Skip to main content

2021 | OriginalPaper | Buchkapitel

Catalytic Conversion of Biomass-Derived Glycerol to Value-Added Chemicals

verfasst von : Kushanava Bhaduri, Anindya Ghosh, Biswajit Chowdhury

Erschienen in: Catalysis for Clean Energy and Environmental Sustainability

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the scenario of fossil fuel depletion, the promotion of renewable energy like biodiesel has intensified research. Due to this, another significant challenge has emerged which is to deal with the surplus by-product glycerol. In order to address the issue, production of value-added chemicals from glycerol is an efficient alternative pathway. Thus the renewability, bioavailability and exclusive structure of glycerol make it an appropriately attractive starting material for producing a broad number of crucial chemicals. Here in this chapter, we have reviewed the catalytic conversion of glycerol in terms of oxidation, dehydration, carbonylation, esterification and acetalization and kept our focus on products like acrylic acid, acrolein, glycerol carbonate, glycerol acetins and solketal, respectively. Recent studies regarding catalysts, reaction parameters and plausible pathways are discussed in detail.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Sudarsanam P, Peeters E, Makshina EV, Parvulescu V, Sels BF (2018) Advances in porous and nanoscale catalysts for viable biomass conversion. Chem Soc Rev 48:2366–2421CrossRef Sudarsanam P, Peeters E, Makshina EV, Parvulescu V, Sels BF (2018) Advances in porous and nanoscale catalysts for viable biomass conversion. Chem Soc Rev 48:2366–2421CrossRef
2.
Zurück zum Zitat Wang T, Noltea MW, Shanks BH (2013) Catalytic dehydration of C6 carbohydrates for the production of hydroxymethylfurfural (HMF) as a versatile platform chemical. Green Chem 16:548–572CrossRef Wang T, Noltea MW, Shanks BH (2013) Catalytic dehydration of C6 carbohydrates for the production of hydroxymethylfurfural (HMF) as a versatile platform chemical. Green Chem 16:548–572CrossRef
3.
Zurück zum Zitat Chheda JN, Huber GW, Dumesic JA (2007) Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. Angew Chem Int Ed 46:7164–7183CrossRef Chheda JN, Huber GW, Dumesic JA (2007) Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. Angew Chem Int Ed 46:7164–7183CrossRef
4.
Zurück zum Zitat Christensen CH, Rass-Hansen J, Marsden CC, Taarning E, Egeblad K (2008) The Renewable Chemicals Industry. ChemSusChem 1:283–289CrossRef Christensen CH, Rass-Hansen J, Marsden CC, Taarning E, Egeblad K (2008) The Renewable Chemicals Industry. ChemSusChem 1:283–289CrossRef
5.
Zurück zum Zitat Yang CY, Fang Z, Li B, Long YF (2012) Review and prospects of Jatropha biodiesel industry in China. Renew Sust Energ Rev 16:2178–2190CrossRef Yang CY, Fang Z, Li B, Long YF (2012) Review and prospects of Jatropha biodiesel industry in China. Renew Sust Energ Rev 16:2178–2190CrossRef
6.
Zurück zum Zitat Knothe G, Razon LF (2017) Biodiesel fuels. Prog Energy Combust Sci 58:36–59CrossRef Knothe G, Razon LF (2017) Biodiesel fuels. Prog Energy Combust Sci 58:36–59CrossRef
7.
Zurück zum Zitat Fan X, Burton R (2009) Recent development of biodiesel feedstocks and the applications of glycerol: a review. Open Fuels Energ Sci J 2:100–109CrossRef Fan X, Burton R (2009) Recent development of biodiesel feedstocks and the applications of glycerol: a review. Open Fuels Energ Sci J 2:100–109CrossRef
8.
Zurück zum Zitat Quispe CAG, Coronado CJR, Carvalho JA Jr (2013) Glycerol: production, consumption, prices, characterization and new trends in combustion. Renew Sust Energ Rev 27:475–493CrossRef Quispe CAG, Coronado CJR, Carvalho JA Jr (2013) Glycerol: production, consumption, prices, characterization and new trends in combustion. Renew Sust Energ Rev 27:475–493CrossRef
9.
Zurück zum Zitat Liu H, Su L, Shao Y, Zou L (2012) Biodiesel production catalyzed by cinder supported CaO/KF particle catalyst. Fuel 97:651–657CrossRef Liu H, Su L, Shao Y, Zou L (2012) Biodiesel production catalyzed by cinder supported CaO/KF particle catalyst. Fuel 97:651–657CrossRef
10.
Zurück zum Zitat Nda-Umar UI, Ramli I, Taufiq-Yap YH, Muhamad EN (2018) An overview of recent research in the conversion of glycerol into biofuels, fuel additives and other bio-based chemicals. Catalysts 9:15CrossRef Nda-Umar UI, Ramli I, Taufiq-Yap YH, Muhamad EN (2018) An overview of recent research in the conversion of glycerol into biofuels, fuel additives and other bio-based chemicals. Catalysts 9:15CrossRef
11.
Zurück zum Zitat Liu B, Gao F (2018) Navigating glycerol conversion roadmap and heterogeneous catalyst selection aided by density functional theory: a review. Catalysts 8:44CrossRef Liu B, Gao F (2018) Navigating glycerol conversion roadmap and heterogeneous catalyst selection aided by density functional theory: a review. Catalysts 8:44CrossRef
12.
Zurück zum Zitat Carlson TR, Tompsett GA, Conner WC, Huber GW (2009) Aromatic production from catalytic fast pyrolysis of biomass-derived feedstocks. Top Catal 52(3):241–252CrossRef Carlson TR, Tompsett GA, Conner WC, Huber GW (2009) Aromatic production from catalytic fast pyrolysis of biomass-derived feedstocks. Top Catal 52(3):241–252CrossRef
13.
Zurück zum Zitat Mallesham B, Sudarsanam P, Raju G, Reddy BM (2012) Design of highly efficient Mo and W-promoted SnO2 solid acids for heterogeneous catalysis: acetalization of bio-glycerol. Green Chem 15:478–489CrossRef Mallesham B, Sudarsanam P, Raju G, Reddy BM (2012) Design of highly efficient Mo and W-promoted SnO2 solid acids for heterogeneous catalysis: acetalization of bio-glycerol. Green Chem 15:478–489CrossRef
14.
Zurück zum Zitat Rodrigues R, Gonçalves M, Mandelli D, Pescarmona PP, Carvalho WA (2014) Solvent-free conversion of glycerol to solketal catalysed by activated carbons functionalised with acid groups. Cat Sci Technol 4:2293–2301CrossRef Rodrigues R, Gonçalves M, Mandelli D, Pescarmona PP, Carvalho WA (2014) Solvent-free conversion of glycerol to solketal catalysed by activated carbons functionalised with acid groups. Cat Sci Technol 4:2293–2301CrossRef
15.
Zurück zum Zitat Ribeiro LS, Rodrigues EG, Delgado JJ, Chen X, Pereira MFR, Orfao JJM (2016) Pd, Pt, and Pt-Cu catalysts supported on carbon nanotube (CNT) for the selective oxidation of glycerol in alkaline and base-free conditions. Ind Eng Chem Res 55:8548–8556CrossRef Ribeiro LS, Rodrigues EG, Delgado JJ, Chen X, Pereira MFR, Orfao JJM (2016) Pd, Pt, and Pt-Cu catalysts supported on carbon nanotube (CNT) for the selective oxidation of glycerol in alkaline and base-free conditions. Ind Eng Chem Res 55:8548–8556CrossRef
16.
Zurück zum Zitat Georgios D, Harun T (2017) Effect of post-treatment on structure and catalytic activity of CuCo-based materials for glycerol oxidation. ChemCatChem 9:610–619CrossRef Georgios D, Harun T (2017) Effect of post-treatment on structure and catalytic activity of CuCo-based materials for glycerol oxidation. ChemCatChem 9:610–619CrossRef
17.
Zurück zum Zitat Deng X, Dodekatos G, Pupovac K, Weidenthaler C, Schmidt WN, Schuth F, Tuysuz H (2018) Pseudomorphic generation of supported catalysts for glycerol oxidation. ChemCatChem 7:3832–3837CrossRef Deng X, Dodekatos G, Pupovac K, Weidenthaler C, Schmidt WN, Schuth F, Tuysuz H (2018) Pseudomorphic generation of supported catalysts for glycerol oxidation. ChemCatChem 7:3832–3837CrossRef
18.
Zurück zum Zitat Mallat T, Baiker A (2004) Oxidation of alcohols with molecular oxygen on solid catalysts. Chem Rev 104:3037–3058CrossRef Mallat T, Baiker A (2004) Oxidation of alcohols with molecular oxygen on solid catalysts. Chem Rev 104:3037–3058CrossRef
19.
Zurück zum Zitat Silva TQ, dos Santos MB, Santiago AA, Santana DO, Cruz FT, Andrade HM, Mascarenhas AJ (2017) Gas phase glycerol oxidative dehydration over bifunctional V/H-zeolite catalysts with different zeolite topologies. Catal Today 289:38–46CrossRef Silva TQ, dos Santos MB, Santiago AA, Santana DO, Cruz FT, Andrade HM, Mascarenhas AJ (2017) Gas phase glycerol oxidative dehydration over bifunctional V/H-zeolite catalysts with different zeolite topologies. Catal Today 289:38–46CrossRef
20.
Zurück zum Zitat Liu R, Wang T, Cai D, Jin Y (2014) Highly efficient production of acrylic acid by sequential dehydration and oxidation of glycerol. Ind Eng Chem Res 53:8667–8674CrossRef Liu R, Wang T, Cai D, Jin Y (2014) Highly efficient production of acrylic acid by sequential dehydration and oxidation of glycerol. Ind Eng Chem Res 53:8667–8674CrossRef
21.
Zurück zum Zitat Lei J, Duan X, Qian G, Zhou X, Chen D (2014) Size effects of Pt nanoparticles supported on carbon nanotubes for selective oxidation of glycerol in a base-free condition. Ind Eng Chem Res 53:16309–16315CrossRef Lei J, Duan X, Qian G, Zhou X, Chen D (2014) Size effects of Pt nanoparticles supported on carbon nanotubes for selective oxidation of glycerol in a base-free condition. Ind Eng Chem Res 53:16309–16315CrossRef
22.
Zurück zum Zitat Dou J, Zhang B, Liu H, Hong J, Yin S, Huang Y, Xu R (2016) Carbon supported Pt9Sn1 nanoparticles as an efficient nanocatalyst for glycerol oxidation. Appl Catal B Environ 180:78–85CrossRef Dou J, Zhang B, Liu H, Hong J, Yin S, Huang Y, Xu R (2016) Carbon supported Pt9Sn1 nanoparticles as an efficient nanocatalyst for glycerol oxidation. Appl Catal B Environ 180:78–85CrossRef
23.
Zurück zum Zitat Atia H, Armbruster U, Martin A (2008) Dehydration of glycerol in gas phase using heteropolyacid catalysts as active compounds. J Catal 258:71–82CrossRef Atia H, Armbruster U, Martin A (2008) Dehydration of glycerol in gas phase using heteropolyacid catalysts as active compounds. J Catal 258:71–82CrossRef
24.
Zurück zum Zitat McMorn P, Roberts G, Hutchings GJ (1999) Oxidation of glycerol with hydrogen peroxide using silicalite and aluminophosphate catalysts. Catal Lett 63:193–197CrossRef McMorn P, Roberts G, Hutchings GJ (1999) Oxidation of glycerol with hydrogen peroxide using silicalite and aluminophosphate catalysts. Catal Lett 63:193–197CrossRef
25.
Zurück zum Zitat Carrettin S, McMorn P, Johnston P, Griffin K, Kiely CJ, Hutchings GJ (2003) Oxidation of glycerol using supported Pt, Pd and Au catalysts. Phys Chem Chem Phys 5:1329–1336CrossRef Carrettin S, McMorn P, Johnston P, Griffin K, Kiely CJ, Hutchings GJ (2003) Oxidation of glycerol using supported Pt, Pd and Au catalysts. Phys Chem Chem Phys 5:1329–1336CrossRef
26.
