Skip to main content

2015 | OriginalPaper | Buchkapitel

2. Cell Cycle Specific Cancer Chemotherapy for Homogeneous Tumors

verfasst von : Heinz Schättler, Urszula Ledzewicz

Erschienen in: Optimal Control for Mathematical Models of Cancer Therapies

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this chapter, we analyze a class of cell cycle specific compartmental models for cancer chemotherapy. Besides drug resistance, cell cycle specificity of drugs is viewed as one of the major obstacles against successful chemotherapy [83, 52]. By considering the phases of the cell cycle separately, it is possible to appropriately model the different actions of various drugs involved. A first such model was introduced for leukemia in the work of Kimmel and Swierniak [150] and later has been expanded greatly in the work by Swierniak and his co-workers (e.g., see [313, 321, 322, 323, 324] and many more).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Even if we just consider the problem of minimizing a function f, it is not possible to determine the local optimality of a critical point x (i.e., \(f^{{\prime}}(x_{{\ast}}) = 0\)) from just the knowledge of the critical point itself, but we need to understand the behavior of the function f over a neighborhood of x , as, for example, it can be gained from the fact that the second derivative \(f^{{\prime\prime}}(x_{{\ast}})\) does not vanish. The construction of a family of extremals serves this purpose.
 
2
The ω-limit set of a positive semi-trajectory \((x(t; x_{0},z_{0}),z(t; x_{0},z_{0}))\) is the set of all accumulation points of this trajectory as \(t \rightarrow \infty\).
 
