Skip to main content

2021 | OriginalPaper | Buchkapitel

Catalytic Conversion of Alcohols into Value-Added Products

verfasst von : R. Vinayagamoorthi, B. Viswanathan, K. R. Krishnamurthy

Erschienen in: Catalysis for Clean Energy and Environmental Sustainability

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Alcohols belong to an important class of oxygenates, containing highly versatile hydroxyl (–OH) functional group(s) which are capable of undergoing a variety of chemical transformations, yielding fuels, fuel additives and a wide range of highly useful chemicals and chemical intermediates. Production of methanol, bioethanol and other higher alcohols in plenty, through various biomass conversion processes, has rendered them renewable and carbon-neutral in character and highly useful as platform chemicals. Novel catalytic processes for the conversion of aliphatic C1-C4 alcohols to C2-C4 olefins/building block chemicals, like ethylene, propylene, isobutene and butadiene, and oxygenates like aldehydes, esters and ethers and gasoline range hydrocarbons have been developed. Catalytic coupling of ethanol to higher alcohols followed by dehydration, oligomerization and hydrogenation to yield jet fuel and middle distillates results in the production of low-carbon renewable/sustainable fuels. Steam reforming and aqueous phase reforming of alcohols to produce hydrogen is yet another process option available for the transformation of alcohols that has several advantages over conventional, non-renewable methane steam reforming. Significant progress has been reported in the catalytic α-alkylation of ketone esters and amides with alcohols and aldol condensation of alcohols with other oxygenates like acetone/ketones. Catalytic upgradation of biomass-derived glycerol, furfuryl alcohol and sugar-derived alcohols like sorbitol, mannitol and xylitol results in a range of value-added products. The origin of such processes, process chemistry, development of catalysts, recent advances and future trends are covered in this chapter.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
7.
Zurück zum Zitat Fang Z, Smith RL Jr, Qi X (2019) Resources in biomass and biorefineries, vol 9. Springer, New York, NY Fang Z, Smith RL Jr, Qi X (2019) Resources in biomass and biorefineries, vol 9. Springer, New York, NY
13.
Zurück zum Zitat Kamm B, Kamm M (2004) Principles of biorefineries. Appl Microbiol Biotechnol 64:137–145. https://link.springer.com/article/10.1007/s00253-003-1537-7 Kamm B, Kamm M (2004) Principles of biorefineries. Appl Microbiol Biotechnol 64:137–145. https://​link.​springer.​com/​article/​10.​1007/​s00253-003-1537-7
14.
Zurück zum Zitat Kamm B, Gruber PR, Kamm M (2006) Biorefineries-industrial processes and products. Weinheim, Wiley-VCH Verlag GmbH &Co. K GaA Kamm B, Gruber PR, Kamm M (2006) Biorefineries-industrial processes and products. Weinheim, Wiley-VCH Verlag GmbH &Co. K GaA
16.
Zurück zum Zitat De Jong E, Jungmeier G (2015) Biorefinery concepts in comparison to petrochemical refineries. In: Pandey A, Hofer R, Taherzadeh M, Nampoothiri M, Larroche C (eds) Industrial biorefineries and white biotechnology, 1st edn. Elsevier, Amsterdam, pp 3–33CrossRef De Jong E, Jungmeier G (2015) Biorefinery concepts in comparison to petrochemical refineries. In: Pandey A, Hofer R, Taherzadeh M, Nampoothiri M, Larroche C (eds) Industrial biorefineries and white biotechnology, 1st edn. Elsevier, Amsterdam, pp 3–33CrossRef
20.
Zurück zum Zitat Werpy T, Petersen G, Aden A, Bozell J, Holladay J, White J, Manheim A et al (2004) Results of screening for potential candidates from sugars and synthesis gas. In: Werpy T, Petersen G (eds) Top value-added chemicals from biomass – vol. 1. Pacific Northwest National Laboratory, National Renewable Energy Laboratory and Department of Energy, Washington, DC Werpy T, Petersen G, Aden A, Bozell J, Holladay J, White J, Manheim A et al (2004) Results of screening for potential candidates from sugars and synthesis gas. In: Werpy T, Petersen G (eds) Top value-added chemicals from biomass – vol. 1. Pacific Northwest National Laboratory, National Renewable Energy Laboratory and Department of Energy, Washington, DC
23.
Zurück zum Zitat Langeveld H, Sanders J, Meeusen M (eds) (2010) The biobased economy: biofuels, materials and chemicals in the post-oil era. Earthscan, New York, NY Langeveld H, Sanders J, Meeusen M (eds) (2010) The biobased economy: biofuels, materials and chemicals in the post-oil era. Earthscan, New York, NY
25.
Zurück zum Zitat Mohammadi M, Najafpour GD, Younesi H, Lahijani P, Uzir MH, Mohamed AR (2011) Bioconversion of synthesis gas to second generation biofuels. A review. Renew Sust Energ Rev 15:4255–4273CrossRef Mohammadi M, Najafpour GD, Younesi H, Lahijani P, Uzir MH, Mohamed AR (2011) Bioconversion of synthesis gas to second generation biofuels. A review. Renew Sust Energ Rev 15:4255–4273CrossRef
26.
Zurück zum Zitat Quellette A, Rawn D (2014) Journal of organic chemistry – structure, mechanism and synthesis. Elsevier, Amsterdam Quellette A, Rawn D (2014) Journal of organic chemistry – structure, mechanism and synthesis. Elsevier, Amsterdam
28.
Zurück zum Zitat Methanol Institute-Methanol Market Survey Asia (MMSA) (2020) World supply-demand summary, Jan 2020. Accessed 7 Feb 2020 Methanol Institute-Methanol Market Survey Asia (MMSA) (2020) World supply-demand summary, Jan 2020. Accessed 7 Feb 2020
33.
Zurück zum Zitat Olah GA, Goeppert A, Prakash GKS (2018) Beyond oil and gas: the methanol economy. Wiley-VCH, WeinheimCrossRef Olah GA, Goeppert A, Prakash GKS (2018) Beyond oil and gas: the methanol economy. Wiley-VCH, WeinheimCrossRef
35.
Zurück zum Zitat Hobson C, Marques C (2018) Renewable methanol report. Methanol Institute, Washington, DC. http://www.mefco2.eu/news/mapping-out-renewable-methanol-around-the-world.php Hobson C, Marques C (2018) Renewable methanol report. Methanol Institute, Washington, DC. http://​www.​mefco2.​eu/​news/​mapping-out-renewable-methanol-around-the-world.​php
40.
Zurück zum Zitat Chandran K (2012) Methods and systems for biologically producing methanol. WO 2012/078845 A1 Chandran K (2012) Methods and systems for biologically producing methanol. WO 2012/078845 A1
42.
Zurück zum Zitat Johnson D (2012) Global methanol market review. http://www.ptq.pemex.com/productosyservicios/eventosdescargas/Documents/Foro%20PEMEX%20Petroqu%C3%ADmica/2012/PEMEX_DJohnson.pdf. Accessed 23 Mar 2016 Johnson D (2012) Global methanol market review. http://​www.​ptq.​pemex.​com/​productosyservic​ios/​eventosdescargas​/​Documents/​Foro%20PEMEX%20Petroqu%C3%ADmica/2012/PEMEX_DJohnson.pdf. Accessed 23 Mar 2016
52.