Zurück zum Zitat Ketchie WC, Murayama M, Davis RJ (2007) Promotional effect of hydroxyl on the aqueous phase oxidation of carbon monoxide and glycerol over supported Au catalysts. Top Catal 44:307–317CrossRef Ketchie WC, Murayama M, Davis RJ (2007) Promotional effect of hydroxyl on the aqueous phase oxidation of carbon monoxide and glycerol over supported Au catalysts. Top Catal 44:307–317CrossRef
27.
Zurück zum Zitat Abbadi A, Bekkum H (1996) Selective chemo-catalytic routes for the preparation of β-hydroxypyruvic acid. Appl Catal A 148:113–122CrossRef Abbadi A, Bekkum H (1996) Selective chemo-catalytic routes for the preparation of β-hydroxypyruvic acid. Appl Catal A 148:113–122CrossRef
28.
Zurück zum Zitat Deutsch J, Martin A, Lieske H (2007) Investigations on heterogeneously catalysed condensations of glycerol to cyclic acetals. J Catal 245:428–435CrossRef Deutsch J, Martin A, Lieske H (2007) Investigations on heterogeneously catalysed condensations of glycerol to cyclic acetals. J Catal 245:428–435CrossRef
29.
Zurück zum Zitat Diallo MM, Mijoin J, Laforge S, Pouilloux Y (2016) Preparation of Fe-BEA zeolites by isomorphous substitution for oxidehydration of glycerol to acrylic acid. Catal Commun 79:58–62CrossRef Diallo MM, Mijoin J, Laforge S, Pouilloux Y (2016) Preparation of Fe-BEA zeolites by isomorphous substitution for oxidehydration of glycerol to acrylic acid. Catal Commun 79:58–62CrossRef
30.
Zurück zum Zitat Sun D, Yamada Y, Sato S, Ueda W (2017) Glycerol as a potential renewable raw material for acrylic acid production. Green Chem 19:3186–3213CrossRef Sun D, Yamada Y, Sato S, Ueda W (2017) Glycerol as a potential renewable raw material for acrylic acid production. Green Chem 19:3186–3213CrossRef
31.
Zurück zum Zitat Kim M, Lee H (2017) Highly selective production of acrylic acid from glycerol via two steps using Au/CeO2 catalysts. ACS Sustain Chem Eng 5:11371–11376CrossRef Kim M, Lee H (2017) Highly selective production of acrylic acid from glycerol via two steps using Au/CeO2 catalysts. ACS Sustain Chem Eng 5:11371–11376CrossRef
32.
Zurück zum Zitat Yang S, Kim M, Yang S, Kim DS, Lee WJ, Lee H (2016) Production of acrylic acid from biomass-derived allyl alcohol by selective oxidation using Au/ceria catalysts. Cat Sci Technol 6:3616–3622CrossRef Yang S, Kim M, Yang S, Kim DS, Lee WJ, Lee H (2016) Production of acrylic acid from biomass-derived allyl alcohol by selective oxidation using Au/ceria catalysts. Cat Sci Technol 6:3616–3622CrossRef
33.
Zurück zum Zitat Andrushkevich TV (1993) Heterogeneous catalytic oxidation of acrolein to acrylic acid: mechanism and catalysts. Catal Rev Sci Eng 35:213–259CrossRef Andrushkevich TV (1993) Heterogeneous catalytic oxidation of acrolein to acrylic acid: mechanism and catalysts. Catal Rev Sci Eng 35:213–259CrossRef
34.
Zurück zum Zitat Li X, Zhang Y (2016) Highly efficient process for the conversion of glycerol to acrylic acid via gas phase catalytic oxidation of an allyl alcohol intermediate. ACS Catal 6:143–150CrossRef Li X, Zhang Y (2016) Highly efficient process for the conversion of glycerol to acrylic acid via gas phase catalytic oxidation of an allyl alcohol intermediate. ACS Catal 6:143–150CrossRef
35.
Zurück zum Zitat Rasteiro LF, Vieira LH, Possato LG, Pulcinelli SH, Santilli CV, Martins L (2017) Hydrothermal synthesis of Mo-V mixed oxides possessing several crystalline phases and their performance in the catalytic oxydehydration of glycerol to acrylic acid. Catal Today 296:10–18CrossRef Rasteiro LF, Vieira LH, Possato LG, Pulcinelli SH, Santilli CV, Martins L (2017) Hydrothermal synthesis of Mo-V mixed oxides possessing several crystalline phases and their performance in the catalytic oxydehydration of glycerol to acrylic acid. Catal Today 296:10–18CrossRef
36.
Zurück zum Zitat Yu L, Yuan J, Zhang Q, Liu YM, He HY, Fan KN, Cao Y (2014) Propylene from renewable resources: catalytic conversion of glycerol into propylene. ChemSusChem 7:743–747CrossRef Yu L, Yuan J, Zhang Q, Liu YM, He HY, Fan KN, Cao Y (2014) Propylene from renewable resources: catalytic conversion of glycerol into propylene. ChemSusChem 7:743–747CrossRef
37.
Zurück zum Zitat Sun D, Yamada Y, Sata S (2015) Efficient production of propylene in the catalytic conversion of glycerol. Appl Catal B 174:13–20CrossRef Sun D, Yamada Y, Sata S (2015) Efficient production of propylene in the catalytic conversion of glycerol. Appl Catal B 174:13–20CrossRef
38.
Zurück zum Zitat Schwenk E, Gehrke M, Aichner F (1933) (Schering-Kahlbaum AG), US Patent 1916743 Schwenk E, Gehrke M, Aichner F (1933) (Schering-Kahlbaum AG), US Patent 1916743
39.
Zurück zum Zitat Massa M, Andersson A, Finocchio E, Busca G (2013) Gas-phase dehydration of glycerol to acrolein over Al2O3-, SiO2-, and TiO2-supported Nb- and W-oxide catalysts. J Catal 307:170–184CrossRef Massa M, Andersson A, Finocchio E, Busca G (2013) Gas-phase dehydration of glycerol to acrolein over Al2O3-, SiO2-, and TiO2-supported Nb- and W-oxide catalysts. J Catal 307:170–184CrossRef
40.
Zurück zum Zitat Massa M, Andersson A, Finocchio E, Busca G, Lenrick F, Wallenberg LR (2013) Performance of ZrO2-supported Nb- and W-oxide in the gas-phase dehydration of glycerol to acrolein. J Catal 297:93–109CrossRef Massa M, Andersson A, Finocchio E, Busca G, Lenrick F, Wallenberg LR (2013) Performance of ZrO2-supported Nb- and W-oxide in the gas-phase dehydration of glycerol to acrolein. J Catal 297:93–109CrossRef
41.
Zurück zum Zitat Tao L, Yan B, Liang Y, Xu B (2013) Sustainable production of acrolein: catalytic performance of hydrated tantalum oxides for gas-phase dehydration of glycerol. Green Chem 157:696–705CrossRef Tao L, Yan B, Liang Y, Xu B (2013) Sustainable production of acrolein: catalytic performance of hydrated tantalum oxides for gas-phase dehydration of glycerol. Green Chem 157:696–705CrossRef
42.
Zurück zum Zitat García-Sancho C, Cecilia JA, Moreno-Ruiz A, Mérida-Robles JM, Santamaría-González J, Moreno-Tost R, Maireles-Torres P (2015) Influence of the niobium supported species on the catalytic dehydration of glycerol to acrolein. Appl Catal B Environ 179:139–149CrossRef García-Sancho C, Cecilia JA, Moreno-Ruiz A, Mérida-Robles JM, Santamaría-González J, Moreno-Tost R, Maireles-Torres P (2015) Influence of the niobium supported species on the catalytic dehydration of glycerol to acrolein. Appl Catal B Environ 179:139–149CrossRef
43.
Zurück zum Zitat Lauriol-Garbey P, Millet JMM, Loridant S, Bellière-Baca V, Rey P (2011) New efficient and long-life catalyst for gas-phase glycerol dehydration to acrolein. J Catal 281:362–370CrossRef Lauriol-Garbey P, Millet JMM, Loridant S, Bellière-Baca V, Rey P (2011) New efficient and long-life catalyst for gas-phase glycerol dehydration to acrolein. J Catal 281:362–370CrossRef
44.
Zurück zum Zitat Lauriol-Garbey P, Loridant S, Bellière-Baca V, Rey P, Millet JMM (2011) Gas phase dehydration of glycerol to acrolein over WO3/ZrO2 catalysts: improvement of selectivity and stability by doping with SiO2. Catal Commun 16:170–174CrossRef Lauriol-Garbey P, Loridant S, Bellière-Baca V, Rey P, Millet JMM (2011) Gas phase dehydration of glycerol to acrolein over WO3/ZrO2 catalysts: improvement of selectivity and stability by doping with SiO2. Catal Commun 16:170–174CrossRef
45.
Zurück zum Zitat Cecilia JA, García-Sancho C, Mérida-Robles JM, González JS, Moreno-Tost R, Maireles-Torres P (2016) WO3 supported on Zr doped mesoporous SBA-15 silica for glycerol dehydration to acrolein. Appl Catal A Gen 516:30–40CrossRef Cecilia JA, García-Sancho C, Mérida-Robles JM, González JS, Moreno-Tost R, Maireles-Torres P (2016) WO3 supported on Zr doped mesoporous SBA-15 silica for glycerol dehydration to acrolein. Appl Catal A Gen 516:30–40CrossRef
46.
Zurück zum Zitat Rajan NP, Rao GS, Pavankumar V, Chary KVR (2014) Vapour phase dehydration of glycerol over VPO catalyst supported on zirconium phosphate. Cat Sci Technol 4:81–92CrossRef Rajan NP, Rao GS, Pavankumar V, Chary KVR (2014) Vapour phase dehydration of glycerol over VPO catalyst supported on zirconium phosphate. Cat Sci Technol 4:81–92CrossRef
47.
Zurück zum Zitat Feng X, Yao Y, Su Q, Zhao L, Jiang W, Ji W, Au CT (2015) Vanadium pyrophosphate oxides: the role of preparation chemistry in determining renewable acrolein production from glycerol dehydration. Appl Catal B Environ 164:31–39CrossRef Feng X, Yao Y, Su Q, Zhao L, Jiang W, Ji W, Au CT (2015) Vanadium pyrophosphate oxides: the role of preparation chemistry in determining renewable acrolein production from glycerol dehydration. Appl Catal B Environ 164:31–39CrossRef
48.
Zurück zum Zitat Rao GS, Rajan NP, Sekhar MH, Ammaji S, Chary KVR (2014) Porous zirconium phosphate supported tungsten oxide solid acid catalysts for the vapour phase dehydration of glycerol. J Mol Catal A Chem 395:486–493CrossRef Rao GS, Rajan NP, Sekhar MH, Ammaji S, Chary KVR (2014) Porous zirconium phosphate supported tungsten oxide solid acid catalysts for the vapour phase dehydration of glycerol. J Mol Catal A Chem 395:486–493CrossRef
49.
Zurück zum Zitat Beerthuis R, Huang L, Shiju NR, Rothenberg G, Shen W, Xu H (2018) Facile synthesis of a novel hierarchical ZSM-5 zeolite: a stable acid catalyst for dehydrating glycerol to acrolein. ChemCatChem 10:211–221CrossRef Beerthuis R, Huang L, Shiju NR, Rothenberg G, Shen W, Xu H (2018) Facile synthesis of a novel hierarchical ZSM-5 zeolite: a stable acid catalyst for dehydrating glycerol to acrolein. ChemCatChem 10:211–221CrossRef
50.
