Skip to main content

2015 | OriginalPaper | Buchkapitel

3. Cancer Chemotherapy for Heterogeneous Tumor Cell Populations and Drug Resistance

verfasst von : Heinz Schättler, Urszula Ledzewicz

Erschienen in: Optimal Control for Mathematical Models of Cancer Therapies

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The results of the previous chapter are consistent with the classical MTD paradigm in medicine: give as much of the drug as possible immediately. This makes perfect sense in many situations: cancer is a widely symptomless disease which, once finally detected, often is in an advanced stage where immediate action is required. Then the aim simply is to be as toxic as possible to the cancerous cells. However, this presumes that cells can be killed, i.e., that the tumor population consists of chemotherapeutically sensitive cells. Malignant cancer cell populations on the other hand are often highly genetically unstable and coupled with fast proliferation rates; this leads to a great variety in the structure of the cells within one tumor—the number of genetic errors present within one cancer cell can lie in the thousands [220]. Consequently, many tumors consist of heterogeneous agglomerations of subpopulations of cells that show widely varying sensitivities toward the actions of a particular chemotherapeutic agent [104, 107]. Coupled with the fact that growing tumors also exhibit considerable evolutionary ability to enhance cell survival in an environment that is becoming hostile, this leads to multi-drug resistance of some strains of the cells. Naturally, it makes sense to combine drugs with different activation mechanisms to reach a larger population of the tumor cells—and this is what is being done—but the sad fact remains that some cells develop multi-drug resistance to a wide variety of even structurally unrelated drugs. There may even exist subpopulations of cells that are not sensitive to the treatment from the beginning (ab initio, intrinsic resistance). For certain types of cancer cells, there are simply no effective agents known.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
7.
Zurück zum Zitat K. Alitalo, Amplification of cellular oncogenes in cancer cells, Trends Biochemical Science, 10 (1985), pp. 194–197.CrossRef K. Alitalo, Amplification of cellular oncogenes in cancer cells, Trends Biochemical Science, 10 (1985), pp. 194–197.CrossRef
16.
Zurück zum Zitat J. Bellmunt, J.M. Trigo, E. Calvo, J. Carles, J.L. Pérez-Garcia, J.A. Virizuela, R. Lopez, M. Lázaro and J. Albanell, Activity of a multi-targeted chemo-switch regimen (sorafenib, gemcitabine, and metronomic capecitabine) in metastatic renal-cell carcinoma: a phase-2 study (SOGUG-02-06), Lancet Oncology, 2010. J. Bellmunt, J.M. Trigo, E. Calvo, J. Carles, J.L. Pérez-Garcia, J.A. Virizuela, R. Lopez, M. Lázaro and J. Albanell, Activity of a multi-targeted chemo-switch regimen (sorafenib, gemcitabine, and metronomic capecitabine) in metastatic renal-cell carcinoma: a phase-2 study (SOGUG-02-06), Lancet Oncology, 2010.
60.
Zurück zum Zitat A.J. Coldman and J.H. Goldie, A model for the resistance of tumor cells to cancer chemotherapeutic agents, Mathematical Biosciences, 65, (1983), pp. 291–307.MATHCrossRef A.J. Coldman and J.H. Goldie, A model for the resistance of tumor cells to cancer chemotherapeutic agents, Mathematical Biosciences, 65, (1983), pp. 291–307.MATHCrossRef
61.
Zurück zum Zitat A.J. Coldman and J.H. Goldie, A stochastic model for the origin and treatment of tumors containing drug-resistant cells, Bulletin of Mathematical Biology, 48, (1986), pp. 279–292.G A.J. Coldman and J.H. Goldie, A stochastic model for the origin and treatment of tumors containing drug-resistant cells, Bulletin of Mathematical Biology, 48, (1986), pp. 279–292.G
64.
Zurück zum Zitat M.I.S. Costa, J.L. Boldrini and R.C. Bassanezi, Drug kinetics and drug resistance in optimal chemotherapy, Mathematical Biosciences, 125, (1995), pp. 191–209.MATHCrossRef M.I.S. Costa, J.L. Boldrini and R.C. Bassanezi, Drug kinetics and drug resistance in optimal chemotherapy, Mathematical Biosciences, 125, (1995), pp. 191–209.MATHCrossRef
74.
Zurück zum Zitat M. Eisen, Mathematical Models in Cell Biology and Cancer Chemotherapy, Lecture Notes in Biomathematics, Vol. 30, Springer Verlag, Berlin, 1979.CrossRef M. Eisen, Mathematical Models in Cell Biology and Cancer Chemotherapy, Lecture Notes in Biomathematics, Vol. 30, Springer Verlag, Berlin, 1979.CrossRef
102.