Zurück zum Zitat Doutton JA. e-Education Institute, Penn State University, Pennsylvania Doutton JA. e-Education Institute, Penn State University, Pennsylvania
55.
Zurück zum Zitat LanzaTech (2015) LanzaTech executive summary. http://www.lanzatech.com/wp-content/uploads/2015/03/2-pager-2015.pdf. Accessed 1 Feb 2017 LanzaTech (2015) LanzaTech executive summary. http://​www.​lanzatech.​com/​wp-content/​uploads/​2015/​03/​2-pager-2015.​pdf.​ Accessed 1 Feb 2017
62.
Zurück zum Zitat Sada M et al (1981) US patent 4307257, 22 Dec 1981 Sada M et al (1981) US patent 4307257, 22 Dec 1981
65.
Zurück zum Zitat Gautam M, Martin DW (2000) Combustion characteristics of higher-alcohol/gasoline blends. Proc Inst Mech Eng A J Power Energy 214:497–511. doi:10.1243%2F0957650001538047CrossRef Gautam M, Martin DW (2000) Combustion characteristics of higher-alcohol/gasoline blends. Proc Inst Mech Eng A J Power Energy 214:497–511. doi:10.1243%2F0957650001538047CrossRef
68.
Zurück zum Zitat Derre P (2007) Biotechnol J Rep 2:1525–1534 Derre P (2007) Biotechnol J Rep 2:1525–1534
70.
Zurück zum Zitat n-Butanol market by application (butyl acrylate, butyl acetate, glycol ethers, direct solvents, plasticizers), and region (Asia Pacific, North America, Europe, Middle East & Africa, South America)—Global Forecast to 2022: a report (CH1543) 2018 n-Butanol market by application (butyl acrylate, butyl acetate, glycol ethers, direct solvents, plasticizers), and region (Asia Pacific, North America, Europe, Middle East & Africa, South America)—Global Forecast to 2022: a report (CH1543) 2018
71.
Zurück zum Zitat Hahn HD, Dambkes G, Rupprich N, Bahl H, Frey GD (2013) Butanols. Ullmann’s encyclopedia of industrial chemistry. doi:10.1002/14356007.a04_463.pub3 Hahn HD, Dambkes G, Rupprich N, Bahl H, Frey GD (2013) Butanols. Ullmann’s encyclopedia of industrial chemistry. doi:10.1002/14356007.a04_463.pub3
73.
Zurück zum Zitat Guerbet MCR (1899) Acad Sci Paris 128:1002–1004 Guerbet MCR (1899) Acad Sci Paris 128:1002–1004
74.
Zurück zum Zitat Guerbet MCR (1909) Acad Sci Paris 149:129–132 Guerbet MCR (1909) Acad Sci Paris 149:129–132
75.
Zurück zum Zitat Kozlowski J T, Davis RJ (2013) Heterogeneous catalysts for the Guerbet coupling of alcohols. ACS Catal 3:1588–1600. https://pubs.acs.org/doi/10.1021/cs400292f Kozlowski J T, Davis RJ (2013) Heterogeneous catalysts for the Guerbet coupling of alcohols. ACS Catal 3:1588–1600. https://​pubs.​acs.​org/​doi/​10.​1021/​cs400292f
80.
Zurück zum Zitat Garncarek Z, Kociolek-Balawejder E (2009) Biobutanol. Perspectives of the production development. Przem Chem 88(6):658–666 Garncarek Z, Kociolek-Balawejder E (2009) Biobutanol. Perspectives of the production development. Przem Chem 88(6):658–666
82.
Zurück zum Zitat Jain S, Yadav MK, Kumar A (2014) In: Babu V, Thapliyal A, Patel GK (eds) Production of butanol: a biofuel in biofuels production. Scrivener Publishing LLC, Beverly, MA, pp 255–284 Jain S, Yadav MK, Kumar A (2014) In: Babu V, Thapliyal A, Patel GK (eds) Production of butanol: a biofuel in biofuels production. Scrivener Publishing LLC, Beverly, MA, pp 255–284
84.
86.
Zurück zum Zitat https://www.plasticsinsight.com/resin-intelligence/resin-prices/mono-ethylene-glycolmeg. Accessed on 16th Feb 2020 https://www.plasticsinsight.com/resin-intelligence/resin-prices/mono-ethylene-glycolmeg. Accessed on 16th Feb 2020
87.
Zurück zum Zitat Bio PET (2020) Market size, share, forecast, industry report. Plastics industry. Radiant Insights Inc, San Francisco, CA Bio PET (2020) Market size, share, forecast, industry report. Plastics industry. Radiant Insights Inc, San Francisco, CA
89.
Zurück zum Zitat Alain C, Gilles L (1989) Petrochemical processes. Volume 2: major oxygenated, chlorinated and nitrated derivatives. Editions Technip, New York, NY, p 26. ISBN:9782710805632 Alain C, Gilles L (1989) Petrochemical processes. Volume 2: major oxygenated, chlorinated and nitrated derivatives. Editions Technip, New York, NY, p 26. ISBN:9782710805632
93.
Zurück zum Zitat Nakamura CE, Whited GM (2003) Metabolic engineering for the microbial production of 1,3-propanediol. Curr Opin Biotechnol 14: 454–459. https://www.ncbi.nlm.nih.gov/pubmed/14580573 Nakamura CE, Whited GM (2003) Metabolic engineering for the microbial production of 1,3-propanediol. Curr Opin Biotechnol 14: 454–459. https://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​14580573
97.
Zurück zum Zitat Pagliaro M, Rossi M (2010) The future of glycerol, vol 2. RSC Green Chemistry Series Royal Society of Chemistry, London Pagliaro M, Rossi M (2010) The future of glycerol, vol 2. RSC Green Chemistry Series Royal Society of Chemistry, London
99.
Zurück zum Zitat Lee CS, Aroua MK, Daud WMAW, Cognet P, Pe’re’s-Lucchese Y, Fabre PL, Reynes O, Latapie L (2015) A review: conversion of bio-glycerol into 1,3-propanediol via biological and chemical method. Renew Sust Energ Rev 42:963–972. 10.1016/j.rser.2014.10.033 Lee CS, Aroua MK, Daud WMAW, Cognet P, Pe’re’s-Lucchese Y, Fabre PL, Reynes O, Latapie L (2015) A review: conversion of bio-glycerol into 1,3-propanediol via biological and chemical method. Renew Sust Energ Rev 42:963–972. 10.1016/j.rser.2014.10.033
103.
Zurück zum Zitat Ji XJ, Huang H (2014) Bio-based butanediols production: the contributions of catalysis, metabolic engineering, and synthetic biology. In: Bisaria VS, Kondo A (eds) Bioprocessing of renewable resources to commodity bioproducts. Wiley, Hoboken, NJ, pp 261–288CrossRef Ji XJ, Huang H (2014) Bio-based butanediols production: the contributions of catalysis, metabolic engineering, and synthetic biology. In: Bisaria VS, Kondo A (eds) Bioprocessing of renewable resources to commodity bioproducts. Wiley, Hoboken, NJ, pp 261–288CrossRef
108.