Zurück zum Zitat Carriço CS, Cruz FT, dos Santos MB, Oliveira DS, Pastore HO, Andrade HMC, Mascarenhas AJS (2016) MWW-type catalysts for gas phase glycerol dehydration to acrolein. J Catal 334:34–41CrossRef Carriço CS, Cruz FT, dos Santos MB, Oliveira DS, Pastore HO, Andrade HMC, Mascarenhas AJS (2016) MWW-type catalysts for gas phase glycerol dehydration to acrolein. J Catal 334:34–41CrossRef
51.
Zurück zum Zitat García-Sancho C, Cecilia JA, Mérida-Robles JM, González JS, Moreno-Tost R, Infantes-Molina A, Maireles-Torres P (2018) Effect of the treatment with H3PO4 on the catalytic activity of Nb2O5 supported on Zr-doped mesoporous silica catalyst. Case study: glycerol dehydration. Appl Catal B Environ 221:158–168CrossRef García-Sancho C, Cecilia JA, Mérida-Robles JM, González JS, Moreno-Tost R, Infantes-Molina A, Maireles-Torres P (2018) Effect of the treatment with H3PO4 on the catalytic activity of Nb2O5 supported on Zr-doped mesoporous silica catalyst. Case study: glycerol dehydration. Appl Catal B Environ 221:158–168CrossRef
52.
Zurück zum Zitat Fernandes A, Ribeiro MF, Lourenço JP (2017) Gas-phase dehydration of glycerol over hierarchical silicoaluminophosphate SAPO-40. Catal Commun 95:16–20CrossRef Fernandes A, Ribeiro MF, Lourenço JP (2017) Gas-phase dehydration of glycerol over hierarchical silicoaluminophosphate SAPO-40. Catal Commun 95:16–20CrossRef
53.
Zurück zum Zitat Lopez-Pedrajas S, Estevez R, Navarro R, Luna D, Bautista FM (2016) Catalytic behaviour of mesoporous metal phosphates in the gas-phase glycerol transformation. J Mol Catal A Chem 421:92–101CrossRef Lopez-Pedrajas S, Estevez R, Navarro R, Luna D, Bautista FM (2016) Catalytic behaviour of mesoporous metal phosphates in the gas-phase glycerol transformation. J Mol Catal A Chem 421:92–101CrossRef
54.
Zurück zum Zitat Lourenço JP, Fernandes A, Bertolo RA, Ribeiro MF (2015) Gas-phase dehydration of glycerol over thermally stable SAPO-40 catalyst. RSC Adv 5:10667–10674CrossRef Lourenço JP, Fernandes A, Bertolo RA, Ribeiro MF (2015) Gas-phase dehydration of glycerol over thermally stable SAPO-40 catalyst. RSC Adv 5:10667–10674CrossRef
55.
Zurück zum Zitat Deleplanque J, Dubois JL, Devaux JF, Ueda W (2010) Production of acrolein and acrylic acid through dehydration and oxydehydration of glycerol with mixed oxide catalysts. Catal Tod 157:351–358CrossRef Deleplanque J, Dubois JL, Devaux JF, Ueda W (2010) Production of acrolein and acrylic acid through dehydration and oxydehydration of glycerol with mixed oxide catalysts. Catal Tod 157:351–358CrossRef
56.
Zurück zum Zitat Suprun W, Lutecki M, Haber T, Papp H (2009) Acidic catalysts for the dehydration of glycerol: activity and deactivation. J Mol Catal A Chem 309:71–78CrossRef Suprun W, Lutecki M, Haber T, Papp H (2009) Acidic catalysts for the dehydration of glycerol: activity and deactivation. J Mol Catal A Chem 309:71–78CrossRef
57.
Zurück zum Zitat Chai SH, Wang HP, Liang Y, Xu BQ (2008) Sustainable production of acrolein: gas-phase dehydration of glycerol over 12-tungstophosphoric acid supported on ZrO2 and SiO2. Green Chem 10:1087–1093CrossRef Chai SH, Wang HP, Liang Y, Xu BQ (2008) Sustainable production of acrolein: gas-phase dehydration of glycerol over 12-tungstophosphoric acid supported on ZrO2 and SiO2. Green Chem 10:1087–1093CrossRef
58.
Zurück zum Zitat Viswanadham B, Nagaraju N, Rohitha CN, Vishwanathan V, Chary KVR (2017) Synthesis, characterization and catalytic dehydration of glycerol to acrolein over phosphotungstic acid supported Y-zeolite catalysts. Catal Lett 148:397–406CrossRef Viswanadham B, Nagaraju N, Rohitha CN, Vishwanathan V, Chary KVR (2017) Synthesis, characterization and catalytic dehydration of glycerol to acrolein over phosphotungstic acid supported Y-zeolite catalysts. Catal Lett 148:397–406CrossRef
59.
Zurück zum Zitat Chai SH, Wang HP, Liang Y, Xu BQ (2009) Sustainable production of acrolein: preparation and characterization of zirconia-supported 12-tungstophosphoric acid catalyst for gas-phase dehydration of glycerol. Appl Catal A Gen 353:213–222CrossRef Chai SH, Wang HP, Liang Y, Xu BQ (2009) Sustainable production of acrolein: preparation and characterization of zirconia-supported 12-tungstophosphoric acid catalyst for gas-phase dehydration of glycerol. Appl Catal A Gen 353:213–222CrossRef
60.
Zurück zum Zitat Haider MH, Dummer NF, Zhang D, Miedziak P, Davies TE, Taylor SH, Willock DJ, Knight DW, Chadwick D, Hutchings GJ (2012) Rubidium- and caesium-doped silicotungstic acid catalysts supported on alumina for the catalytic dehydration of glycerol to acrolein. J Catal 286:206–213CrossRef Haider MH, Dummer NF, Zhang D, Miedziak P, Davies TE, Taylor SH, Willock DJ, Knight DW, Chadwick D, Hutchings GJ (2012) Rubidium- and caesium-doped silicotungstic acid catalysts supported on alumina for the catalytic dehydration of glycerol to acrolein. J Catal 286:206–213CrossRef
61.
Zurück zum Zitat Tsukuda E, Sato S, Takahashi R, Sodesawa T (2007) Production of acrolein from glycerol over silica-supported heteropoly acids. Catal Commun 8:1349–1353CrossRef Tsukuda E, Sato S, Takahashi R, Sodesawa T (2007) Production of acrolein from glycerol over silica-supported heteropoly acids. Catal Commun 8:1349–1353CrossRef
62.
Zurück zum Zitat Atia H, Armbruster U, Martin A (2011) Influence of alkaline metal on performance of supported silicotungstic acid catalysts in glycerol dehydration towards acrolein. Appl Catal A Gen 393:331–339CrossRef Atia H, Armbruster U, Martin A (2011) Influence of alkaline metal on performance of supported silicotungstic acid catalysts in glycerol dehydration towards acrolein. Appl Catal A Gen 393:331–339CrossRef
63.
Zurück zum Zitat Liu L, Wang B, Du Y, Borgna Y (2015) Supported H4SiW12O40/Al2O3 solid acid catalysts for dehydration of glycerol to acrolein: evolution of catalyst structure and performance with calcination temperature. Appl Catal A Gen 489:32–41CrossRef Liu L, Wang B, Du Y, Borgna Y (2015) Supported H4SiW12O40/Al2O3 solid acid catalysts for dehydration of glycerol to acrolein: evolution of catalyst structure and performance with calcination temperature. Appl Catal A Gen 489:32–41CrossRef
64.
Zurück zum Zitat Talebian-Kiakalaieh A, Amin NAS (2015) Supported silicotungstic acid on zirconia catalyst for gas phase dehydration of glycerol to acrolein. Catal Today 256:315–324CrossRef Talebian-Kiakalaieh A, Amin NAS (2015) Supported silicotungstic acid on zirconia catalyst for gas phase dehydration of glycerol to acrolein. Catal Today 256:315–324CrossRef
65.
Zurück zum Zitat Talebian-Kiakalaieh A, Amin NAS, Zakaria ZY (2016) Gas phase selective conversion of glycerol to acrolein over supported silicotungstic acid catalyst. J Ind Eng Chem 34:300–312CrossRef Talebian-Kiakalaieh A, Amin NAS, Zakaria ZY (2016) Gas phase selective conversion of glycerol to acrolein over supported silicotungstic acid catalyst. J Ind Eng Chem 34:300–312CrossRef
66.
Zurück zum Zitat Gu Y, Liu S, Li C, Cui Q (2013) Selective conversion of glycerol to acrolein over supported nickel sulfate catalysts. J Catal 301:93–102CrossRef Gu Y, Liu S, Li C, Cui Q (2013) Selective conversion of glycerol to acrolein over supported nickel sulfate catalysts. J Catal 301:93–102CrossRef
67.
Zurück zum Zitat Huang L, Qin F, Huang Z, Zhuang Y, Ma J, Xu H, Shen W (2017) Metal organic framework-mediated synthesis of small-sized γ-alumina as highly active catalyst for dehydration of glycerol to acrolein. ChemCatChem 10:381–386CrossRef Huang L, Qin F, Huang Z, Zhuang Y, Ma J, Xu H, Shen W (2017) Metal organic framework-mediated synthesis of small-sized γ-alumina as highly active catalyst for dehydration of glycerol to acrolein. ChemCatChem 10:381–386CrossRef
68.
Zurück zum Zitat Zhou CH, Li GL, Zhuang XY, Wang PP, Tong DS, Yang HM, Lin CX, Li L, Zhang H, Ji SF, Yu WH (2017) Roles of texture and acidity of acid-activated sepiolite catalysts in gas-phase catalytic dehydration of glycerol to acrolein. Mol Catal 434:219–231CrossRef Zhou CH, Li GL, Zhuang XY, Wang PP, Tong DS, Yang HM, Lin CX, Li L, Zhang H, Ji SF, Yu WH (2017) Roles of texture and acidity of acid-activated sepiolite catalysts in gas-phase catalytic dehydration of glycerol to acrolein. Mol Catal 434:219–231CrossRef
69.
Zurück zum Zitat Xie Q, Li S, Gong R, Zheng G, Wang Y, Xu P, Duan Y, Yu S, Lu M, Ji W, Nie Y, Ji J (2019) Microwave-assisted catalytic dehydration of glycerol for sustainable production of acrolein over a microwave absorbing catalyst. Appl Catal B Environ 243:455–462CrossRef Xie Q, Li S, Gong R, Zheng G, Wang Y, Xu P, Duan Y, Yu S, Lu M, Ji W, Nie Y, Ji J (2019) Microwave-assisted catalytic dehydration of glycerol for sustainable production of acrolein over a microwave absorbing catalyst. Appl Catal B Environ 243:455–462CrossRef
70.
Zurück zum Zitat Lourenço JP, Macedo MI, Fernandes A (2012) Sulfonic-functionalized SBA-15 as an active catalyst for the gas-phase dehydration of glycerol. Catal Commun 19:105–109CrossRef Lourenço JP, Macedo MI, Fernandes A (2012) Sulfonic-functionalized SBA-15 as an active catalyst for the gas-phase dehydration of glycerol. Catal Commun 19:105–109CrossRef
71.
Zurück zum Zitat Qureshi BA, Lan X, Arslan MT, Wang T (2019) Highly active and selective nano H-ZSM-5 catalyst with short channels along b-axis for glycerol dehydration to acrolein. Ind Eng Chem Res 58:12611–12622CrossRef Qureshi BA, Lan X, Arslan MT, Wang T (2019) Highly active and selective nano H-ZSM-5 catalyst with short channels along b-axis for glycerol dehydration to acrolein. Ind Eng Chem Res 58:12611–12622CrossRef
72.
Zurück zum Zitat Ding J, Wang L, Zhang Z, Zhao S, Zhao J, Lu Y, Huang J (2019) Microstructured ZSM-11 catalyst on stainless steel microfibers for improving glycerol dehydration to acrolein. ACS Sustain Chem Eng 7:16225–16232CrossRef Ding J, Wang L, Zhang Z, Zhao S, Zhao J, Lu Y, Huang J (2019) Microstructured ZSM-11 catalyst on stainless steel microfibers for improving glycerol dehydration to acrolein. ACS Sustain Chem Eng 7:16225–16232CrossRef
73.