Literatur
6.
Zurück zum Zitat M.R. Alison and C.E. Sarraf, Understanding Cancer-From Basic Science to Clinical Practice, Cambridge University Press, 1997. M.R. Alison and C.E. Sarraf, Understanding Cancer-From Basic Science to Clinical Practice, Cambridge University Press, 1997.
10.
Zurück zum Zitat M. Andreef, A. Tafuri, P. Bettelheim, P. Valent, E. Estey, R. Lemoli, A. Goodacre, B. Clarkson, F. Mandelli, and A. Deisseroth, Cytokinetic resistance in acute leukemia: Recombinant human granulocyte colony-stimulating factor, granulocyte macrophage colony stimulating factor, interleukin 3 and stem cell factor effects in vitro and clinical trials with granulocyte macrophage colony stimulating factor, Haematolology and Blood Transfusion,4, (1992), pp. 108-117. M. Andreef, A. Tafuri, P. Bettelheim, P. Valent, E. Estey, R. Lemoli, A. Goodacre, B. Clarkson, F. Mandelli, and A. Deisseroth, Cytokinetic resistance in acute leukemia: Recombinant human granulocyte colony-stimulating factor, granulocyte macrophage colony stimulating factor, interleukin 3 and stem cell factor effects in vitro and clinical trials with granulocyte macrophage colony stimulating factor, Haematolology and Blood Transfusion,4, (1992), pp. 108-117.
31.
Zurück zum Zitat B. Bonnard and M. Chyba, Singular Trajectories and their Role in Control Theory, Springer, Series: Mathematics and Applications, Vol. 40, 2003. B. Bonnard and M. Chyba, Singular Trajectories and their Role in Control Theory, Springer, Series: Mathematics and Applications, Vol. 40, 2003.
51.
52.
Zurück zum Zitat B.A. Chabner and D.L. Longo, Cancer Chemotherapy and Biotherapy, Lippencott-Raven, 1996. B.A. Chabner and D.L. Longo, Cancer Chemotherapy and Biotherapy, Lippencott-Raven, 1996.
58.
Zurück zum Zitat S.E. Clare, F. Nahlis, J.C. Panetta, Molecular biology of breast cancer metastasis. The use of mathematical models to determine relapse and to predict response to chemotherapy in breast cancer, Breast Cancer Res., 2, (2000), pp. 396–399. S.E. Clare, F. Nahlis, J.C. Panetta, Molecular biology of breast cancer metastasis. The use of mathematical models to determine relapse and to predict response to chemotherapy in breast cancer, Breast Cancer Res., 2, (2000), pp. 396–399.
62.
Zurück zum Zitat L.P. Coly, D.W. van Bekkum and A. Hagenbeek, Enhanced tumor load reduction after chemotherapy induced recruitment and synchronization in a slowly growing rat leukemia model (BNML) for human acute myelonic leukemia, Leukemia Research, 8, (1984), pp. 953–963.CrossRef L.P. Coly, D.W. van Bekkum and A. Hagenbeek, Enhanced tumor load reduction after chemotherapy induced recruitment and synchronization in a slowly growing rat leukemia model (BNML) for human acute myelonic leukemia, Leukemia Research, 8, (1984), pp. 953–963.CrossRef
68.
Zurück zum Zitat B.F. Dibrov, A.M. Zhabotinsky, A. Yu, M.P. Orlova, Mathematical model of hydroxyurea effects on cell populations in vivo (in Russian), Chem-Pharm J., 20, (1986), pp. 147–153. B.F. Dibrov, A.M. Zhabotinsky, A. Yu, M.P. Orlova, Mathematical model of hydroxyurea effects on cell populations in vivo (in Russian), Chem-Pharm J., 20, (1986), pp. 147–153.
70.
Zurück zum Zitat Z. Duda, A gradient method for application of chemotherapy models, J. of Biological Systems, 3, (1995), pp. 3–11. Z. Duda, A gradient method for application of chemotherapy models, J. of Biological Systems, 3, (1995), pp. 3–11.
71.
Zurück zum Zitat Z. Duda, Numerical solutions to bilinear models arising in cancer chemotherapy, Nonlinear World, 4, (1997), pp. 53–72.MATHMathSciNet Z. Duda, Numerical solutions to bilinear models arising in cancer chemotherapy, Nonlinear World, 4, (1997), pp. 53–72.MATHMathSciNet
73.
Zurück zum Zitat R. Eidukevicius, D. Characiejus, R. Janavicius, N. Kazlauskaite, V. Pasukoniene, M. Mauricas and W.D. Otter, A method to estimate cell cycle time and growth fraction using bromodeoxyuridine-flow cytometry data from a single sample, BMC Cancer, (2006), 6:184. R. Eidukevicius, D. Characiejus, R. Janavicius, N. Kazlauskaite, V. Pasukoniene, M. Mauricas and W.D. Otter, A method to estimate cell cycle time and growth fraction using bromodeoxyuridine-flow cytometry data from a single sample, BMC Cancer, (2006), 6:184.