Zurück zum Zitat Myszkowski J, Zielinski AZ (1965) Synthe’se de la butyle’ne-chlorhydrine et sa conversion enme’thyle’thylce’tone, oxyde de butyle’ne et butyle’ne-glycol. Chim Ind 93:3 Myszkowski J, Zielinski AZ (1965) Synthe’se de la butyle’ne-chlorhydrine et sa conversion enme’thyle’thylce’tone, oxyde de butyle’ne et butyle’ne-glycol. Chim Ind 93:3
113.
Zurück zum Zitat Sampat BG (2011) 1,4-Butanediol: a techno-commercial profile. Chem Weekly 2011:205–211 Sampat BG (2011) 1,4-Butanediol: a techno-commercial profile. Chem Weekly 2011:205–211
114.
Zurück zum Zitat Burk MJ (2010) Sustainable production of industrial chemicals from sugars. Int Sugar J 112 (1333):30–35 https://www.genomatica.com/_uploads/pdfs/ISJ_markburke.pdf Burk MJ (2010) Sustainable production of industrial chemicals from sugars. Int Sugar J 112 (1333):30–35 https://​www.​genomatica.​com/​_​uploads/​pdfs/​ISJ_​markburke.​pdf
115.
Zurück zum Zitat Burk MJ, Van Dien SJ, Burgard AP, Niu W (2015) Composition and methods for the biosynthesis of 1,4-butanediol and its precursors. US 8969054 B2 Burk MJ, Van Dien SJ, Burgard AP, Niu W (2015) Composition and methods for the biosynthesis of 1,4-butanediol and its precursors. US 8969054 B2
116.
Zurück zum Zitat Genomatica (2015) Commercial-scale production, customer validation, licenses. http://www.genomatica.com/products/genobdoprocess/. Accessed 14 Apr 2015 Genomatica (2015) Commercial-scale production, customer validation, licenses. http://​www.​genomatica.​com/​products/​genobdoprocess/​.​ Accessed 14 Apr 2015
117.
Zurück zum Zitat Dittmeyer R, Keim W, Kreysa G, Oberholz A (2005) Chem Tech Prozesse Prod 5:55–68. https://doc1.bibliothek.li/aao/FLMA135383.pdf Dittmeyer R, Keim W, Kreysa G, Oberholz A (2005) Chem Tech Prozesse Prod 5:55–68. https://​doc1.​bibliothek.​li/​aao/​FLMA135383.​pdf
125.
Zurück zum Zitat Nexant Inc. (2015) Petrochemical market dynamics oxo alcohols. Nexant Inc., Louisville, CO Nexant Inc. (2015) Petrochemical market dynamics oxo alcohols. Nexant Inc., Louisville, CO
127.
Zurück zum Zitat Zhao J, Lu C, Chen C-C, Yang S-T (2013) In: Yang S-T, El-Enshasy HA, Thongchul N (eds) Bioprocessing technologies in biorefinery for sustainable production of fuels, chemicals, and polymers, 1st edn. John Wiley & Sons, Inc., pp 235–261 Zhao J, Lu C, Chen C-C, Yang S-T (2013) In: Yang S-T, El-Enshasy HA, Thongchul N (eds) Bioprocessing technologies in biorefinery for sustainable production of fuels, chemicals, and polymers, 1st edn. John Wiley & Sons, Inc., pp 235–261
129.
Zurück zum Zitat Polyols (sugar alcohols) – a global market overview industry experts. Report code: FB007, Jan 2017 Polyols (sugar alcohols) – a global market overview industry experts. Report code: FB007, Jan 2017
134.
Zurück zum Zitat May A, Pastore GM, Park YK (1993) Microbial transformation of sucrose and glucose to erythritol, Biotechnol Lett, 15:383–388 https://link.springer.com/article/10.1007/BF00128281 May A, Pastore GM, Park YK (1993) Microbial transformation of sucrose and glucose to erythritol, Biotechnol Lett, 15:383–388 https://​link.​springer.​com/​article/​10.​1007/​BF00128281
139.
Zurück zum Zitat Dickson D, Hussain A, Kumpf B (2019) The future of petrochemicals: growth surrounded by uncertainty. Deloitte Consulting LLP, London. https://www2.deloitte.com/content/dam/Deloitte/us/Documents/energy-resources/the-future-of-petrochemicals.pdf. Accessed 21 Feb 2020 Dickson D, Hussain A, Kumpf B (2019) The future of petrochemicals: growth surrounded by uncertainty. Deloitte Consulting LLP, London. https://​www2.​deloitte.​com/​content/​dam/​Deloitte/​us/​Documents/​energy-resources/​the-future-of-petrochemicals.​pdf.​ Accessed 21 Feb 2020
140.
Zurück zum Zitat Vora BV, Marker TL, Barger PT, Nilsen HR, Kvisle S, Fuglerud T (1997) Economic route for natural gas conversion to ethylene and propylene. Stud Surf Sci Catal 107:87CrossRef Vora BV, Marker TL, Barger PT, Nilsen HR, Kvisle S, Fuglerud T (1997) Economic route for natural gas conversion to ethylene and propylene. Stud Surf Sci Catal 107:87CrossRef
141.
Zurück zum Zitat Kaiser S (1985) U.S. Patent 4,499,327 Kaiser S (1985) U.S. Patent 4,499,327
142.
Zurück zum Zitat Kaiser SW (1985) Arab J Sci Eng 10:361 Kaiser SW (1985) Arab J Sci Eng 10:361
143.
Zurück zum Zitat Lewis JMO (1998) In: Ward JW (ed) Catalysis. Elsevier, Amsterdam, p 199 Lewis JMO (1998) In: Ward JW (ed) Catalysis. Elsevier, Amsterdam, p 199
145.
Zurück zum Zitat Gregor J, Vermeiren W (2003) Proceedings of the fifth EMEA petrochemicals technology conference, 25–26 Jun Paris, Jun 2003 Gregor J, Vermeiren W (2003) Proceedings of the fifth EMEA petrochemicals technology conference, 25–26 Jun Paris, Jun 2003
150.
Zurück zum Zitat Xu, S, Zhi, Y, Han, J, Zhang, W, Wu, X, Sun, T, Wei, Y, Liu, Z, Advances in catalysis for methanol-to-olefins conversion, Adv Catal, 61:38–118 doi:10.1016/bs.acat.2017.10.002 2017 Xu, S, Zhi, Y, Han, J, Zhang, W, Wu, X, Sun, T, Wei, Y, Liu, Z, Advances in catalysis for methanol-to-olefins conversion, Adv Catal, 61:38–118 doi:10.1016/bs.acat.2017.10.002 2017
153.
Zurück zum Zitat Koempel, H, Liebner, W (2007) Lurgi’s methanol to propylene (MTP®), report on a successful commercialisation, in Natural gas conversion VIII F.B. Noronha, Schmal M, EF Sousa-Aguiar Amsterdam, Elsevier.V:262–267 Koempel, H, Liebner, W (2007) Lurgi’s methanol to propylene (MTP®), report on a successful commercialisation, in Natural gas conversion VIII F.B. Noronha, Schmal M, EF Sousa-Aguiar Amsterdam, Elsevier.V:262–267
154.