Zurück zum Zitat Shan J, Li Z, Zhu S, Liu H, Li J, Wang J, Fan W (2019) Nanosheet MFI zeolites for gas phase glycerol dehydration to acrolein. Catalysts 9:121CrossRef Shan J, Li Z, Zhu S, Liu H, Li J, Wang J, Fan W (2019) Nanosheet MFI zeolites for gas phase glycerol dehydration to acrolein. Catalysts 9:121CrossRef
74.
Zurück zum Zitat Katryniok B, Paul S, Capron M, Lancelot C, Belli’ere-Baca V, Rey P, Dumeignil F (2010) A long life catalyst for glycerol dehydration to acrolein. Green Chem 12:1922–1925CrossRef Katryniok B, Paul S, Capron M, Lancelot C, Belli’ere-Baca V, Rey P, Dumeignil F (2010) A long life catalyst for glycerol dehydration to acrolein. Green Chem 12:1922–1925CrossRef
75.
Zurück zum Zitat Dubois JL, Magatani Y, Okumura K (2009) (Arkema), Process for manufacturing acrolein from glycerol, WO 2009127889 and WO 2009128555 Dubois JL, Magatani Y, Okumura K (2009) (Arkema), Process for manufacturing acrolein from glycerol, WO 2009127889 and WO 2009128555
76.
Zurück zum Zitat Alhanash A, Kozhevnikova EF, Kozhevnikov IV (2010) Gas-phase dehydration of glycerol to acrolein catalysed by caesium heteropoly salt. Appl Catal A Gen 378:11–18CrossRef Alhanash A, Kozhevnikova EF, Kozhevnikov IV (2010) Gas-phase dehydration of glycerol to acrolein catalysed by caesium heteropoly salt. Appl Catal A Gen 378:11–18CrossRef
77.
Zurück zum Zitat Kim YT, Jung KD, Park ED (2010) Gas-phase dehydration of glycerol over supported silicotungstic acids catalysts. Bull Kor Chem Soc 31(11):3283–3290CrossRef Kim YT, Jung KD, Park ED (2010) Gas-phase dehydration of glycerol over supported silicotungstic acids catalysts. Bull Kor Chem Soc 31(11):3283–3290CrossRef
78.
Zurück zum Zitat Dubois JL, Duquenne C, Hoelderich W (2006) (Arkema), Process for preparing acrolein from glycerol or glycerin, WO patent 087083 Dubois JL, Duquenne C, Hoelderich W (2006) (Arkema), Process for preparing acrolein from glycerol or glycerin, WO patent 087083
79.
Zurück zum Zitat Zhuang A, Zhang C, Wen S, Zhao X, Wu T (2008) (Shanghai Huayi Acrylic Acid Co), Method for preparing acroleic acid by using glycerol as raw material, CN 101225039 Zhuang A, Zhang C, Wen S, Zhao X, Wu T (2008) (Shanghai Huayi Acrylic Acid Co), Method for preparing acroleic acid by using glycerol as raw material, CN 101225039
80.
Zurück zum Zitat Okuno M, Matsunami E, Takahashi T, Kasuga H, Okada M, Kirishik M (2007) (Nippon Catalytic Chem. Ind.), Production method of acrolein, WO 2007132926 Okuno M, Matsunami E, Takahashi T, Kasuga H, Okada M, Kirishik M (2007) (Nippon Catalytic Chem. Ind.), Production method of acrolein, WO 2007132926
81.
Zurück zum Zitat Zhou CJ, Huang CJ, Zhang WG, Zhai HS, Wu HL, Chao ZS (2007) Synthesis of micro and mesoporous ZSM-5 composites and their catalytic application in glycerol dehydration to acrolein. Stud Surf Sci Catal 165:527–530CrossRef Zhou CJ, Huang CJ, Zhang WG, Zhai HS, Wu HL, Chao ZS (2007) Synthesis of micro and mesoporous ZSM-5 composites and their catalytic application in glycerol dehydration to acrolein. Stud Surf Sci Catal 165:527–530CrossRef
82.
Zurück zum Zitat Kim YT, Jung KD, Park ED (2011) A comparative study for gas-phase dehydration of glycerol over H-zeolites. Appl Catal A Gen 393:275–287CrossRef Kim YT, Jung KD, Park ED (2011) A comparative study for gas-phase dehydration of glycerol over H-zeolites. Appl Catal A Gen 393:275–287CrossRef
83.
Zurück zum Zitat Possato LG, Diniz RN, Garetto T, Pulcinelli SH, Santilli CV, Martins LA (2013) comparative study of glycerol dehydration catalyzed by micro/mesoporous MFI zeolites. J Catal 300:102–112CrossRef Possato LG, Diniz RN, Garetto T, Pulcinelli SH, Santilli CV, Martins LA (2013) comparative study of glycerol dehydration catalyzed by micro/mesoporous MFI zeolites. J Catal 300:102–112CrossRef
84.
Zurück zum Zitat Chai SH, Wang HP, Liang Y, Xu BQ (2007) Sustainable production of acrolein: gas phase dehydration of glycerol over Nb2O5 catalyst. J Catal 250:342–349CrossRef Chai SH, Wang HP, Liang Y, Xu BQ (2007) Sustainable production of acrolein: gas phase dehydration of glycerol over Nb2O5 catalyst. J Catal 250:342–349CrossRef
85.
Zurück zum Zitat Wang F, Dubois JL, Ueda W (2010) Catalytic performance of vanadium pyrophosphate oxides (VPO) in the oxidative dehydration of glycerol. Appl Catal A Gen 276:25–32CrossRef Wang F, Dubois JL, Ueda W (2010) Catalytic performance of vanadium pyrophosphate oxides (VPO) in the oxidative dehydration of glycerol. Appl Catal A Gen 276:25–32CrossRef
86.
Zurück zum Zitat Dubois JL (2009) Arkema France, Process for manufacturing acrolein from glycerol, FR2921361 A1;WO2009044081 A1 Dubois JL (2009) Arkema France, Process for manufacturing acrolein from glycerol, FR2921361 A1;WO2009044081 A1
87.
Zurück zum Zitat Ulgen A, Hoelderich WF (2011) Conversion of glycerol to acrolein in the presence of WO3/TiO2 catalysts. Appl Catal A Gen 400:34–38CrossRef Ulgen A, Hoelderich WF (2011) Conversion of glycerol to acrolein in the presence of WO3/TiO2 catalysts. Appl Catal A Gen 400:34–38CrossRef
88.
Zurück zum Zitat Cavani F, Guidetti S, Marinelli L, Piccinini M, Ghedini E, Signoretto M (2010) The control of selectivity in gas-phase glycerol dehydration to acrolein catalysed by sulfated zirconia. Appl Catal B Environ 100:197–204CrossRef Cavani F, Guidetti S, Marinelli L, Piccinini M, Ghedini E, Signoretto M (2010) The control of selectivity in gas-phase glycerol dehydration to acrolein catalysed by sulfated zirconia. Appl Catal B Environ 100:197–204CrossRef
89.
Zurück zum Zitat Liu SY, Zhou CJ, Liu Q, Liu GC, Huang CJ, Chao ZS (2008) Synthesis of mesoporous La-Cu-, and Cr-doped aluminophosphates and their catalytic behavior in the dehydration of glycerol. ChemSusChem 1:575–578CrossRef Liu SY, Zhou CJ, Liu Q, Liu GC, Huang CJ, Chao ZS (2008) Synthesis of mesoporous La-Cu-, and Cr-doped aluminophosphates and their catalytic behavior in the dehydration of glycerol. ChemSusChem 1:575–578CrossRef
90.
Zurück zum Zitat Ott L, Bicker M, Vogel H (2006) Catalytic dehydration of glycerol in sub- and supercritical water: a new chemical process for acrolein production. Green Chem 8(2):214–220CrossRef Ott L, Bicker M, Vogel H (2006) Catalytic dehydration of glycerol in sub- and supercritical water: a new chemical process for acrolein production. Green Chem 8(2):214–220CrossRef
91.
Zurück zum Zitat Suzuki N, Takahashi M (2006) (KAO Corp.), Method for producing acrolein, JP patent 2006290815 Suzuki N, Takahashi M (2006) (KAO Corp.), Method for producing acrolein, JP patent 2006290815
92.
Zurück zum Zitat Yoshimi Y, Masayuki Y, Torakichi A, Takanori A (2009) (Showa Denko), Method for producing acrolein, JP patent 2009179569 Yoshimi Y, Masayuki Y, Torakichi A, Takanori A (2009) (Showa Denko), Method for producing acrolein, JP patent 2009179569
93.
Zurück zum Zitat Shen L, Yin H, Wang A, Feng Y, Shen Y, Wu Z, Jiang T (2012) Liquid phase dehydration of glycerol to acrolein catalyzed by silicotungstic, phosphotungstic, and phosphomolybdic acids. Chem Eng J 180:277–283CrossRef Shen L, Yin H, Wang A, Feng Y, Shen Y, Wu Z, Jiang T (2012) Liquid phase dehydration of glycerol to acrolein catalyzed by silicotungstic, phosphotungstic, and phosphomolybdic acids. Chem Eng J 180:277–283CrossRef
94.
Zurück zum Zitat Akizuki M, Oshima Y (2012) Kinetics of glycerol dehydration with WO3/TiO2 in supercritical water. Ind Eng Chem Res 51:12253–12257CrossRef Akizuki M, Oshima Y (2012) Kinetics of glycerol dehydration with WO3/TiO2 in supercritical water. Ind Eng Chem Res 51:12253–12257CrossRef
95.
Zurück zum Zitat Foo GS, Wei D, Sholl DS, Sievers C (2014) Role of Lewis and Brønsted acid sites in the dehydration of glycerol over Niobia. ACS Catal 4:3180–3192CrossRef Foo GS, Wei D, Sholl DS, Sievers C (2014) Role of Lewis and Brønsted acid sites in the dehydration of glycerol over Niobia. ACS Catal 4:3180–3192CrossRef
96.
Zurück zum Zitat Yun D, Yun YS, Kim TY, Park H, Lee JM, Han JW, Yi J (2016) Mechanistic study of glycerol dehydration on Brønsted acidic amorphous aluminosilicate. J Catal 2016(341):33–43CrossRef Yun D, Yun YS, Kim TY, Park H, Lee JM, Han JW, Yi J (2016) Mechanistic study of glycerol dehydration on Brønsted acidic amorphous aluminosilicate. J Catal 2016(341):33–43CrossRef
97.
Zurück zum Zitat Chai S, Wang H, Liang Y, Xu B (2007) Sustainable production of acrolein: investigation of solid acid–base catalysts for gas-phase dehydration of glycerol. Green Chem 9:1130–1136CrossRef Chai S, Wang H, Liang Y, Xu B (2007) Sustainable production of acrolein: investigation of solid acid–base catalysts for gas-phase dehydration of glycerol. Green Chem 9:1130–1136CrossRef
98.
Zurück zum Zitat Chai S, Tao L, Yan B, Vedrine JC, Xu B (2014) Sustainable production of acrolein: effects of reaction variables, modifiers doping and ZrO2 origin on the performance of WO3/ZrO2 catalyst for the gas-phase dehydration of glycerol. RSC Adv 4:4619–4630CrossRef Chai S, Tao L, Yan B, Vedrine JC, Xu B (2014) Sustainable production of acrolein: effects of reaction variables, modifiers doping and ZrO2 origin on the performance of WO3/ZrO2 catalyst for the gas-phase dehydration of glycerol. RSC Adv 4:4619–4630CrossRef
99.
Zurück zum Zitat Ma T, Yun Z, Xu W, Chen L, Li L, Ding J, Shao R (2016) Pd-H3PW12O40/Zr-MCM-41: an efficient catalyst for the sustainable dehydration of glycerol to acrolein. Chem Eng J 4:343–352CrossRef Ma T, Yun Z, Xu W, Chen L, Li L, Ding J, Shao R (2016) Pd-H3PW12O40/Zr-MCM-41: an efficient catalyst for the sustainable dehydration of glycerol to acrolein. Chem Eng J 4:343–352CrossRef
100.