76.
Zurück zum Zitat D. Elliott, Bilinear Control Systems - Matrices in Action, Applied Mathematical Sciences, Vol. 169, Springer, New York, 2009.CrossRef D. Elliott, Bilinear Control Systems - Matrices in Action, Applied Mathematical Sciences, Vol. 169, Springer, New York, 2009.CrossRef
83.
Zurück zum Zitat K.R. Fister and J.C. Panetta, Optimal control applied to cell-cycle-specific cancer chemotherapy, SIAM J. of Applied Mathematics, 60, (2000), pp. 1059–1072.MATHMathSciNetCrossRef K.R. Fister and J.C. Panetta, Optimal control applied to cell-cycle-specific cancer chemotherapy, SIAM J. of Applied Mathematics, 60, (2000), pp. 1059–1072.MATHMathSciNetCrossRef
128.
Zurück zum Zitat L. Holmgren, M.S. OReilly and J. Folkman, Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression, Nature Medicine, 1, (1995), pp. 149–153. L. Holmgren, M.S. OReilly and J. Folkman, Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression, Nature Medicine, 1, (1995), pp. 149–153.
145.
Zurück zum Zitat H.K. Khalil, Nonlinear Systems, 3rd. ed. Prentice Hall, 2002. H.K. Khalil, Nonlinear Systems, 3rd. ed. Prentice Hall, 2002.
150.
Zurück zum Zitat M. Kimmel and A. Swierniak, An optimal control problem related to leukemia chemotherapy, Scientific Bulletins of the Silesian Technical University, 65, (1983), pp. 120–130. M. Kimmel and A. Swierniak, An optimal control problem related to leukemia chemotherapy, Scientific Bulletins of the Silesian Technical University, 65, (1983), pp. 120–130.
169.
Zurück zum Zitat E.L. Korn, S.G. Arbuck, J.M. Pluda, R. Simon, R.S. Kaplan and M.C. Christian, Clinical trial designs for cytostatic agents: are new approaches needed? J. Clinical Oncology, 19, (2001), pp. 265–272. E.L. Korn, S.G. Arbuck, J.M. Pluda, R. Simon, R.S. Kaplan and M.C. Christian, Clinical trial designs for cytostatic agents: are new approaches needed? J. Clinical Oncology, 19, (2001), pp. 265–272.
172.
Zurück zum Zitat B.C. Lampkin, T. Nagao and A.M. Mauer, Synchronization and recruitment in acute leukemia, J. of Clinical Investigations, 50, (1971), pp. 2204–2214.CrossRef B.C. Lampkin, T. Nagao and A.M. Mauer, Synchronization and recruitment in acute leukemia, J. of Clinical Investigations, 50, (1971), pp. 2204–2214.CrossRef
215.
Zurück zum Zitat U. Ledzewicz, H. Schättler, M. Reisi Gahrooi and S. Mahmoudian Dehkordi, On the MTD paradigm and optimal control for multi-drug cancer chemotherapy, Mathematical Biosciences and Engineering (MBE), 10(3), (2013), pp. 803–819, doi:10.3934/mbe.2013.10.803. U. Ledzewicz, H. Schättler, M. Reisi Gahrooi and S. Mahmoudian Dehkordi, On the MTD paradigm and optimal control for multi-drug cancer chemotherapy, Mathematical Biosciences and Engineering (MBE), 10(3), (2013), pp. 803–819, doi:10.3934/mbe.2013.10.803.
219.
Zurück zum Zitat P. Lista, M.F. Brizzi, G. Avanzi, F. Veglia, L. Resegotti and L. Pegoraro, Induction of proliferation of acute myeloblastic leukemia (AML) cells with hemopoietic growth factors, Leukemia Research, 12, (1988), pp. 441–447.CrossRef P. Lista, M.F. Brizzi, G. Avanzi, F. Veglia, L. Resegotti and L. Pegoraro, Induction of proliferation of acute myeloblastic leukemia (AML) cells with hemopoietic growth factors, Leukemia Research, 12, (1988), pp. 441–447.CrossRef
223.
Zurück zum Zitat A.P. Lyss, Enzymes and random synthetics, in: Chemotherapy Source Book, (M.C. Perry ed., 1992), Williams & Wilkins, Baltimore, pp. 403–408. A.P. Lyss, Enzymes and random synthetics, in: Chemotherapy Source Book, (M.C. Perry ed., 1992), Williams & Wilkins, Baltimore, pp. 403–408.
224.
Zurück zum Zitat K.J. Luzzi, I.C. MacDonald, E.E. Schmidt, N. Kerkvliet, V.L. Morris, A.F. Chambers, A.C. Groom, Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases, American J. of Pathology, 153, (1998), pp. 865–873.CrossRef K.J. Luzzi, I.C. MacDonald, E.E. Schmidt, N. Kerkvliet, V.L. Morris, A.F. Chambers, A.C. Groom, Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases, American J. of Pathology, 153, (1998), pp. 865–873.CrossRef
233.