Zurück zum Zitat Streb S, Göhna H (2000) Mega methanol. Paving the way for new downstream industries. World methanol conference, Copenhagen, 8–10 Nov 2000 Streb S, Göhna H (2000) Mega methanol. Paving the way for new downstream industries. World methanol conference, Copenhagen, 8–10 Nov 2000
155.
Zurück zum Zitat Rothaemel M, Holtmann HD (2001) MTP, methanol to propylene – Lurgi’s way, DGMK-conference “creating value from light olefins – production and conversion, Hamburg, 10–12 Oct 2001 Rothaemel M, Holtmann HD (2001) MTP, methanol to propylene – Lurgi’s way, DGMK-conference “creating value from light olefins – production and conversion, Hamburg, 10–12 Oct 2001
156.
Zurück zum Zitat Rothaemel M (2016) Methanol-to-propylene (MTP®): a proven technology for on-purpose propylene production NGCS 11 conference, Tromso, Norway, 6–9 Jun. doi:10.13140/RG.2.2.31772.49283 Rothaemel M (2016) Methanol-to-propylene (MTP®): a proven technology for on-purpose propylene production NGCS 11 conference, Tromso, Norway, 6–9 Jun. doi:10.13140/RG.2.2.31772.49283
160.
Zurück zum Zitat Kochar NK, Merims R, Padia AS (1981) Ethylene from ethanol. Chem Eng Prog 6:66–70 Kochar NK, Merims R, Padia AS (1981) Ethylene from ethanol. Chem Eng Prog 6:66–70
161.
Zurück zum Zitat Fathi-Afshar F, Rudd DF (1980) Biomass ethanol as a chemical feedstock in the United States. Biotechnol Bioeng XXII:677–679CrossRef Fathi-Afshar F, Rudd DF (1980) Biomass ethanol as a chemical feedstock in the United States. Biotechnol Bioeng XXII:677–679CrossRef
163.
Zurück zum Zitat Tsao U, Zasloff H.B (1979) Production of ethylene from ethanol, US patent, 4134926A Tsao U, Zasloff H.B (1979) Production of ethylene from ethanol, US patent, 4134926A
167.
Zurück zum Zitat Al-Ali AlMa’adeed M, Krupa I (2016) Polyolefin compounds and materials: fundamentals and industrial applications. Springer, BerlinCrossRef Al-Ali AlMa’adeed M, Krupa I (2016) Polyolefin compounds and materials: fundamentals and industrial applications. Springer, BerlinCrossRef
170.
Zurück zum Zitat Olivier-Bourbigou H, Forestière A, Saussine L, Magna L, Favre F, Hugues F (2010) Olefin oligomerization for the production of fuels and petrochemicals. Oil Gas Eur Mag, 36:97−102. https://www.osti.gov/etdeweb/biblio/21327984 Olivier-Bourbigou H, Forestière A, Saussine L, Magna L, Favre F, Hugues F (2010) Olefin oligomerization for the production of fuels and petrochemicals. Oil Gas Eur Mag, 36:97−102. https://​www.​osti.​gov/​etdeweb/​biblio/​21327984
195.
Zurück zum Zitat Zhu KK, Sun JM, Zhang H, Liu J, Wang Y (2012) J Nat Gas Chem 21:215–−232CrossRef Zhu KK, Sun JM, Zhang H, Liu J, Wang Y (2012) J Nat Gas Chem 21:215–−232CrossRef
198.
Zurück zum Zitat Global Butadiene Market Overview (2020) Prismane consulting. https://www.openpr.com/news/1831666/global-butadiene-market-overview. Accessed 25 Feb 2020 Global Butadiene Market Overview (2020) Prismane consulting. https://​www.​openpr.​com/​news/​1831666/​global-butadiene-market-overview.​ Accessed 25 Feb 2020
201.
202.
203.
Zurück zum Zitat Lebedev SV (1933) Zhurnal Obshchei Khimii 3:698 Lebedev SV (1933) Zhurnal Obshchei Khimii 3:698
204.
Zurück zum Zitat Ostromislenskiy J (1915) J Russ Phys Chem Soc 47:1472–1506 Ostromislenskiy J (1915) J Russ Phys Chem Soc 47:1472–1506
205.
Zurück zum Zitat Jonathan B, Ross F, Philip L, Peter T (2012) Two-step production 1,3-butadiene from ethanol. Senior Design Rep (CBE) 42. http://repository.upenn.edu/cbe_sdr/42 Jonathan B, Ross F, Philip L, Peter T (2012) Two-step production 1,3-butadiene from ethanol. Senior Design Rep (CBE) 42. http://​repository.​upenn.​edu/​cbe_​sdr/​42
211.
Zurück zum Zitat Kagan MY, Lyubarskii GD, Podurovskaya OM, Izv Akad (1947) Nauk SSSR, Ser Khim, pp 173–181 Kagan MY, Lyubarskii GD, Podurovskaya OM, Izv Akad (1947) Nauk SSSR, Ser Khim, pp 173–181
212.
Zurück zum Zitat Vinogradova OM, Keier NP, Roginskii SZ (1957) Dokl. Akad Nauk SSSR 112:1075–1078 Vinogradova OM, Keier NP, Roginskii SZ (1957) Dokl. Akad Nauk SSSR 112:1075–1078
213.
Zurück zum Zitat Toussaint WJ, Dunn JT (1947) US 2,421,361 Toussaint WJ, Dunn JT (1947) US 2,421,361
214.
Zurück zum Zitat Toussaint W.J, Dunn J. T, Jackson D. R (1947) Ind Eng Chem, 39, 120–125. https://pubs.acs.org/doi/pdf/10.1021/ie50446a010 Toussaint W.J, Dunn J. T, Jackson D. R (1947) Ind Eng Chem, 39, 120–125. https://​pubs.​acs.​org/​doi/​pdf/​10.​1021/​ie50446a010
216.
Zurück zum Zitat Gruver V, Sun A, Fripiat J. J, (1995) Catalytic properties of aluminated sepiolite in ethanol conversion. Catal Lett 34:359–364. https://link.springer.com/article/10.1007/BF00806885 Gruver V, Sun A, Fripiat J. J, (1995) Catalytic properties of aluminated sepiolite in ethanol conversion. Catal Lett 34:359–364. https://​link.​springer.​com/​article/​10.​1007/​BF00806885
217.
Zurück zum Zitat Chieregato A, Ochoa JV, Cavani F (2016) Olefins from biomass. In: Chemicals and fuels from bio-based building blocks. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 1–32 Chieregato A, Ochoa JV, Cavani F (2016) Olefins from biomass. In: Chemicals and fuels from bio-based building blocks. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 1–32
218.
Zurück zum Zitat Natta G, Rigamonti R (1947) Chim Ind 29:95 Natta G, Rigamonti R (1947) Chim Ind 29:95
219.