Zurück zum Zitat Aresta M, Dibenedetto A, Nocito F, Pastore C (2006) A study on the carboxylation of glycerol to glycerol carbonate with carbon dioxide: the role of the catalyst, solvent and reaction conditions. J Mol Catal A Chem 257:149–153CrossRef Aresta M, Dibenedetto A, Nocito F, Pastore C (2006) A study on the carboxylation of glycerol to glycerol carbonate with carbon dioxide: the role of the catalyst, solvent and reaction conditions. J Mol Catal A Chem 257:149–153CrossRef
101.
Zurück zum Zitat George J, Patel Y, Pillai SM, Munshi P (2009) Methanol assisted selective formation of 1,2-glycerol carbonate from glycerol and carbon dioxide using nBu2SnO as a catalyst. J Mol Catal A Chem 304:1–7CrossRef George J, Patel Y, Pillai SM, Munshi P (2009) Methanol assisted selective formation of 1,2-glycerol carbonate from glycerol and carbon dioxide using nBu2SnO as a catalyst. J Mol Catal A Chem 304:1–7CrossRef
102.
Zurück zum Zitat Gómez-Jiménez-Aberasturi O, OchoaGómez JR, Pesquera-Rodríguez A, Ramírez-López C, Alonso-Vicario A, Torrecilla-Soria J (2010) Solvent-free synthesis of glycerol carbonate and glycidol from 3-chloro-1,2-propanediol and potassium (hydrogen) carbonate. J Chem Technol Biotechnol 85:1663–1670CrossRef Gómez-Jiménez-Aberasturi O, OchoaGómez JR, Pesquera-Rodríguez A, Ramírez-López C, Alonso-Vicario A, Torrecilla-Soria J (2010) Solvent-free synthesis of glycerol carbonate and glycidol from 3-chloro-1,2-propanediol and potassium (hydrogen) carbonate. J Chem Technol Biotechnol 85:1663–1670CrossRef
103.
Zurück zum Zitat Ochoa-Gómez JR, Gómez-Jiménez-Aberasturi O, Ramírez-López CA, Nieto-Mestre J, Maestro-Madurga B, Belsué M (2011) Synthesis of glycerol carbonate from 3-chloro-1,2-propanediol and carbon dioxide using triethylamine as both solvent and CO2 fixation–activation agent. Chem Eng J 175:505–511CrossRef Ochoa-Gómez JR, Gómez-Jiménez-Aberasturi O, Ramírez-López CA, Nieto-Mestre J, Maestro-Madurga B, Belsué M (2011) Synthesis of glycerol carbonate from 3-chloro-1,2-propanediol and carbon dioxide using triethylamine as both solvent and CO2 fixation–activation agent. Chem Eng J 175:505–511CrossRef
104.
Zurück zum Zitat Aresta M, Dibenedetto A, Pastore C (2006) Direct carboxylation of alcohols to organic carbonates: comparison of the group 5 element alkoxides catalytic activity: an insight into the reaction mechanism and its key steps. Catal Today 115:88–94CrossRef Aresta M, Dibenedetto A, Pastore C (2006) Direct carboxylation of alcohols to organic carbonates: comparison of the group 5 element alkoxides catalytic activity: an insight into the reaction mechanism and its key steps. Catal Today 115:88–94CrossRef
105.
Zurück zum Zitat Li J, Wang T (2011) Chemical equilibrium of glycerol carbonate synthesis from glycerol. J Chem Thermodyn 43:731–736CrossRef Li J, Wang T (2011) Chemical equilibrium of glycerol carbonate synthesis from glycerol. J Chem Thermodyn 43:731–736CrossRef
106.
Zurück zum Zitat Behr A, Eilting J, Irawadi K, Leschinski J, Lindner F (2008) Improved utilisation of renewable resources: new important derivatives of glycerol. Green Chem 10:13–30CrossRef Behr A, Eilting J, Irawadi K, Leschinski J, Lindner F (2008) Improved utilisation of renewable resources: new important derivatives of glycerol. Green Chem 10:13–30CrossRef
107.
Zurück zum Zitat Ochoa-Gómez JR, Gómez-Jiménez-Aberasturi O, Ramírez-López C, Belsué M (2012) A brief review on industrial alternatives for the manufacturing of glycerol carbonate, a green chemical. Org Process Res Dev 16:389–399CrossRef Ochoa-Gómez JR, Gómez-Jiménez-Aberasturi O, Ramírez-López C, Belsué M (2012) A brief review on industrial alternatives for the manufacturing of glycerol carbonate, a green chemical. Org Process Res Dev 16:389–399CrossRef
108.
Zurück zum Zitat Takagaki A, Iwatani K, Nishimura S, Ebitani K (2010) Synthesis of glycerol carbonate from glycerol and dialkyl carbonates using hydrotalcite as a reusable heterogeneous base catalyst. Green Chem 12:578–581CrossRef Takagaki A, Iwatani K, Nishimura S, Ebitani K (2010) Synthesis of glycerol carbonate from glycerol and dialkyl carbonates using hydrotalcite as a reusable heterogeneous base catalyst. Green Chem 12:578–581CrossRef
109.
Zurück zum Zitat Malyaadri M, Jagadeeswaraiah K, Prasad PSS, Lingaiah N (2011) Synthesis of glycerol carbonate by transesterification of glycerol with dimethyl carbonate over Mg/Al/Zr catalysts. Appl Catal A General 401:153–157CrossRef Malyaadri M, Jagadeeswaraiah K, Prasad PSS, Lingaiah N (2011) Synthesis of glycerol carbonate by transesterification of glycerol with dimethyl carbonate over Mg/Al/Zr catalysts. Appl Catal A General 401:153–157CrossRef
110.
Zurück zum Zitat Bai R, Wang Y, Wang S, Mei F, Li T, Li G (2013) Synthesis of glycerol carbonate from glycerol and dimethyl carbonate catalysed by NaOH/γ-Al2O3. Fuel Process Technol 106:209–214CrossRef Bai R, Wang Y, Wang S, Mei F, Li T, Li G (2013) Synthesis of glycerol carbonate from glycerol and dimethyl carbonate catalysed by NaOH/γ-Al2O3. Fuel Process Technol 106:209–214CrossRef
111.
Zurück zum Zitat Liu P, Derchi M, Hensen EJM (2014) Promotional effect of transition metal doping on the basicity and activity of calcined hydrotalcite catalysts for glycerol carbonate synthesis. Appl Catal B Environ 144:135–143CrossRef Liu P, Derchi M, Hensen EJM (2014) Promotional effect of transition metal doping on the basicity and activity of calcined hydrotalcite catalysts for glycerol carbonate synthesis. Appl Catal B Environ 144:135–143CrossRef
112.
Zurück zum Zitat Liu P, Derchi M, Hensen EJM (2013) Synthesis of glycerol carbonate by transesterification of glycerol with dimethyl carbonate over MgAl mixed oxide catalysts. Appl Catal A Gen 467:124–131CrossRef Liu P, Derchi M, Hensen EJM (2013) Synthesis of glycerol carbonate by transesterification of glycerol with dimethyl carbonate over MgAl mixed oxide catalysts. Appl Catal A Gen 467:124–131CrossRef
113.
Zurück zum Zitat Simanjuntak FSH, Widyaya VT, Kim CS, Ahn BS, Kim YJ, Lee H (2013) Synthesis of glycerol carbonate from glycerol and dimethyl carbonate using magnesium–lanthanum mixed oxide catalyst. Chem Eng Sci 94:265–270CrossRef Simanjuntak FSH, Widyaya VT, Kim CS, Ahn BS, Kim YJ, Lee H (2013) Synthesis of glycerol carbonate from glycerol and dimethyl carbonate using magnesium–lanthanum mixed oxide catalyst. Chem Eng Sci 94:265–270CrossRef
114.
Zurück zum Zitat Simanjuntak FSH, Kim TK, Lee SD, Ahn BS, Kim HS, Lee H (2011) CaO-catalyzed synthesis of glycerol carbonate from glycerol and dimethyl carbonate: isolation and characterization of an active Ca species. Appl Catal A Gen 401:220–225CrossRef Simanjuntak FSH, Kim TK, Lee SD, Ahn BS, Kim HS, Lee H (2011) CaO-catalyzed synthesis of glycerol carbonate from glycerol and dimethyl carbonate: isolation and characterization of an active Ca species. Appl Catal A Gen 401:220–225CrossRef
115.
Zurück zum Zitat Ochoa-Gomez JR, Gomez-Jimenez-Aberasturi O, Maestro-Madurga B, Pesquera-Rodriguez A, Ramirez-Lopez C, Lorenzo-Ibarreta L, Torrecilla-Soria J, Villaran-Velasco MC (2009) Synthesis of glycerol carbonate from glycerol and dimethyl carbonate by transesterification: catalyst screening and reaction optimization. Appl Catal A Gen 366:315–324CrossRef Ochoa-Gomez JR, Gomez-Jimenez-Aberasturi O, Maestro-Madurga B, Pesquera-Rodriguez A, Ramirez-Lopez C, Lorenzo-Ibarreta L, Torrecilla-Soria J, Villaran-Velasco MC (2009) Synthesis of glycerol carbonate from glycerol and dimethyl carbonate by transesterification: catalyst screening and reaction optimization. Appl Catal A Gen 366:315–324CrossRef
116.
Zurück zum Zitat Yadav GD, Chandan PA (2014) A green process for glycerol valorization to glycerol carbonate over heterogeneous hydrotalcite catalyst. Catal Today 237:47–53CrossRef Yadav GD, Chandan PA (2014) A green process for glycerol valorization to glycerol carbonate over heterogeneous hydrotalcite catalyst. Catal Today 237:47–53CrossRef
117.
Zurück zum Zitat Bai R, Wang S, Mei F, Li T, Li G (2011) Synthesis of glycerol carbonate from glycerol and dimethyl carbonate catalyzed by KF modified hydroxyapatite. J Ind Eng Chem 17:777–781CrossRef Bai R, Wang S, Mei F, Li T, Li G (2011) Synthesis of glycerol carbonate from glycerol and dimethyl carbonate catalyzed by KF modified hydroxyapatite. J Ind Eng Chem 17:777–781CrossRef
118.
Zurück zum Zitat Parameswaram G, Srinivas M, Hari Babu B, Prasad PSS, Lingaiah N (2013) Transesterification of glycerol with dimethyl carbonate for the synthesis of glycerol carbonate over Mg/Zr/Sr mixed oxide base catalysts. Cat Sci Technol 3:3242–3249CrossRef Parameswaram G, Srinivas M, Hari Babu B, Prasad PSS, Lingaiah N (2013) Transesterification of glycerol with dimethyl carbonate for the synthesis of glycerol carbonate over Mg/Zr/Sr mixed oxide base catalysts. Cat Sci Technol 3:3242–3249CrossRef
119.
Zurück zum Zitat Hervert B, McCarthy PD, Palencia H (2014) Room temperature synthesis of glycerol carbonate catalysed by N-heterocyclic carbenes. Tetrahedron Lett 55:133–136CrossRef Hervert B, McCarthy PD, Palencia H (2014) Room temperature synthesis of glycerol carbonate catalysed by N-heterocyclic carbenes. Tetrahedron Lett 55:133–136CrossRef
120.
Zurück zum Zitat Devi P, Das U, Dalai AK (2018) Production of glycerol carbonate using a novel Ti-SBA-15 catalyst. J Chem Eng 346:477–488CrossRef Devi P, Das U, Dalai AK (2018) Production of glycerol carbonate using a novel Ti-SBA-15 catalyst. J Chem Eng 346:477–488CrossRef
121.
Zurück zum Zitat Rokicki G, Rakoczy P, Parzuchowski P, Sobiecki M (2005) Hyperbranched aliphatic polyethers obtained from environmentally benign monomer: glycerol carbonate. Green Chem 7:529–539CrossRef Rokicki G, Rakoczy P, Parzuchowski P, Sobiecki M (2005) Hyperbranched aliphatic polyethers obtained from environmentally benign monomer: glycerol carbonate. Green Chem 7:529–539CrossRef
122.
