engineering conference (UPEC), pp 1–5 Abbott S, Abdelkader S, Bryans L, Flynn D (2010) Experimental validation and comparison of IEEE and CIGRE dynamic line models. In: Proceedings of the 45th international universities power engineering conference (UPEC), pp 1–5
52.
Zurück zum Zitat CIGRE, Working Group B2.36 (2012) Guide for application of direct real-time monitoring systems, Technical Brochure 498 CIGRE, Working Group B2.36 (2012) Guide for application of direct real-time monitoring systems, Technical Brochure 498
53.
Zurück zum Zitat CIGRE, Working Group B2.12 (2008) Alternating current (AC) resistance of helically stranded conductors, Technical Brochure 345 CIGRE, Working Group B2.12 (2008) Alternating current (AC) resistance of helically stranded conductors, Technical Brochure 345
54.
Zurück zum Zitat CIGRE, Task Force B2.12.3 (2016) Sag-Tension calculation methods for overhead lines, Technical Brochure 324 CIGRE, Task Force B2.12.3 (2016) Sag-Tension calculation methods for overhead lines, Technical Brochure 324
55.
Zurück zum Zitat CIGRE, Working Group B2.12 (2006) Guide for the selection of weather parameters for bare overhead conductor ratings, Technical Brochure 299 CIGRE, Working Group B2.12 (2006) Guide for the selection of weather parameters for bare overhead conductor ratings, Technical Brochure 299
56.
Zurück zum Zitat CIGRE, Working Group B2.12 (2004) Conductors for the uprating of overhead lines, Technical Brochure 244 CIGRE, Working Group B2.12 (2004) Conductors for the uprating of overhead lines, Technical Brochure 244
57.
Zurück zum Zitat Ding Y, Gao M, Li Y Wang TL, Ni HL, Liu XD, Chen Z, Zhan QH, Hu C (2016) The effect of calculated wind speed on the capacity of dynamic line rating. In: Proceedings of the IEEE international conference on high voltage engineering and application (ICHVE), pp 1–5 Ding Y, Gao M, Li Y Wang TL, Ni HL, Liu XD, Chen Z, Zhan QH, Hu C (2016) The effect of calculated wind speed on the capacity of dynamic line rating. In: Proceedings of the IEEE international conference on high voltage engineering and application (ICHVE), pp 1–5
58.
Zurück zum Zitat Maťko M, Michalovič P, Herman M (2015) Technical standard—the bare conductors of overhead lines (in Slovak) Maťko M, Michalovič P, Herman M (2015) Technical standard—the bare conductors of overhead lines (in Slovak)
59.
Zurück zum Zitat Stranded conductors drawn tubes (2016) Technical datasheet (in Slovak) Stranded conductors drawn tubes (2016) Technical datasheet (in Slovak)
60.
Zurück zum Zitat Bárta J, Brousil P (2007) Bare conductors for overhead lines of concentrically stranded round wires—CSN EN 50182 (in Czech) Bárta J, Brousil P (2007) Bare conductors for overhead lines of concentrically stranded round wires—CSN EN 50182 (in Czech)
Metadaten
Titel
Calculation of the overhead transmission line conductor temperature in real operating conditions
verfasst von
Ľubomír Beňa
Vladimír Gáll
Martin Kanálik
Michal Kolcun
Anastázia Margitová
Alexander Mészáros
Jakub Urbanský
Publikationsdatum
30.09.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Electrical Engineering / Ausgabe 2/2021
Print ISSN: 0948-7921
Elektronische ISSN: 1432-0487
DOI
https://doi.org/10.1007/s00202-020-01107-2

Weitere Artikel der Ausgabe 2/2021

Electrical Engineering 2/2021 Zur Ausgabe

Neuer Inhalt