Zurück zum Zitat R.A. Gatenby, A.S. Silva, R.J. Gillies, and B.R. Frieden, Adaptive therapy, Cancer Research, 69, 4894–4903, (2009).CrossRef R.A. Gatenby, A.S. Silva, R.J. Gillies, and B.R. Frieden, Adaptive therapy, Cancer Research, 69, 4894–4903, (2009).CrossRef
103.
Zurück zum Zitat H. Gardner-Moyer, Sufficient conditions for a strong minimum in singular control problems, SIAM J. Control, 11 (1973), pp. 620–636.MathSciNetCrossRef H. Gardner-Moyer, Sufficient conditions for a strong minimum in singular control problems, SIAM J. Control, 11 (1973), pp. 620–636.MathSciNetCrossRef
104.
Zurück zum Zitat J.H. Goldie, Drug resistance in cancer: a perspective, Cancer and Metastasis Review, 20, (2001), pp. 63–68.CrossRef J.H. Goldie, Drug resistance in cancer: a perspective, Cancer and Metastasis Review, 20, (2001), pp. 63–68.CrossRef
105.
Zurück zum Zitat J.H. Goldie and A. Coldman, A model for resistance of tumor cells to cancer chemotherapeutic agents, Mathematical Biosciences, 65, (1983), pp. 291–307.MATHCrossRef J.H. Goldie and A. Coldman, A model for resistance of tumor cells to cancer chemotherapeutic agents, Mathematical Biosciences, 65, (1983), pp. 291–307.MATHCrossRef
106.
Zurück zum Zitat J.H. Goldie and A. Coldman, Quantitative model for multiple levels of drug resistance in clinical tumors, Cancer Treatment Reports, 67, (1983), pp. 923–931. J.H. Goldie and A. Coldman, Quantitative model for multiple levels of drug resistance in clinical tumors, Cancer Treatment Reports, 67, (1983), pp. 923–931.
107.
Zurück zum Zitat J.H. Goldie and A. Coldman, Drug Resistance in Cancer, Cambridge University Press, 1998. J.H. Goldie and A. Coldman, Drug Resistance in Cancer, Cambridge University Press, 1998.
108.
Zurück zum Zitat R. Goodman, Introduction to Stochastic Models, Benjamin Cummings, Menlo Park, CA, 1988. R. Goodman, Introduction to Stochastic Models, Benjamin Cummings, Menlo Park, CA, 1988.
109.
Zurück zum Zitat R. Grantab, S. Sivananthan and I.F. Tannock, The penetration of anticancer drugs through tumor tissue as a function of cellular adhesion and packing density of tumor cells, Cancer Research, 66, (2006), pp. 1033–1039.CrossRef R. Grantab, S. Sivananthan and I.F. Tannock, The penetration of anticancer drugs through tumor tissue as a function of cellular adhesion and packing density of tumor cells, Cancer Research, 66, (2006), pp. 1033–1039.CrossRef
110.
Zurück zum Zitat J. Greene, O. Lavi, M.M. Gottesman and D. Levy, The impact of cell density and mutations in a model of multidrug resistance in solid tumors, Bulletin of Mathematical Biology, 74, (2014), pp. 627–653, doi:10.1007/s11538-014-9936-8.MathSciNetCrossRef J. Greene, O. Lavi, M.M. Gottesman and D. Levy, The impact of cell density and mutations in a model of multidrug resistance in solid tumors, Bulletin of Mathematical Biology, 74, (2014), pp. 627–653, doi:10.1007/s11538-014-9936-8.MathSciNetCrossRef
115.
Zurück zum Zitat P. Hahnfeldt and L. Hlatky, Cell resensitization during protracted dosing of heterogeneous cell populations, Radiation Research, 150, (1998), pp. 681–687.CrossRef P. Hahnfeldt and L. Hlatky, Cell resensitization during protracted dosing of heterogeneous cell populations, Radiation Research, 150, (1998), pp. 681–687.CrossRef
122.
Zurück zum Zitat L.E. Harnevo and Z. Agur, The dynamics of gene amplification described as a multitype compartmental model and as a branching process, Mathematical Biosciences, 103 (1991), pp. 115–138.MATHMathSciNetCrossRef L.E. Harnevo and Z. Agur, The dynamics of gene amplification described as a multitype compartmental model and as a branching process, Mathematical Biosciences, 103 (1991), pp. 115–138.MATHMathSciNetCrossRef
123.