Zurück zum Zitat Kim S, Kim YH, Lee H, Yoon D, Song B (2007) Lipase-catalyzed synthesis of glycerol carbonate from renewable glycerol and dimethyl carbonate through transesterification. J Mol Catal B Enzym 49:75–78CrossRef Kim S, Kim YH, Lee H, Yoon D, Song B (2007) Lipase-catalyzed synthesis of glycerol carbonate from renewable glycerol and dimethyl carbonate through transesterification. J Mol Catal B Enzym 49:75–78CrossRef
123.
Zurück zum Zitat Kondawar SE, Potdar AS, Rode CV (2015) Solvent-free carbonylation of glycerol with urea using metal loaded MCM-41 catalysts. RSC Adv 5:16452–16460CrossRef Kondawar SE, Potdar AS, Rode CV (2015) Solvent-free carbonylation of glycerol with urea using metal loaded MCM-41 catalysts. RSC Adv 5:16452–16460CrossRef
124.
Zurück zum Zitat Wang L, Ma Y, Wang Y, Liu S, Deng Y (2011) Efficient synthesis of glycerol carbonate from glycerol and urea with lanthanum oxide as a solid base catalyst. Catal Commun 12:1458–1462CrossRef Wang L, Ma Y, Wang Y, Liu S, Deng Y (2011) Efficient synthesis of glycerol carbonate from glycerol and urea with lanthanum oxide as a solid base catalyst. Catal Commun 12:1458–1462CrossRef
125.
Zurück zum Zitat Kumar CR, Jagadeeswaraiah K, Prasad PSS, Lingaiah N (2012) Samarium-exchanged heteropoly tungstate: an efficient solid acid catalyst for synthesis of glycerol carbonate from glycerol and benzylation of anisole. ChemCatChem 4:1360–1367CrossRef Kumar CR, Jagadeeswaraiah K, Prasad PSS, Lingaiah N (2012) Samarium-exchanged heteropoly tungstate: an efficient solid acid catalyst for synthesis of glycerol carbonate from glycerol and benzylation of anisole. ChemCatChem 4:1360–1367CrossRef
126.
Zurück zum Zitat Manjunathan P, Ravishankar R, Shanbhag GV (2016) Novel bifunctional Zn–Sn composite oxide catalyst for the selective synthesis of glycerol carbonate by carbonylation of glycerol with urea. ChemCatChem 8:631–639CrossRef Manjunathan P, Ravishankar R, Shanbhag GV (2016) Novel bifunctional Zn–Sn composite oxide catalyst for the selective synthesis of glycerol carbonate by carbonylation of glycerol with urea. ChemCatChem 8:631–639CrossRef
127.
Zurück zum Zitat Aresta M, Dibenedetto A, Nocito F, Ferragina C (2009) Valorization of bio-glycerol: new catalytic materials for the synthesis of glycerol carbonate via glycerolysis of urea. Catalogue 268:106–114CrossRef Aresta M, Dibenedetto A, Nocito F, Ferragina C (2009) Valorization of bio-glycerol: new catalytic materials for the synthesis of glycerol carbonate via glycerolysis of urea. Catalogue 268:106–114CrossRef
128.
Zurück zum Zitat Jagadeeswaraiah K, Kumar CR, Prasad PSS, Loridant S, Lingaiah N (2014) Synthesis of glycerol carbonate from glycerol and urea over tin-tungsten mixed oxide catalysts. App Catal A 469:165–172CrossRef Jagadeeswaraiah K, Kumar CR, Prasad PSS, Loridant S, Lingaiah N (2014) Synthesis of glycerol carbonate from glycerol and urea over tin-tungsten mixed oxide catalysts. App Catal A 469:165–172CrossRef
129.
Zurück zum Zitat Rubio-Marcos F, Calvino-Casilda V, Banares MA, Fernandez JF (2010) Novel hierarchical Co3O4/ZnO mixtures by dry nanodispersion and their catalytic application in the carbonylation of glycerol. J Catal 275:288–293CrossRef Rubio-Marcos F, Calvino-Casilda V, Banares MA, Fernandez JF (2010) Novel hierarchical Co3O4/ZnO mixtures by dry nanodispersion and their catalytic application in the carbonylation of glycerol. J Catal 275:288–293CrossRef
130.
Zurück zum Zitat Marakatti VS, Halgeri AB (2015) Metal ion-exchanged zeolites as highly active solid acid catalysts for the green synthesis of glycerol carbonate from glycerol. RSC Adv 5:14286–14293CrossRef Marakatti VS, Halgeri AB (2015) Metal ion-exchanged zeolites as highly active solid acid catalysts for the green synthesis of glycerol carbonate from glycerol. RSC Adv 5:14286–14293CrossRef
131.
Zurück zum Zitat Sandesh S, Shanbhag GV, Halgeri AB (2014) Zinc hydroxystannate: a promising solid acid–base bifunctional catalyst. RSC Adv 4:974–977CrossRef Sandesh S, Shanbhag GV, Halgeri AB (2014) Zinc hydroxystannate: a promising solid acid–base bifunctional catalyst. RSC Adv 4:974–977CrossRef
132.
Zurück zum Zitat Babu MS, Srivani A, Parameswaram G, Veerabhadram G, Lingaiah N (2015) Understanding the role of tantalum in heteropoly tungstate catalysts for the synthesis of glycerol carbonate from glycerol and urea. Catal Lett 145:1784–1791CrossRef Babu MS, Srivani A, Parameswaram G, Veerabhadram G, Lingaiah N (2015) Understanding the role of tantalum in heteropoly tungstate catalysts for the synthesis of glycerol carbonate from glycerol and urea. Catal Lett 145:1784–1791CrossRef
133.
Zurück zum Zitat Nguyen-Phu H, Shin EW (2018) Investigating time-dependent Zn species over Zn-based catalysts in glycerol carbonylation with urea and their roles in the reaction mechanism. Appl Catal A 561:28–40CrossRef Nguyen-Phu H, Shin EW (2018) Investigating time-dependent Zn species over Zn-based catalysts in glycerol carbonylation with urea and their roles in the reaction mechanism. Appl Catal A 561:28–40CrossRef
134.
Zurück zum Zitat Luo W, Sun L, Yang Y, Chen Y, Zhou Z, Liua J, Wang F (2018) Cu-Mn composite oxides: a highly efficient and reusable acid-base catalysts for the carbonylation reaction of glycerol with urea. Cat Sci Technol 8:6468–6477CrossRef Luo W, Sun L, Yang Y, Chen Y, Zhou Z, Liua J, Wang F (2018) Cu-Mn composite oxides: a highly efficient and reusable acid-base catalysts for the carbonylation reaction of glycerol with urea. Cat Sci Technol 8:6468–6477CrossRef
135.
Zurück zum Zitat Chaves DM, Da Silva MJ (2019) A selective synthesis of glycerol carbonate from glycerol and urea over Sn(OH)2: a solid and recyclable in situ generated catalyst. New J Chem 43:3698–3706CrossRef Chaves DM, Da Silva MJ (2019) A selective synthesis of glycerol carbonate from glycerol and urea over Sn(OH)2: a solid and recyclable in situ generated catalyst. New J Chem 43:3698–3706CrossRef
136.
Zurück zum Zitat Jagadeeswaraiah K, Kumar CR, Rajashekar A, Srivani A, Lingaiah N (2016) The role of tungsten oxide species supported on titania catalysts for the synthesis of glycerol carbonate from glycerol and urea. Catal Lett 146:692–700CrossRef Jagadeeswaraiah K, Kumar CR, Rajashekar A, Srivani A, Lingaiah N (2016) The role of tungsten oxide species supported on titania catalysts for the synthesis of glycerol carbonate from glycerol and urea. Catal Lett 146:692–700CrossRef
137.
Zurück zum Zitat Li Q, Zhang W, Zhao N, Wei W, Sun Y (2006) Synthesis of cyclic carbonates from urea and diols over metal oxides. Today 115:111–116CrossRef Li Q, Zhang W, Zhao N, Wei W, Sun Y (2006) Synthesis of cyclic carbonates from urea and diols over metal oxides. Today 115:111–116CrossRef
138.
Zurück zum Zitat Patel A, Singh S (2014) A green and sustainable approach for esterification of glycerol using 12-tungstophosphoric acid anchored to different supports: kinetics and effect of support. Fuel 118:358–364CrossRef Patel A, Singh S (2014) A green and sustainable approach for esterification of glycerol using 12-tungstophosphoric acid anchored to different supports: kinetics and effect of support. Fuel 118:358–364CrossRef
139.
Zurück zum Zitat Hammond C, Sanchez JAL, Rahim MHA, Dimitratos N, Jenkins RL, Carley AF, He Q, Kiely CJ, Knight DW, Hutchings GJ (2011) Synthesis of glycerol carbonate from glycerol and urea with gold-based catalysts. Dalton Trans 40:3927–3937CrossRef Hammond C, Sanchez JAL, Rahim MHA, Dimitratos N, Jenkins RL, Carley AF, He Q, Kiely CJ, Knight DW, Hutchings GJ (2011) Synthesis of glycerol carbonate from glycerol and urea with gold-based catalysts. Dalton Trans 40:3927–3937CrossRef
140.
Zurück zum Zitat Jagadeeswaraiah K, Kumar CR, Prasad PSS, Lingaiah N (2014) Incorporation of Zn2+ ions into the secondary structure of heteropoly tungstate: catalytic efficiency for synthesis of glycerol carbonate from glycerol and urea. Cat Sci Technol 4:2969–2977CrossRef Jagadeeswaraiah K, Kumar CR, Prasad PSS, Lingaiah N (2014) Incorporation of Zn2+ ions into the secondary structure of heteropoly tungstate: catalytic efficiency for synthesis of glycerol carbonate from glycerol and urea. Cat Sci Technol 4:2969–2977CrossRef
141.
Zurück zum Zitat Ferreira P, Fonseca IM, Ramos AM, Vital J, Castanheiro JE (2009) Esterification of glycerol with acetic acid over dodecamolybdophosphoric acid encaged in USY zeolite. Catal Commun 10:481–484CrossRef Ferreira P, Fonseca IM, Ramos AM, Vital J, Castanheiro JE (2009) Esterification of glycerol with acetic acid over dodecamolybdophosphoric acid encaged in USY zeolite. Catal Commun 10:481–484CrossRef
142.
Zurück zum Zitat Liao X, Zhu Y, Wang SG, Li Y (2009) Producing triacetylglycerol with glycerol by two steps: esterification and acetylation. Fuel Process Technol 90:988–993CrossRef Liao X, Zhu Y, Wang SG, Li Y (2009) Producing triacetylglycerol with glycerol by two steps: esterification and acetylation. Fuel Process Technol 90:988–993CrossRef
143.
Zurück zum Zitat Zhou L, Nguyen TH, Adesina A (2012) The acetylation of glycerol over amberlyst-15: kinetic and product distribution. Fuel Process Technol 104:310–318CrossRef Zhou L, Nguyen TH, Adesina A (2012) The acetylation of glycerol over amberlyst-15: kinetic and product distribution. Fuel Process Technol 104:310–318CrossRef
144.
Zurück zum Zitat Melero JA, Grieken RV, Morales G, Paniagua M (2007) Acidic mesoporous silica for the acetylation of glycerol: synthesis of bioadditives to petrol fuel. Energy Fuel 21:1782–1791CrossRef Melero JA, Grieken RV, Morales G, Paniagua M (2007) Acidic mesoporous silica for the acetylation of glycerol: synthesis of bioadditives to petrol fuel. Energy Fuel 21:1782–1791CrossRef
145.