Zurück zum Zitat A.M. Mauer, S.B. Murphy and F.A. Hayes, Evidence for recruitment and synchronization in leukemia and solid tumors, Cancer Treatment Reports, 60, (1976), pp. 1841–1844. A.M. Mauer, S.B. Murphy and F.A. Hayes, Evidence for recruitment and synchronization in leukemia and solid tumors, Cancer Treatment Reports, 60, (1976), pp. 1841–1844.
237.
Zurück zum Zitat E. Mehrara, E. Forssell-Aronsson, H. Ahlman, and P. Bernhardt, Specific growth rate versus doubling time for quantitative characterization of tumor growth rate, Cancer Research, 67, (2007), pp. 3970–3975.CrossRef E. Mehrara, E. Forssell-Aronsson, H. Ahlman, and P. Bernhardt, Specific growth rate versus doubling time for quantitative characterization of tumor growth rate, Cancer Research, 67, (2007), pp. 3970–3975.CrossRef
282.
Zurück zum Zitat L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze and E.F. Mishchenko, The Mathematical Theory of Optimal Processes, MacMillan, New York, 1964.MATH L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze and E.F. Mishchenko, The Mathematical Theory of Optimal Processes, MacMillan, New York, 1964.MATH
292.
305.
Zurück zum Zitat J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, Springer-Verlag, New York, 1990. J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, Springer-Verlag, New York, 1990.
313.
Zurück zum Zitat A. Swierniak, Cell cycle as an object of control, Journal of Biological Systems, 3, (1995), pp. 41–54.CrossRef A. Swierniak, Cell cycle as an object of control, Journal of Biological Systems, 3, (1995), pp. 41–54.CrossRef
317.
Zurück zum Zitat A. Swierniak and Z. Duda, Singularity of optimal control in some problems related to optimal chemotherapy, Mathematical and Computational Modelling, 19, (1994), pp. 255–262.MATHCrossRef A. Swierniak and Z. Duda, Singularity of optimal control in some problems related to optimal chemotherapy, Mathematical and Computational Modelling, 19, (1994), pp. 255–262.MATHCrossRef
321.
Zurück zum Zitat A. Swierniak, U. Ledzewicz and H. Schättler, Optimal control for a class of compartmental models in cancer chemotherapy, Int. J. Applied Mathematics and Computer Science, 13, (2003), pp. 357–368.MATH A. Swierniak, U. Ledzewicz and H. Schättler, Optimal control for a class of compartmental models in cancer chemotherapy, Int. J. Applied Mathematics and Computer Science, 13, (2003), pp. 357–368.MATH
322.
Zurück zum Zitat A. Swierniak, A. Polanski and Z. Duda, “Strange” phenomena in simulation of optimal control problems arising in cancer chemotherapy, Proc. of the 8th Prague Symposium on Computer Simulation in Biology, Ecology and Medicine, (1992), pp. 58–62. A. Swierniak, A. Polanski and Z. Duda, “Strange” phenomena in simulation of optimal control problems arising in cancer chemotherapy, Proc. of the 8th Prague Symposium on Computer Simulation in Biology, Ecology and Medicine, (1992), pp. 58–62.
323.
Zurück zum Zitat A. Swierniak, A. Polanski and M. Kimmel, Optimal control problems arising in cell-cycle-specific cancer chemotherapy, Cell proliferation, 29, (1996), pp. 117–139.CrossRef A. Swierniak, A. Polanski and M. Kimmel, Optimal control problems arising in cell-cycle-specific cancer chemotherapy, Cell proliferation, 29, (1996), pp. 117–139.CrossRef
324.
Zurück zum Zitat A. Swierniak, A. Polanski, M. Kimmel, A. Bobrowski and J. Smieja, Qualitative analysis of controlled drug resistance model - inverse Laplace and semigroup approach, Control and Cybernetics, 28, (1999), pp. 61–75.MATH A. Swierniak, A. Polanski, M. Kimmel, A. Bobrowski and J. Smieja, Qualitative analysis of controlled drug resistance model - inverse Laplace and semigroup approach, Control and Cybernetics, 28, (1999), pp. 61–75.MATH
326.
Zurück zum Zitat A. Tafuri and M. Andreeff, Kinetic rationale for cytokine-induced recruitment of myeloblastic leukemia followed by cycle-specific chemotherapy in vitro, Leukemia, 4, (1990), pp. 826–834. A. Tafuri and M. Andreeff, Kinetic rationale for cytokine-induced recruitment of myeloblastic leukemia followed by cycle-specific chemotherapy in vitro, Leukemia, 4, (1990), pp. 826–834.
Metadaten
Titel
Cell Cycle Specific Cancer Chemotherapy for Homogeneous Tumors
verfasst von
Heinz Schättler
Urszula Ledzewicz
Copyright-Jahr
2015
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4939-2972-6_2

Premium Partner