Zurück zum Zitat L.E. Harnevo and Z. Agur, Drug resistance as a dynamic process in a model for multistep gene amplification under various levels of selection stringency, Cancer Chemotherapy and Pharmacology, 30, (1992), pp. 469–476.CrossRef L.E. Harnevo and Z. Agur, Drug resistance as a dynamic process in a model for multistep gene amplification under various levels of selection stringency, Cancer Chemotherapy and Pharmacology, 30, (1992), pp. 469–476.CrossRef
130.
Zurück zum Zitat T.L. Jackson and H. Byrne, A mathematical model to study the effects of drug resistance and vascularization on the response of solid tumors to chemotherapy, Mathematical Biosciences, 164, (2000), pp. 17–38.MATHMathSciNetCrossRef T.L. Jackson and H. Byrne, A mathematical model to study the effects of drug resistance and vascularization on the response of solid tumors to chemotherapy, Mathematical Biosciences, 164, (2000), pp. 17–38.MATHMathSciNetCrossRef
135.
Zurück zum Zitat S. Karlin and H.M. Taylor, A First Course in Stochastic Processes, Academic Press, San Diego, 1975.MATH S. Karlin and H.M. Taylor, A First Course in Stochastic Processes, Academic Press, San Diego, 1975.MATH
148.
Zurück zum Zitat M. Kimmel and D.E. Axelrod, Mathematical models of gene amplification with applications to cellular drug resistance and tumorigenicity, Genetics, 125 (1990), pp. 633–644. M. Kimmel and D.E. Axelrod, Mathematical models of gene amplification with applications to cellular drug resistance and tumorigenicity, Genetics, 125 (1990), pp. 633–644.
153.
Zurück zum Zitat M. Kimmel and A. Swierniak, Control theory approach to cancer chemotherapy: benefiting from phase dependence and overcoming drug resistance, in: Tutorials in Mathematical Biosciences III: Cell Cycle, Proliferation, and Cancer, A. Friedman, ed., Lecture Notes in Mathematics, Vol. 1872, Springer, New York, (2006), pp. 185-221. M. Kimmel and A. Swierniak, Control theory approach to cancer chemotherapy: benefiting from phase dependence and overcoming drug resistance, in: Tutorials in Mathematical Biosciences III: Cell Cycle, Proliferation, and Cancer, A. Friedman, ed., Lecture Notes in Mathematics, Vol. 1872, Springer, New York, (2006), pp. 185-221.
173.
Zurück zum Zitat O. Lavi, J. Greene, D. Levy, and M. Gottesman, The role of cell density and intratumoral heterogeneity in multidrug resistance, Cancer Research, 73, (2013), pp. 7168–7175.CrossRef O. Lavi, J. Greene, D. Levy, and M. Gottesman, The role of cell density and intratumoral heterogeneity in multidrug resistance, Cancer Research, 73, (2013), pp. 7168–7175.CrossRef
198.
Zurück zum Zitat U. Ledzewicz and H. Schättler, Drug resistance in cancer chemotherapy as an optimal control problem, Discrete and Continuous Dynamical Systems, Series B, 6, (2006), pp. 129–150. U. Ledzewicz and H. Schättler, Drug resistance in cancer chemotherapy as an optimal control problem, Discrete and Continuous Dynamical Systems, Series B, 6, (2006), pp. 129–150.
215.
Zurück zum Zitat U. Ledzewicz, H. Schättler, M. Reisi Gahrooi and S. Mahmoudian Dehkordi, On the MTD paradigm and optimal control for multi-drug cancer chemotherapy, Mathematical Biosciences and Engineering (MBE), 10(3), (2013), pp. 803–819, doi:10.3934/mbe.2013.10.803. U. Ledzewicz, H. Schättler, M. Reisi Gahrooi and S. Mahmoudian Dehkordi, On the MTD paradigm and optimal control for multi-drug cancer chemotherapy, Mathematical Biosciences and Engineering (MBE), 10(3), (2013), pp. 803–819, doi:10.3934/mbe.2013.10.803.
220.
Zurück zum Zitat L.A. Loeb, A mutator phenotype in cancer, Cancer Research, 61, (2001), pp. 3230–3239. L.A. Loeb, A mutator phenotype in cancer, Cancer Research, 61, (2001), pp. 3230–3239.
221.
Zurück zum Zitat A. Lorz, T. Lorenzi, M.E. Hochberg, J. Clairambault and B. Perthame, Population adaptive evolution, chemotherapeutic resistance and multiple anti-cancer therapies, ESAIM: Mathematical Modelling and Numerical Analysis, 47, (2013) pp. 377-399, doi:10.1051/m2an/2012031.MATHMathSciNetCrossRef A. Lorz, T. Lorenzi, M.E. Hochberg, J. Clairambault and B. Perthame, Population adaptive evolution, chemotherapeutic resistance and multiple anti-cancer therapies, ESAIM: Mathematical Modelling and Numerical Analysis, 47, (2013) pp. 377-399, doi:10.1051/m2an/2012031.MATHMathSciNetCrossRef
222.