Zurück zum Zitat Khayoon MS, Hameed BH (2012) Synthesis of hybrid SBA-15 functionalized with molybdophosphoric acid as efficient catalyst for glycerol esterification to fuel additives. Appl Catal A Gen 433–434:152–161CrossRef Khayoon MS, Hameed BH (2012) Synthesis of hybrid SBA-15 functionalized with molybdophosphoric acid as efficient catalyst for glycerol esterification to fuel additives. Appl Catal A Gen 433–434:152–161CrossRef
146.
Zurück zum Zitat Stawicka K, Trejda M, Ziolek M (2013) The production of biofuels additives on sulphonated MCF materials modified with Nb and Ta—towards efficient solid catalysts of esterification. Appl Catal A Gen 467:325–334CrossRef Stawicka K, Trejda M, Ziolek M (2013) The production of biofuels additives on sulphonated MCF materials modified with Nb and Ta—towards efficient solid catalysts of esterification. Appl Catal A Gen 467:325–334CrossRef
147.
Zurück zum Zitat Kale S, Umbarkar SB, Dongare MK, Eckelt R, Armbruster U, Martin A (2015) Selective formation of triacetin by glycerol acetylation using acidic ion-exchange resins as catalyst and toluene as an entrainer. Appl Catal A Gen 490:10–16CrossRef Kale S, Umbarkar SB, Dongare MK, Eckelt R, Armbruster U, Martin A (2015) Selective formation of triacetin by glycerol acetylation using acidic ion-exchange resins as catalyst and toluene as an entrainer. Appl Catal A Gen 490:10–16CrossRef
148.
Zurück zum Zitat Reddy PS, Sudarsanam P, Raju G, Reddy BM (2012) Selective acetylation of glycerol over CeO2–M and SO42−/CeO2–M (M = ZrO2 and Al2O3) catalysts for synthesis of bioadditives. J Ind Eng Chem 18:648–654CrossRef Reddy PS, Sudarsanam P, Raju G, Reddy BM (2012) Selective acetylation of glycerol over CeO2–M and SO42−/CeO2–M (M = ZrO2 and Al2O3) catalysts for synthesis of bioadditives. J Ind Eng Chem 18:648–654CrossRef
149.
Zurück zum Zitat Zhu S, Zhu Y, Gao X, Mo T, Zhu Y, Li Y (2013) Production of bioadditives from glycerol esterification over zirconia supported heteropolyacids. Bioresour Technol 130:45–51CrossRef Zhu S, Zhu Y, Gao X, Mo T, Zhu Y, Li Y (2013) Production of bioadditives from glycerol esterification over zirconia supported heteropolyacids. Bioresour Technol 130:45–51CrossRef
150.
Zurück zum Zitat Zhu S, Gao X, Dong F, Zhu Y, Zheng H, Li Y (2013) Design of a highly active silver-exchanged phosphotungstic acid catalyst for glycerol esterification with acetic acid. J Catal 306:155–163CrossRef Zhu S, Gao X, Dong F, Zhu Y, Zheng H, Li Y (2013) Design of a highly active silver-exchanged phosphotungstic acid catalyst for glycerol esterification with acetic acid. J Catal 306:155–163CrossRef
151.
Zurück zum Zitat Reddy PS, Sudarsanam P, Raju G, Reddy BM (2010) Synthesis of bio-additives: acetylation of glycerol over zirconia-based solid acid catalysts. Catal Commun 11:1224–1228CrossRef Reddy PS, Sudarsanam P, Raju G, Reddy BM (2010) Synthesis of bio-additives: acetylation of glycerol over zirconia-based solid acid catalysts. Catal Commun 11:1224–1228CrossRef
152.
Zurück zum Zitat Okoye PU, Abdullah AZ, Hameed BH (2017) Synthesis of oxygenated fuel additives via glycerol esterification with acetic acid over bio-derived carbon catalyst. Fuel 209:538–544CrossRef Okoye PU, Abdullah AZ, Hameed BH (2017) Synthesis of oxygenated fuel additives via glycerol esterification with acetic acid over bio-derived carbon catalyst. Fuel 209:538–544CrossRef
153.
Zurück zum Zitat Khayoon MS, Triwahyono S, Hameed BH, Jalil AA (2014) Improved production of fuel oxygenates via glycerol acetylation with acetic acid. J Chem Eng 243:473–484CrossRef Khayoon MS, Triwahyono S, Hameed BH, Jalil AA (2014) Improved production of fuel oxygenates via glycerol acetylation with acetic acid. J Chem Eng 243:473–484CrossRef
154.
Zurück zum Zitat Khayoon MS, Hameed BH (2011) Acetylation of glycerol to biofuel additives over sulfated activated carbon catalyst. Bioresour Technol 102:9229–9235CrossRef Khayoon MS, Hameed BH (2011) Acetylation of glycerol to biofuel additives over sulfated activated carbon catalyst. Bioresour Technol 102:9229–9235CrossRef
155.
Zurück zum Zitat Tao ML, Guan HY, Wang XH, Liu YC, Louh RF (2015) Fabrication of sulfonated carbon catalyst from biomass waste and its use for glycerol esterification. Fuel Process Technol 138:355–360CrossRef Tao ML, Guan HY, Wang XH, Liu YC, Louh RF (2015) Fabrication of sulfonated carbon catalyst from biomass waste and its use for glycerol esterification. Fuel Process Technol 138:355–360CrossRef
156.
Zurück zum Zitat Trejda M, Stawicka K, Dubinska A, Ziolek M (2012) Development of niobium containing acidic catalysts for glycerol esterification. Catal Today 187:129–134CrossRef Trejda M, Stawicka K, Dubinska A, Ziolek M (2012) Development of niobium containing acidic catalysts for glycerol esterification. Catal Today 187:129–134CrossRef
157.
Zurück zum Zitat Gao X, Zhu S, Li Y (2015) Graphene oxide as a facile solid acid catalyst for the production of bioadditives from glycerol esterification. Catal Commun 62:48–51CrossRef Gao X, Zhu S, Li Y (2015) Graphene oxide as a facile solid acid catalyst for the production of bioadditives from glycerol esterification. Catal Commun 62:48–51CrossRef
158.
Zurück zum Zitat Hu W, Zhang Y, Huang Y, Wang J, Gao J, Xu J (2015) Selective esterification of glycerol with acetic acid to diacetin using antimony pentoxide as reusable catalyst. J Energy Chem 24:632–636CrossRef Hu W, Zhang Y, Huang Y, Wang J, Gao J, Xu J (2015) Selective esterification of glycerol with acetic acid to diacetin using antimony pentoxide as reusable catalyst. J Energy Chem 24:632–636CrossRef
159.
Zurück zum Zitat Calle CDL, Fraile JM, García-Bordejé E, Pires E, Roldán L (2015) Biobased catalyst in biorefinery processes: sulphonated hydrothermal carbon for glycerol esterification. Cat Sci Technol 5:2897–2903CrossRef Calle CDL, Fraile JM, García-Bordejé E, Pires E, Roldán L (2015) Biobased catalyst in biorefinery processes: sulphonated hydrothermal carbon for glycerol esterification. Cat Sci Technol 5:2897–2903CrossRef
160.
Zurück zum Zitat Liu X, Ma H, Wu Y, Wang C, Yang M, Yana P, Welz-Biermann U (2011) Esterification of glycerol with acetic acid using double SO3H-functionalized ionic liquids as recoverable catalysts. Green Chem 13:697–701CrossRef Liu X, Ma H, Wu Y, Wang C, Yang M, Yana P, Welz-Biermann U (2011) Esterification of glycerol with acetic acid using double SO3H-functionalized ionic liquids as recoverable catalysts. Green Chem 13:697–701CrossRef
161.
Zurück zum Zitat Sandesh S, Manjunathan P, Halgeri AB, Shanbhag GV (2015) Glycerol acetins: fuel additive synthesis by acetylation and esterification of glycerol using cesium phosphotungstate catalyst. RSC Adv 5:104354–104362CrossRef Sandesh S, Manjunathan P, Halgeri AB, Shanbhag GV (2015) Glycerol acetins: fuel additive synthesis by acetylation and esterification of glycerol using cesium phosphotungstate catalyst. RSC Adv 5:104354–104362CrossRef
162.
Zurück zum Zitat Keogh J, Tiwari MS, Manyar H (2019) Esterification of glycerol with acetic acid using nitrogen-based Brønsted-acidic ionic liquids. Ind Eng Chem Res 58:17235–17243CrossRef Keogh J, Tiwari MS, Manyar H (2019) Esterification of glycerol with acetic acid using nitrogen-based Brønsted-acidic ionic liquids. Ind Eng Chem Res 58:17235–17243CrossRef
163.
Zurück zum Zitat Zhou L, Al-Zaini E, Adesina A (2013) Catalytic characteristics and parameters optimization of the glycerol acetylation over solid acid catalysts. Fuel 103:617–625CrossRef Zhou L, Al-Zaini E, Adesina A (2013) Catalytic characteristics and parameters optimization of the glycerol acetylation over solid acid catalysts. Fuel 103:617–625CrossRef
164.
Zurück zum Zitat Ghoreishi KB, Yarmo MA (2013) Sol-gel sulfated silica as a catalyst for glycerol acetylation with acetic acid. J Sci Technol 5:65–78 Ghoreishi KB, Yarmo MA (2013) Sol-gel sulfated silica as a catalyst for glycerol acetylation with acetic acid. J Sci Technol 5:65–78
165.
Zurück zum Zitat Ghoreishi KB, Yarmo MA, Nordin NM, Samsudin MW (2013) Enhanced catalyst activity of WO3 using polypyrrole as support for acidic esterification of glycerol with acetic acid. J Chem 2013:264832CrossRef Ghoreishi KB, Yarmo MA, Nordin NM, Samsudin MW (2013) Enhanced catalyst activity of WO3 using polypyrrole as support for acidic esterification of glycerol with acetic acid. J Chem 2013:264832CrossRef
166.
Zurück zum Zitat Popova M, Szegedi Á, Ristić A, Tušar NN (2014) Glycerol acetylation on mesoporous KIL-2 supported sulphated zirconia catalysts. Cat Sci Technol 4:3993–4000CrossRef Popova M, Szegedi Á, Ristić A, Tušar NN (2014) Glycerol acetylation on mesoporous KIL-2 supported sulphated zirconia catalysts. Cat Sci Technol 4:3993–4000CrossRef
167.
Zurück zum Zitat Mufrodi Z, Rochmadi R, Sutijan S, Budiman A (2014) Synthesis acetylation of glycerol using batch reactor and continuous reactive distillation column. Eng J 18:29–40CrossRef Mufrodi Z, Rochmadi R, Sutijan S, Budiman A (2014) Synthesis acetylation of glycerol using batch reactor and continuous reactive distillation column. Eng J 18:29–40CrossRef
168.
Zurück zum Zitat Mallesham B, Sudarsanam P, Raju G, Reddy BM (2013) Design of highly efficient Mo and W-promoted SnO2 solid acids for heterogeneous catalysis: acetalization of bio-glycerol. Green Chem 15:478CrossRef Mallesham B, Sudarsanam P, Raju G, Reddy BM (2013) Design of highly efficient Mo and W-promoted SnO2 solid acids for heterogeneous catalysis: acetalization of bio-glycerol. Green Chem 15:478CrossRef
169.
Zurück zum Zitat Priya SS, Selvakannan PR, Chary KVR, Kantam ML, Bhargava SK (2017) Solvent-free microwave-assisted synthesis of solketal from glycerol using transition metal ions promoted mordenite solid acid catalysts. Mol Catal 434:184–193CrossRef Priya SS, Selvakannan PR, Chary KVR, Kantam ML, Bhargava SK (2017) Solvent-free microwave-assisted synthesis of solketal from glycerol using transition metal ions promoted mordenite solid acid catalysts. Mol Catal 434:184–193CrossRef
170.
Zurück zum Zitat Mallesham B, Sudarsanam P, Reddy BM (2014) Eco-friendly synthesis of bio-additive fuels from renewable glycerol using nanocrystalline SnO2-based solid acids. Cat Sci Technol 4:803–813CrossRef Mallesham B, Sudarsanam P, Reddy BM (2014) Eco-friendly synthesis of bio-additive fuels from renewable glycerol using nanocrystalline SnO2-based solid acids. Cat Sci Technol 4:803–813CrossRef
171.