Zurück zum Zitat Corson, B. B, Jones H.E, Welling C.E, Hinckley J.A, Stahly E.E (1950) Butadiene from ethyl alcohol, Ind Eng Chem, 42:359. https://pubs.acs.org/doi/pdf/10.1021/ie50482a039 Corson, B. B, Jones H.E, Welling C.E, Hinckley J.A, Stahly E.E (1950) Butadiene from ethyl alcohol, Ind Eng Chem, 42:359. https://​pubs.​acs.​org/​doi/​pdf/​10.​1021/​ie50482a039
221.
Zurück zum Zitat Kitayama Y, Satoh M, Kodama, T (1996) Preparation of large surface area nickel magnesium silicate and its catalytic activity for conversion of ethanol into buta-1,3-diene Catal Lett36:95 https://link.springer.com/article/10.1007/BF00807211 Kitayama Y, Satoh M, Kodama, T (1996) Preparation of large surface area nickel magnesium silicate and its catalytic activity for conversion of ethanol into buta-1,3-diene Catal Lett36:95 https://​link.​springer.​com/​article/​10.​1007/​BF00807211
226.
Zurück zum Zitat Bhattacharyya, S. K, Avasthi, B. N (1963) One-step catalytic conversion of ethanol to Butadiene in a fluidized bed, Ind Eng Chem Process Des Dev, 2, 45–51. https://pubs.acs.org/doi/pdf/10.1021/i260005a010 Bhattacharyya, S. K, Avasthi, B. N (1963) One-step catalytic conversion of ethanol to Butadiene in a fluidized bed, Ind Eng Chem Process Des Dev, 2, 45–51. https://​pubs.​acs.​org/​doi/​pdf/​10.​1021/​i260005a010
227.
230.
Zurück zum Zitat Chang CD, Silvestri AJ (1977) The conversion of methanol and other o-compounds to hydrocarbons over zeolite catalysts. J Catal 47:249–259CrossRef Chang CD, Silvestri AJ (1977) The conversion of methanol and other o-compounds to hydrocarbons over zeolite catalysts. J Catal 47:249–259CrossRef
233.
Zurück zum Zitat Chang, C. D, James, C.W, Kuo, J.C.W, Lang, W.H, Solomon M, Jacob, S.M, Wise, J.J. Silvestri, A. J, (1978) Process studies on the conversion of methanol to gasoline, Ind Eng Chem Process Des Dev, 17, 255–260. https://pubs.acs.org/doi/pdf/10.1021/i260067a008 Chang, C. D, James, C.W, Kuo, J.C.W, Lang, W.H, Solomon M, Jacob, S.M, Wise, J.J. Silvestri, A. J, (1978) Process studies on the conversion of methanol to gasoline, Ind Eng Chem Process Des Dev, 17, 255–260. https://​pubs.​acs.​org/​doi/​pdf/​10.​1021/​i260067a008
236.
Zurück zum Zitat Tabak S, Heinritz-Adrian M, Brandl A, McGihon R, Brandl A (2008) An alternative route for coal to liquid fuel-applying the exxon mobil methanol to gasoline (MTG) process, gasification technologies conference, 5–8 Oct, Washington, DC Tabak S, Heinritz-Adrian M, Brandl A, McGihon R, Brandl A (2008) An alternative route for coal to liquid fuel-applying the exxon mobil methanol to gasoline (MTG) process, gasification technologies conference, 5–8 Oct, Washington, DC
237.
Zurück zum Zitat Helton T, Hindman M (2014) Methanol to gasoline technology – an alternative for liquid fuel production-GTL technology forum, Texas, USA, 30–31 Jul 2014 Helton T, Hindman M (2014) Methanol to gasoline technology – an alternative for liquid fuel production-GTL technology forum, Texas, USA, 30–31 Jul 2014
238.
Zurück zum Zitat Udessen H (2013) TIGAS—Topsoe improved gasoline synthesis, 16th IMPCA-2013 Asian methanol conference, 30 Oct to 1 Nov 2013 Udessen H (2013) TIGAS—Topsoe improved gasoline synthesis, 16th IMPCA-2013 Asian methanol conference, 30 Oct to 1 Nov 2013
239.
Zurück zum Zitat Gal E, Fang H, Qin H, Boyajian G, Li N (2015) Comparison of STG+ with other GTL Technologies. PGE_White-paper-GTL-Comparison-V32. www.primusge.com www.chemwinfo.com. Accessed 29 Feb 2020 Gal E, Fang H, Qin H, Boyajian G, Li N (2015) Comparison of STG+ with other GTL Technologies. PGE_White-paper-GTL-Comparison-V32. www.primusge.com www.chemwinfo.com. Accessed 29 Feb 2020
240.
Zurück zum Zitat ID:MRFR/CnM/5385-HCR-March 2020. https://www.marketresearchfuture.com/reports/ethanol-market-7304. Accessed 1 Mar 2020 ID:MRFR/CnM/5385-HCR-March 2020. https://​www.​marketresearchfu​ture.​com/​reports/​ethanol-market-7304.​ Accessed 1 Mar 2020
241.
Zurück zum Zitat Eagan, N. M, Kumbhalkar M.D, Buchanan, J. S, Dumesic, J. A, Huber, G.W (2019) Chemistries and processes for the conversion of ethanol into middle distillate fuels, Nat Rev Chem, 3, 223–249. https://www.nature.com/articles/s41570–019–0084-4 Eagan, N. M, Kumbhalkar M.D, Buchanan, J. S, Dumesic, J. A, Huber, G.W (2019) Chemistries and processes for the conversion of ethanol into middle distillate fuels, Nat Rev Chem, 3, 223–249. https://​www.​nature.​com/​articles/​s41570–019–0084-4
251.
Zurück zum Zitat https://www.maritime-executive.com/article/transport-uses-25-percent-of-world-energy. Accessed 6 Mar 2020 https://www.maritime-executive.com/article/transport-uses-25-percent-of-world-energy. Accessed 6 Mar 2020
252.
Zurück zum Zitat International energy outlook-2016 DOE/EIA-0484(2016) I May 2016 www.eia.gov/forecasts/ieo/pdf/0484(2016).pdf International energy outlook-2016 DOE/EIA-0484(2016) I May 2016 www.eia.gov/forecasts/ieo/pdf/0484(2016).pdf
253.
Zurück zum Zitat Global bioenergy statistics-2019, World Biofuel Association, p 12 Global bioenergy statistics-2019, World Biofuel Association, p 12
255.
Zurück zum Zitat US Energy Information Administration (2015) The flight paths for biojet fuel. US Energy Information Administration, Washington, DC, p 20585. https://www.eia.gov/workingpapers/pdf/flightpaths_biojetffuel.pdf US Energy Information Administration (2015) The flight paths for biojet fuel. US Energy Information Administration, Washington, DC, p 20585. https://​www.​eia.​gov/​workingpapers/​pdf/​flightpaths_​biojetffuel.​pdf
258.
Zurück zum Zitat Humbird RD, Tao L, Kinchin C, Hsu D, Aden A, Schoen P (2011) Process design and economics for biochemical conversion of lignocellulosic biomass to ethanol: dilute-acid pre-treatment and enzymatic hydrolysis of corn stover. Report no. NREL/TP-5100-47764. http://www.nrel.gov/docs/fy11osti/47764.pdf Humbird RD, Tao L, Kinchin C, Hsu D, Aden A, Schoen P (2011) Process design and economics for biochemical conversion of lignocellulosic biomass to ethanol: dilute-acid pre-treatment and enzymatic hydrolysis of corn stover. Report no. NREL/TP-5100-47764. http://​www.​nrel.​gov/​docs/​fy11osti/​47764.​pdf
259.