Zurück zum Zitat A. Lorz, T. Lorenzi, J. Clairambault, A. Escargueil and B. Perthame, Effects of space structure and combination therapies on phenotypic heterogeneity and drug resistance in solid tumors, preprint A. Lorz, T. Lorenzi, J. Clairambault, A. Escargueil and B. Perthame, Effects of space structure and combination therapies on phenotypic heterogeneity and drug resistance in solid tumors, preprint
229.
Zurück zum Zitat R.B. Martin, Optimal control drug scheduling of cancer chemotherapy, Automatica, 28, (1992), pp. 1113–1123.CrossRef R.B. Martin, Optimal control drug scheduling of cancer chemotherapy, Automatica, 28, (1992), pp. 1113–1123.CrossRef
244.
Zurück zum Zitat L. Norton and R. Simon, Growth curve of an experimental solid tumor following radiotherapy, J. of the National Cancer Institute, 58, (1977), pp. 1735–1741. L. Norton and R. Simon, Growth curve of an experimental solid tumor following radiotherapy, J. of the National Cancer Institute, 58, (1977), pp. 1735–1741.
245.
Zurück zum Zitat L. Norton and R. Simon, Tumor size, sensitivity to therapy, and design of treatment schedules, Cancer Treatment Reports, 61, (1977), pp. 1307–1317. L. Norton and R. Simon, Tumor size, sensitivity to therapy, and design of treatment schedules, Cancer Treatment Reports, 61, (1977), pp. 1307–1317.
246.
Zurück zum Zitat L. Norton and R. Simon, The Norton-Simon hypothesis revisited, Cancer Treatment Reports, 70, (1986), pp. 41–61. L. Norton and R. Simon, The Norton-Simon hypothesis revisited, Cancer Treatment Reports, 70, (1986), pp. 41–61.
277.
Zurück zum Zitat K. Pietras and D. Hanahan, A multi-targeted, metronomic and maximum tolerated dose “chemo-switch” regimen is antiangiogenic, producing objective responses and survival benefit in a mouse model of cancer, J. of Clinical Oncology, 23, (2005), pp. 939–952.CrossRef K. Pietras and D. Hanahan, A multi-targeted, metronomic and maximum tolerated dose “chemo-switch” regimen is antiangiogenic, producing objective responses and survival benefit in a mouse model of cancer, J. of Clinical Oncology, 23, (2005), pp. 939–952.CrossRef
296.
Zurück zum Zitat R.T. Schimke, Gene amplification, drug resistance and cancer, Cancer Research, 44, (1984), pp. 1735–1742. R.T. Schimke, Gene amplification, drug resistance and cancer, Cancer Research, 44, (1984), pp. 1735–1742.
324.
Zurück zum Zitat A. Swierniak, A. Polanski, M. Kimmel, A. Bobrowski and J. Smieja, Qualitative analysis of controlled drug resistance model - inverse Laplace and semigroup approach, Control and Cybernetics, 28, (1999), pp. 61–75.MATH A. Swierniak, A. Polanski, M. Kimmel, A. Bobrowski and J. Smieja, Qualitative analysis of controlled drug resistance model - inverse Laplace and semigroup approach, Control and Cybernetics, 28, (1999), pp. 61–75.MATH
325.
Zurück zum Zitat A. Swierniak and J. Smieja, Cancer chemotherapy optimization under evolving drug resistance, Nonlinear Analysis, 47, (2000), pp. 375–386.MathSciNetCrossRef A. Swierniak and J. Smieja, Cancer chemotherapy optimization under evolving drug resistance, Nonlinear Analysis, 47, (2000), pp. 375–386.MathSciNetCrossRef
331.
Zurück zum Zitat C. Tomasetti and D. Levy, An elementary approach to modeling drug resistance in cancer, Mathematical Biosciences and Engineering, 7, (2010), pp. 905–918.MATHMathSciNetCrossRef C. Tomasetti and D. Levy, An elementary approach to modeling drug resistance in cancer, Mathematical Biosciences and Engineering, 7, (2010), pp. 905–918.MATHMathSciNetCrossRef
Metadaten
Titel
Cancer Chemotherapy for Heterogeneous Tumor Cell Populations and Drug Resistance
verfasst von
Heinz Schättler
Urszula Ledzewicz
Copyright-Jahr
2015
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4939-2972-6_3

Premium Partner