Zurück zum Zitat Melero JA, Vicente G, Morales G, Paniagua M, Bustamante J (2010) Oxygenated compounds derived from glycerol for biodiesel formulation: influence on EN 14214 quality parameters. Fuel 89:2011–2018CrossRef Melero JA, Vicente G, Morales G, Paniagua M, Bustamante J (2010) Oxygenated compounds derived from glycerol for biodiesel formulation: influence on EN 14214 quality parameters. Fuel 89:2011–2018CrossRef
172.
Zurück zum Zitat Talebian-Kiakalaieh A, Amin NAS, Najaafi N, Tarigh SA (2018) Review on the catalytic acetalization of bio-renew glycerol to fuel additives. ront Chem 6:573 Talebian-Kiakalaieh A, Amin NAS, Najaafi N, Tarigh SA (2018) Review on the catalytic acetalization of bio-renew glycerol to fuel additives. ront Chem 6:573
173.
Zurück zum Zitat Groen GC, Zhu W, Brouwer S, Huynink SJ, Kapteijn F, Moulijn JA, Pérez-Ramírez JA (2007) Direct demonstration of enhanced diffusion in mesoporous zsm-5 zeolite obtained via controlled desilication. J Am Chem Soc 129:355–360CrossRef Groen GC, Zhu W, Brouwer S, Huynink SJ, Kapteijn F, Moulijn JA, Pérez-Ramírez JA (2007) Direct demonstration of enhanced diffusion in mesoporous zsm-5 zeolite obtained via controlled desilication. J Am Chem Soc 129:355–360CrossRef
174.
Zurück zum Zitat Li L, Korányi TI, Sels BF, Pescarmona PP (2012) Highly-efficient conversion of glycerol to solketal over heterogeneous Lewis acid catalysts. Green Chem 14:1611–1619CrossRef Li L, Korányi TI, Sels BF, Pescarmona PP (2012) Highly-efficient conversion of glycerol to solketal over heterogeneous Lewis acid catalysts. Green Chem 14:1611–1619CrossRef
175.
Zurück zum Zitat Christense CH, Johannsen K, Schmidt I, Christensen CH (2003) Catalytic benzene alkylation over mesoporous zeolite single crystals: improving activity and selectivity with a new family of porous materials. J Am Chem Soc 125:13370–13371CrossRef Christense CH, Johannsen K, Schmidt I, Christensen CH (2003) Catalytic benzene alkylation over mesoporous zeolite single crystals: improving activity and selectivity with a new family of porous materials. J Am Chem Soc 125:13370–13371CrossRef
176.
Zurück zum Zitat Tao Y, Kanoh H, Kaneko K (2003) ZSM-5 monolith of uniform mesoporous channels. J Am Chem Soc 125:6044–6045CrossRef Tao Y, Kanoh H, Kaneko K (2003) ZSM-5 monolith of uniform mesoporous channels. J Am Chem Soc 125:6044–6045CrossRef
177.
Zurück zum Zitat Taufiqurrahmi N, Mohamed AR, Bhatia S (2011) Nanocrystalline zeolite beta and zeolite y as catalysts in used palm oil cracking for the production of biofuel. J Nanopart Res 13:3177–3189CrossRef Taufiqurrahmi N, Mohamed AR, Bhatia S (2011) Nanocrystalline zeolite beta and zeolite y as catalysts in used palm oil cracking for the production of biofuel. J Nanopart Res 13:3177–3189CrossRef
178.
Zurück zum Zitat Manjunathan P, Maradur SP, Halgeri AB, Shanbhag GV (2015) Room temperature synthesis of solketal from acetalization of glycerol with acetone: effect of crystallite size and the role of acidity of beta zeolite. J Mol Catal A Chem 396:47–54CrossRef Manjunathan P, Maradur SP, Halgeri AB, Shanbhag GV (2015) Room temperature synthesis of solketal from acetalization of glycerol with acetone: effect of crystallite size and the role of acidity of beta zeolite. J Mol Catal A Chem 396:47–54CrossRef
179.
Zurück zum Zitat Kowalska-Kus J, Frankowski AHM, Nowinska K (2017) Solketal formation from glycerol and acetone over hierarchical zeolites of different structure as catalysts. J Mol Catal A Chem 426:205–212CrossRef Kowalska-Kus J, Frankowski AHM, Nowinska K (2017) Solketal formation from glycerol and acetone over hierarchical zeolites of different structure as catalysts. J Mol Catal A Chem 426:205–212CrossRef
180.
Zurück zum Zitat Venkatesha BYS, Prakash BSJ (2016) Dealuminated BEA zeolite for selective synthesis of five-membered cyclic acetal from glycerol under ambient conditions. RSC Adv 6:18824–18833CrossRef Venkatesha BYS, Prakash BSJ (2016) Dealuminated BEA zeolite for selective synthesis of five-membered cyclic acetal from glycerol under ambient conditions. RSC Adv 6:18824–18833CrossRef
181.
Zurück zum Zitat Narkhede N, Patel A (2016) Sustainable valorisation of glycerol via acetalization as well as carboxylation reactions over silicotungstates anchored to zeolite Hß. Appl Catal A 515:464–465CrossRef Narkhede N, Patel A (2016) Sustainable valorisation of glycerol via acetalization as well as carboxylation reactions over silicotungstates anchored to zeolite Hß. Appl Catal A 515:464–465CrossRef
182.
Zurück zum Zitat Liu L, Zhu YP, Su M, Yuan ZY (2015) Metal-free carbonaceous materials as promising heterogeneous catalysts. ChemCatChem 7:2765–2787CrossRef Liu L, Zhu YP, Su M, Yuan ZY (2015) Metal-free carbonaceous materials as promising heterogeneous catalysts. ChemCatChem 7:2765–2787CrossRef
183.
Zurück zum Zitat Cao Y, Mao S, Li M, Chen Y, Wang Y (2017) Metal/porous carbon composites for heterogeneous catalysis: old catalysts with improved performance promoted by n-doping. ACS Catal 7:8090–8112CrossRef Cao Y, Mao S, Li M, Chen Y, Wang Y (2017) Metal/porous carbon composites for heterogeneous catalysis: old catalysts with improved performance promoted by n-doping. ACS Catal 7:8090–8112CrossRef
184.
Zurück zum Zitat De S, Balu AM, Waal J, Luque R (2015) Biomass-derived porous carbon materials: synthesis and catalytic applications. ChemCatChem 7:1608–1629CrossRef De S, Balu AM, Waal J, Luque R (2015) Biomass-derived porous carbon materials: synthesis and catalytic applications. ChemCatChem 7:1608–1629CrossRef
185.
Zurück zum Zitat Donoeva B, Masoud N, Jongh PE (2017) Carbon support surface effects in the gold-catalyzed oxidation of 5 hydroxymethylfurfural. ACS Catal 7:4581–4591CrossRef Donoeva B, Masoud N, Jongh PE (2017) Carbon support surface effects in the gold-catalyzed oxidation of 5 hydroxymethylfurfural. ACS Catal 7:4581–4591CrossRef
186.
Zurück zum Zitat Nakajima K, Hara M (2012) Amorphous carbon with SO3H groups as a solid Brønsted acid catalyst. ACS Catal 2:1296–1304CrossRef Nakajima K, Hara M (2012) Amorphous carbon with SO3H groups as a solid Brønsted acid catalyst. ACS Catal 2:1296–1304CrossRef
187.
Zurück zum Zitat Gonçalves M, Rodrigues R, Galhardo TS, Carvalho WA (2016) Highly selective acetalization of glycerol with acetone to solketal over acidic carbon-based catalysts from biodiesel waste. Fuel 181:46–54CrossRef Gonçalves M, Rodrigues R, Galhardo TS, Carvalho WA (2016) Highly selective acetalization of glycerol with acetone to solketal over acidic carbon-based catalysts from biodiesel waste. Fuel 181:46–54CrossRef
188.
Zurück zum Zitat Védrine JC (2017) Heterogeneous catalysis on metal oxides. Catalysts 7:341CrossRef Védrine JC (2017) Heterogeneous catalysis on metal oxides. Catalysts 7:341CrossRef
189.
Zurück zum Zitat Reddy PS, Sudarsanam P, Mallesham B, Raju G, Reddy BM (2011) Acetalisation of glycerol with acetone over zirconia and promoted zirconia catalysts under mild reaction conditions. J Ind Eng Chem 17:377–381CrossRef Reddy PS, Sudarsanam P, Mallesham B, Raju G, Reddy BM (2011) Acetalisation of glycerol with acetone over zirconia and promoted zirconia catalysts under mild reaction conditions. J Ind Eng Chem 17:377–381CrossRef
190.
Zurück zum Zitat Nair GS, Adrijanto E, Alsalme A, Kozhevnikov IV, Cooke DJ, Brown DR, Shiju NR (2012) Glycerol utilization: solvent-free acetalisation over niobia catalysts. Cat Sci Technol 2:1173–1179CrossRef Nair GS, Adrijanto E, Alsalme A, Kozhevnikov IV, Cooke DJ, Brown DR, Shiju NR (2012) Glycerol utilization: solvent-free acetalisation over niobia catalysts. Cat Sci Technol 2:1173–1179CrossRef
191.
Zurück zum Zitat Souza TE, Portilho MF, Souza PMTG, Souza PP, Oliveira LCA (2014) Modified niobium oxyhydroxide catalyst: an acetalization reaction to produce bio-additives for sustainable use of waste glycerol. ChemCatChem 6:2961–2969CrossRef Souza TE, Portilho MF, Souza PMTG, Souza PP, Oliveira LCA (2014) Modified niobium oxyhydroxide catalyst: an acetalization reaction to produce bio-additives for sustainable use of waste glycerol. ChemCatChem 6:2961–2969CrossRef
192.
Zurück zum Zitat Rodrigues R, Mandelli D, Gonçalves NS, Pescarmona PP, Carvalho WA (2016) Acetalization of acetone with glycerol catalyzed by niobium-aluminum mixed oxides synthesized by a sol–gel process. J Mol Catal A Chem 422:122–130CrossRef Rodrigues R, Mandelli D, Gonçalves NS, Pescarmona PP, Carvalho WA (2016) Acetalization of acetone with glycerol catalyzed by niobium-aluminum mixed oxides synthesized by a sol–gel process. J Mol Catal A Chem 422:122–130CrossRef
193.
Zurück zum Zitat Gadamsetti S, PethanRajan N, G S R, Chary KVR (2015) Acetalization of glycerol with acetone to bio fuel additives over supported molybdenum phosphate catalysts. J Mol Catal A Chem 410:49–57CrossRef Gadamsetti S, PethanRajan N, G S R, Chary KVR (2015) Acetalization of glycerol with acetone to bio fuel additives over supported molybdenum phosphate catalysts. J Mol Catal A Chem 410:49–57CrossRef
194.
Zurück zum Zitat Churipard SR, Manjunathan P, Chandra P, Shanbhag GV, Ravishankar R, Rao PVC, Ganesh GS, Halgeri AB, Maradur SP (2017) Remarkable catalytic activity of a sulfonated mesoporous polymer (MP-SO3H) for the synthesis of solketal at room temperature. New J Chem 41:5745–5751CrossRef Churipard SR, Manjunathan P, Chandra P, Shanbhag GV, Ravishankar R, Rao PVC, Ganesh GS, Halgeri AB, Maradur SP (2017) Remarkable catalytic activity of a sulfonated mesoporous polymer (MP-SO3H) for the synthesis of solketal at room temperature. New J Chem 41:5745–5751CrossRef
Metadaten
Titel
Catalytic Conversion of Biomass-Derived Glycerol to Value-Added Chemicals
verfasst von
Kushanava Bhaduri
Anindya Ghosh
Biswajit Chowdhury
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-65017-9_15