Zurück zum Zitat Brooks KP, Snowden-Swan LJ, Jones SB, Butcher MG, Lee GSJ, Anderson DM, Frye JG, Holladay JE, Owen J, Harmon L, Burton F, Palou-Rivera I, Plaza J, Handler R, Shonnard D (2016) Low-carbon aviation fuel through the alcohol to jet pathway. In: Chuck C (ed) Biofuels for aviation: feedstocks, technology and implementation. Academic, Cambridge, MA, p 390 Brooks KP, Snowden-Swan LJ, Jones SB, Butcher MG, Lee GSJ, Anderson DM, Frye JG, Holladay JE, Owen J, Harmon L, Burton F, Palou-Rivera I, Plaza J, Handler R, Shonnard D (2016) Low-carbon aviation fuel through the alcohol to jet pathway. In: Chuck C (ed) Biofuels for aviation: feedstocks, technology and implementation. Academic, Cambridge, MA, p 390
260.
Zurück zum Zitat Lilga MA (2016) Systems and processes for conversion of ethylene feedstocks to hydrocarbon fuels. WO 2016067032, WO 2016067033 (2016); US9,663,416 (2017) Lilga MA (2016) Systems and processes for conversion of ethylene feedstocks to hydrocarbon fuels. WO 2016067032, WO 2016067033 (2016); US9,663,416 (2017)
261.
Zurück zum Zitat Lilga MA, Frye J, Lee S, Albrecht K (2016) Conversion of 2,3 butane-diol to butadiene, U.S. Patent No. 9:434,569 B2 Lilga MA, Frye J, Lee S, Albrecht K (2016) Conversion of 2,3 butane-diol to butadiene, U.S. Patent No. 9:434,569 B2
262.
Zurück zum Zitat Narula CK, Li Z, Casbeer E, Geiger RA, Szybist JP, Keller M, Davison BH, Theiss T. Direct catalytic upgrading of current dilute alcohol fermentation streams to hydrocarbons for fungible fuels. www.energy.gov-2015/04-biochemical_conversion_davison_0315 Narula CK, Li Z, Casbeer E, Geiger RA, Szybist JP, Keller M, Davison BH, Theiss T. Direct catalytic upgrading of current dilute alcohol fermentation streams to hydrocarbons for fungible fuels. www.energy.gov-2015/04-biochemical_conversion_davison_0315
263.
Zurück zum Zitat Wyman CE. Novel vertimass catalyst for conversion of ethanol and other alcohols into fungible gasoline, jet, and diesel fuel blend stocks. https://energy.gov/sites/prod/files/2015/07/f24/wyman_bioenergy_2015 Wyman CE. Novel vertimass catalyst for conversion of ethanol and other alcohols into fungible gasoline, jet, and diesel fuel blend stocks. https://​energy.​gov/​sites/​prod/​files/​2015/​07/​f24/​wyman_​bioenergy_​2015
264.
Zurück zum Zitat Hannon JR. Ethanol conversion to fungible gasoline, diesel, and jet fuel blend stocks and high value chemical coproducts (BTEX). www.energy.gov-sites-files-2017/10-hannon_bioeconomy_2017 Hannon JR. Ethanol conversion to fungible gasoline, diesel, and jet fuel blend stocks and high value chemical coproducts (BTEX). www.energy.gov-sites-files-2017/10-hannon_bioeconomy_2017
265.
Zurück zum Zitat Wyman CE, Hannon J (2016) R systems and methods for reducing energy consumption in production of ethanol fuel by conversion to hydrocarbon fuels US20160362612A1, 15 Dec, 2016 Wyman CE, Hannon J (2016) R systems and methods for reducing energy consumption in production of ethanol fuel by conversion to hydrocarbon fuels US20160362612A1, 15 Dec, 2016
266.
Zurück zum Zitat Wyman CE, Hannon JR (2019) Systems and methods for improving yields of hydrocarbon fuels from alcohols, US/2019/00119579A1, 25 Apr 2019 Wyman CE, Hannon JR (2019) Systems and methods for improving yields of hydrocarbon fuels from alcohols, US/2019/00119579A1, 25 Apr 2019
267.
Zurück zum Zitat Narula, C.K, Li, Z, Casbeer, E.M, Geiger, R. A, Debusk, M.M, Keller, M, Buchanan, M.V, and Davison, B.H, Heterobimetallic zeolite, InV-ZSM-5, enables efficient conversion of biomass derived ethanol to renewable hydrocarbons, Sci Rep, 5, 16039. doi: 10.1038/srep16039 Narula, C.K, Li, Z, Casbeer, E.M, Geiger, R. A, Debusk, M.M, Keller, M, Buchanan, M.V, and Davison, B.H, Heterobimetallic zeolite, InV-ZSM-5, enables efficient conversion of biomass derived ethanol to renewable hydrocarbons, Sci Rep, 5, 16039. doi: 10.1038/srep16039
268.
Zurück zum Zitat Narula CK, Davison BH, Keller M (2017) Zeolitic catalytic conversion of alcohols to hydrocarbons, U.S 9533921, 3 Jan 2017 Narula CK, Davison BH, Keller M (2017) Zeolitic catalytic conversion of alcohols to hydrocarbons, U.S 9533921, 3 Jan 2017
269.
Zurück zum Zitat Narula CK, Davison BH (2015) Catalytic conversion of alcohols having at least three carbon Atoms to hydrocarbon blend-stock, U.S. 9181493, 10 Nov 2015 Narula CK, Davison BH (2015) Catalytic conversion of alcohols having at least three carbon Atoms to hydrocarbon blend-stock, U.S. 9181493, 10 Nov 2015
270.
Zurück zum Zitat Narula CK, Davison BH, Keller M. Catalytic conversion of alcohols to hydrocarbons with low benzene content, U.S. 9278892, 8 Mar, US9434658, 5 Sep 2016 Narula CK, Davison BH, Keller M. Catalytic conversion of alcohols to hydrocarbons with low benzene content, U.S. 9278892, 8 Mar, US9434658, 5 Sep 2016
271.
Zurück zum Zitat Hannon JR. Technoeconomic and life-cycle analysis of single-step catalytic conversion of wet ethanol into fungible fuel blend stocks. www.pnas.org/cgi/doi/10.1073/pnas.1821684116 Hannon JR. Technoeconomic and life-cycle analysis of single-step catalytic conversion of wet ethanol into fungible fuel blend stocks. www.pnas.org/cgi/doi/10.1073/pnas.1821684116
272.
Zurück zum Zitat Johnston G 2017 Alcohol to jet-iso-butanol—ICAO seminar on alternate fuels, ICAO Head Quarters, Montreal, 8–9 Feb 2017 Johnston G 2017 Alcohol to jet-iso-butanol—ICAO seminar on alternate fuels, ICAO Head Quarters, Montreal, 8–9 Feb 2017
273.
Zurück zum Zitat Matthew WP, Taylor JD. Renewable jet fuel blendstock from iso-butanol, US 8975461, 10th Mar 2015; US Pat. Appl. 2011/0288352, 24 Nov 2011 Matthew WP, Taylor JD. Renewable jet fuel blendstock from iso-butanol, US 8975461, 10th Mar 2015; US Pat. Appl. 2011/0288352, 24 Nov 2011
274.
Zurück zum Zitat Green car Congress, Dec 19th 2019 – Delta enters off-take agreement with Gevo for 10 million gallons per year of sustainable aviation fuel Green car Congress, Dec 19th 2019 – Delta enters off-take agreement with Gevo for 10 million gallons per year of sustainable aviation fuel
275.
Zurück zum Zitat Wright ME (2012) Biomass to alcohol to jet/diesel-APAN Community. community.apan.org›intelligent-evolution-components-attachments, Aus. Brief, final.pdf Wright ME (2012) Biomass to alcohol to jet/diesel-APAN Community. community.apan.org›intelligent-evolution-components-attachments, Aus. Brief, final.pdf
276.
Zurück zum Zitat Cobalt and the Naval Air Warfare Center team up to produce a renewable jet fuel from bio N-butanol from naval-air-warfare-center-team-up-to-produce-a-renewable-jet-fuel-from-bio-n-butanol-143461676.html. http://www.prnewswire.com/news-releases/cobalt-and-the- Cobalt and the Naval Air Warfare Center team up to produce a renewable jet fuel from bio N-butanol from naval-air-warfare-center-team-up-to-produce-a-renewable-jet-fuel-from-bio-n-butanol-143461676.html. http://​www.​prnewswire.​com/​news-releases/​cobalt-and-the-
277.
Zurück zum Zitat Naval Air Warfare Center awards contract to Albemarle for processing Cobalt Technologies bio n-butanol to renewable jet fuel using alcohol-to-jet process – Green car Congress, 20 Mar 2012 Naval Air Warfare Center awards contract to Albemarle for processing Cobalt Technologies bio n-butanol to renewable jet fuel using alcohol-to-jet process – Green car Congress, 20 Mar 2012
279.
Zurück zum Zitat Ruddy D, Dagle R Li Z (2019) Liquid fuels via upgrading of indirect liquefaction intermediates. WBS: 2.3.1.100/304/305. www.energy.gov, 2019/03 Ruddy D, Dagle R Li Z (2019) Liquid fuels via upgrading of indirect liquefaction intermediates. WBS: 2.3.1.100/304/305. www.energy.gov, 2019/03
280.
Zurück zum Zitat Bradin D 2014 Process for producing renewable jet fuel compositions, WO 2014/008337 Al, 9 Jun Bradin D 2014 Process for producing renewable jet fuel compositions, WO 2014/008337 Al, 9 Jun
282.
Zurück zum Zitat Wang W-C, Tao L, Markham J, Zhang Y, Tan E, Batan L, Warner E, Biddy M (2016) Review of biojet fuel conversion technologies, technical report NREL/TP-5100-66291, July. National Renewable Energy Laboratory, Golden, CO. www.nrel.gov/publications Wang W-C, Tao L, Markham J, Zhang Y, Tan E, Batan L, Warner E, Biddy M (2016) Review of biojet fuel conversion technologies, technical report NREL/TP-5100-66291, July. National Renewable Energy Laboratory, Golden, CO. www.nrel.gov/publications
285.
Zurück zum Zitat Hoang, T. M. C, Vikla, A.K.K Seshan K 2016 Aqueous-phase reforming of sugar derivatives: challenges and opportunities, in Dmitry Murzin and Olga Simakova Biomass sugars for non-fuel applications, RSC Green Chemistry The Royal Society of Chemistry London 44, pp. 54–88 Hoang, T. M. C, Vikla, A.K.K Seshan K 2016 Aqueous-phase reforming of sugar derivatives: challenges and opportunities, in Dmitry Murzin and Olga Simakova Biomass sugars for non-fuel applications, RSC Green Chemistry The Royal Society of Chemistry London 44, pp. 54–88
294.
Zurück zum Zitat Bai Y, Lu CS, Ma L, Chen P, Zheng YF, Li XN (2006) Hydrogen production by aqueous-phase reforming of ethylene glycol over Pt catalysts supported on γ-Al2O3 modified with Ce and Mg. Chin J Catal 27(3):275–280 Bai Y, Lu CS, Ma L, Chen P, Zheng YF, Li XN (2006) Hydrogen production by aqueous-phase reforming of ethylene glycol over Pt catalysts supported on γ-Al2O3 modified with Ce and Mg. Chin J Catal 27(3):275–280
299.
Zurück zum Zitat Seretis A, Tsiakaras P (2016) Hydrogenolysis of glycerol to propylene glycol by in situ produced hydrogen from aqueous phase reforming of glycerol over SiO2– Al2O3 supported nickel catalyst. Fuel Process Technol 142:135–146CrossRef Seretis A, Tsiakaras P (2016) Hydrogenolysis of glycerol to propylene glycol by in situ produced hydrogen from aqueous phase reforming of glycerol over SiO2– Al2O3 supported nickel catalyst. Fuel Process Technol 142:135–146CrossRef
310.
Zurück zum Zitat Liu XH (2011) Aqueous-phase reforming of ethylene glycol to hydrogen on supported platinum catalysts. Ph.D. thesis. East China University of Science and Technology, Shanghai Liu XH (2011) Aqueous-phase reforming of ethylene glycol to hydrogen on supported platinum catalysts. Ph.D. thesis. East China University of Science and Technology, Shanghai
313.
Zurück zum Zitat Grand View Research Inc. (2020) Market research report—isosorbide market size, share and trend analysis. Grand View Research Inc., San Francisco, CA. Accessed 22 Mar 2020 Grand View Research Inc. (2020) Market research report—isosorbide market size, share and trend analysis. Grand View Research Inc., San Francisco, CA. Accessed 22 Mar 2020
319.
Zurück zum Zitat Soetaert W, Buchholz K, Vandamme E (1995) Production of D-mannitol and D-lactic acid by fermentation by Leuconostoc mesenteroides Agro Food Ind Hi Tech, 6: 41–44. https://lib.ugent.be/catalog/pug01:256408 Soetaert W, Buchholz K, Vandamme E (1995) Production of D-mannitol and D-lactic acid by fermentation by Leuconostoc mesenteroides Agro Food Ind Hi Tech, 6: 41–44. https://​lib.​ugent.​be/​catalog/​pug01:256408
341.
Zurück zum Zitat Umbarkar SB, Kotbagi TV, Biradar AV, Pasricha R, Chanale J, Dongare MK, Mamede A-S, Lancelot C, Payen E (2009) Acetalization of glycerol using mesoporous MoO3 /SiO2 solid acid catalyst. J Mol Catal A Chem 310:150–158CrossRef Umbarkar SB, Kotbagi TV, Biradar AV, Pasricha R, Chanale J, Dongare MK, Mamede A-S, Lancelot C, Payen E (2009) Acetalization of glycerol using mesoporous MoO3 /SiO2 solid acid catalyst. J Mol Catal A Chem 310:150–158CrossRef
343.
Zurück zum Zitat Ma T, Ding J, Shao R, Xu W, Yun Z (2017) Dehydration of glycerol to acrolein over Wells–Dawson and Keggin type phospho tungstic acids supported on MCM-41 catalysts. Chem Eng J 316: 797–806. http://doi:10.1016/j.cej.2017.02.018 Ma T, Ding J, Shao R, Xu W, Yun Z (2017) Dehydration of glycerol to acrolein over Wells–Dawson and Keggin type phospho tungstic acids supported on MCM-41 catalysts. Chem Eng J 316: 797–806. http://​doi:10.1016/j.cej.2017.02.018
347.
Zurück zum Zitat Climent MJ, Corma A, De Frutos P, Iborra S, Noy M, Velty A, Concepción P (2010) Chemicals from biomass: synthesis of glycerol carbonate by transesterification and carbonylation with urea with hydrotalcite catalysts – the role of acid–base pairs. J Catal 269:140–149. https://doi.org/10.1016/j.jcat.2009.11.001 Climent MJ, Corma A, De Frutos P, Iborra S, Noy M, Velty A, Concepción P (2010) Chemicals from biomass: synthesis of glycerol carbonate by transesterification and carbonylation with urea with hydrotalcite catalysts – the role of acid–base pairs. J Catal 269:140–149. https://​doi.​org/​10.​1016/​j.​jcat.​2009.​11.​001
352.
Zurück zum Zitat Gonzalez-Pajuelo M, Meynial-Salles I, Mendes F, Soucaille P, Vasconcelos I (2006) Microbial conversion of glycerol to 1,3-propanediol: physiological comparison of a natural producer, clostridium butyricum VPI 3266, and an engineered strain, clostridium acetobutylicum DG1(pSPD5). Appl Environ Microbiol 72:96–101. https://doi.org/10.1128/AEM.72.1.96-101.2006CrossRef Gonzalez-Pajuelo M, Meynial-Salles I, Mendes F, Soucaille P, Vasconcelos I (2006) Microbial conversion of glycerol to 1,3-propanediol: physiological comparison of a natural producer, clostridium butyricum VPI 3266, and an engineered strain, clostridium acetobutylicum DG1(pSPD5). Appl Environ Microbiol 72:96–101. https://​doi.​org/​10.​1128/​AEM.​72.​1.​96-101.​2006CrossRef
359.
Zurück zum Zitat Prescient and Strategic Intelligence Pvt. Ltd. Report published in Global Newswire, 7th Nov 2019 Prescient and Strategic Intelligence Pvt. Ltd. Report published in Global Newswire, 7th Nov 2019
360.
Zurück zum Zitat Bozell JJ, Moens L, Elliot DC, Wang Y, Neuenscwander GG, Fitzpatrick SW, Bilski RJ, Jarnefeld JL (2000) Production of levulinic acid and use as a platform chemical for derived products. Resources, Conservation and Recycling 28:227–239. PII:S0921-3449(99)00047-6CrossRef Bozell JJ, Moens L, Elliot DC, Wang Y, Neuenscwander GG, Fitzpatrick SW, Bilski RJ, Jarnefeld JL (2000) Production of levulinic acid and use as a platform chemical for derived products. Resources, Conservation and Recycling 28:227–239. PII:S0921-3449(99)00047-6CrossRef
361.
Zurück zum Zitat Hayes DJ, Fitzpatrick S, Hayes MHB, Ross JRH (2008) The biofine process: production of levulinic acid, furfural, and formic acid from lignocellulosic feedstocks. In: Kamm B, Gruber PR, Kamm M (eds) Biorefineries – industrial processes and products. Wiley-VCH, Weinheim Hayes DJ, Fitzpatrick S, Hayes MHB, Ross JRH (2008) The biofine process: production of levulinic acid, furfural, and formic acid from lignocellulosic feedstocks. In: Kamm B, Gruber PR, Kamm M (eds) Biorefineries – industrial processes and products. Wiley-VCH, Weinheim
362.
366.
Zurück zum Zitat Haan RJ, Lange J-P (2011) US Patent Appl., 20110035991A1 Haan RJ, Lange J-P (2011) US Patent Appl., 20110035991A1
367.
Zurück zum Zitat Haan RJ, Lange J-P (2009) World Patatent, WO 2009077606 A2 Haan RJ, Lange J-P (2009) World Patatent, WO 2009077606 A2
372.
Zurück zum Zitat Yi B, Rajagopalan R, Foley HC, Kim UJ, Liu X, Eklund PC (2006) Catalytic polymerization and facile grafting of poly (furfuryl alcohol) to single-wall carbon nanotube: preparation of nanocomposite carbon. J Am Chem Soc 128:11307–11313. https://doi.org/10.1021/ja063518xCrossRef Yi B, Rajagopalan R, Foley HC, Kim UJ, Liu X, Eklund PC (2006) Catalytic polymerization and facile grafting of poly (furfuryl alcohol) to single-wall carbon nanotube: preparation of nanocomposite carbon. J Am Chem Soc 128:11307–11313. https://​doi.​org/​10.​1021/​ja063518xCrossRef
373.
Zurück zum Zitat Kumar R, Rajesh A (2012) Process for preparing polyfurfuryl alcohol products, WO 2012/123902 Al, 20 Sep 2012 Kumar R, Rajesh A (2012) Process for preparing polyfurfuryl alcohol products, WO 2012/123902 Al, 20 Sep 2012
374.
Zurück zum Zitat van Buijtenen J, Lange JP, Price RJ (2011) United States Pat., 2011/0173877 van Buijtenen J, Lange JP, Price RJ (2011) United States Pat., 2011/0173877
379.
Zurück zum Zitat Pease RN, Yung CC (1924) The catalytic dehydration of ethyl alcohol and ether by alumina. J Am Chem Soc 46:390–340CrossRef Pease RN, Yung CC (1924) The catalytic dehydration of ethyl alcohol and ether by alumina. J Am Chem Soc 46:390–340CrossRef
391.
Zurück zum Zitat Bazzanella AM, Ausfelder F (2017) Low carbon energy and feedstock for the European chemical industry. DECHEMA Gesellschaft für Chemische Technik und Biotechnologie e.V, Frankfurt. ISBN:978-3-89746-196-2 Bazzanella AM, Ausfelder F (2017) Low carbon energy and feedstock for the European chemical industry. DECHEMA Gesellschaft für Chemische Technik und Biotechnologie e.V, Frankfurt. ISBN:978-3-89746-196-2
399.
Zurück zum Zitat Tsvetanova F, Petrova P, Petrov K (2018) Microbial production of 1-butanol – recent advances and future prospects. J Chem Technol Metall 53:683–696. https://www.researchgate.net/publication/325554503 Tsvetanova F, Petrova P, Petrov K (2018) Microbial production of 1-butanol – recent advances and future prospects. J Chem Technol Metall 53:683–696. https://​www.​researchgate.​net/​publication/​325554503
Metadaten
Titel
Catalytic Conversion of Alcohols into Value-Added Products
verfasst von
R. Vinayagamoorthi
B. Viswanathan
K. R. Krishnamurthy
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-65017-9_16