Skip to main content

2021 | OriginalPaper | Buchkapitel

Steam Reforming of Methanol, Ethanol and Glycerol over Catalysts with Mesoporous Supports: A Comparative Study

verfasst von : S. Bepari, R. Abrokwah, V. Deshmane, D. Kuila

Erschienen in: Catalysis for Clean Energy and Environmental Sustainability

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Hydrogen generation via steam reforming of alcohols (SRA) has gained tremendous attention among green energy industries, research scientists and government policy makers. A variety of mesoporous heterogeneous catalysts used to produce hydrogen from alcohols like methanol (SRM), ethanol (SRE) and glycerol (SRG) are discussed. Siliceous mesoporous supports, e.g. SBA-15, MCM-41, MCM-48 and KIT-6, have proven to be substantially thermally stable compared to metal oxide supports such as TiO2, Al2O3 and CeO2. While Cu-based catalysts are commonly used for SRM, Ni- and Co-based catalysts are preferred for SRE and SRG reactions. Addition of promoters like group 1 and 2 metals to these monometallic catalysts significantly improves reducibility of the metal oxides as well as the basicity of the catalysts that minimize deactivation of catalysts by coking. Synergistic effects of bimetallic catalysts such as Cu-Ni, Pd-Ni and Ni-Co to increase hydrogen selectivity and long-term stability of the catalysts are discussed. Hydrogen selectivity and feed conversion of 100% can be attained depending on the reaction conditions like temperature, feed flow rate, type of catalyst, catalyst loading and alcohol/water molar ratio.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ni M, Leung DYC, Leung MKH, Sumathy K (2006) An overview of hydrogen production from biomass. Fuel Process Technol 87:461–472CrossRef Ni M, Leung DYC, Leung MKH, Sumathy K (2006) An overview of hydrogen production from biomass. Fuel Process Technol 87:461–472CrossRef
2.
Zurück zum Zitat Jones SD, Hagelin-Weaver HE (2009) Steam reforming of methanol over CeO2- and ZrO2-promoted cu-ZnO catalysts supported on nanoparticle Al2O3. Appl Catal B 90:195–204CrossRef Jones SD, Hagelin-Weaver HE (2009) Steam reforming of methanol over CeO2- and ZrO2-promoted cu-ZnO catalysts supported on nanoparticle Al2O3. Appl Catal B 90:195–204CrossRef
3.
Zurück zum Zitat Das D, Veziroglu TN (2001) Hydrogen production by biological processes: a survey of literature. Int J Hydrog Energy 26:13–28CrossRef Das D, Veziroglu TN (2001) Hydrogen production by biological processes: a survey of literature. Int J Hydrog Energy 26:13–28CrossRef
4.
Zurück zum Zitat Contreras JL, Salmones J, Colin-Luna JA, Nuno L, Quintana B, Cordova I, Zeifert B, Tapia C, Fuentes GA (2014) Catalysts for H2 production using the ethanol steam reforming (a review). Int J Hydrog Energy 39:18835–18853CrossRef Contreras JL, Salmones J, Colin-Luna JA, Nuno L, Quintana B, Cordova I, Zeifert B, Tapia C, Fuentes GA (2014) Catalysts for H2 production using the ethanol steam reforming (a review). Int J Hydrog Energy 39:18835–18853CrossRef
5.
Zurück zum Zitat Mazloomi K, Gomes C (2012) Hydrogen as an energy carrier: prospects and challenges. Renew Sust Energ Rev 16:3024–3033CrossRef Mazloomi K, Gomes C (2012) Hydrogen as an energy carrier: prospects and challenges. Renew Sust Energ Rev 16:3024–3033CrossRef
6.
Zurück zum Zitat Bepari S, Kuila D (2020) Steam reforming of methanol, ethanol, and glycerol over nickel-based catalysts-a review. Int J Hydrog Energy 45:18090–18113 Bepari S, Kuila D (2020) Steam reforming of methanol, ethanol, and glycerol over nickel-based catalysts-a review. Int J Hydrog Energy 45:18090–18113
7.
Zurück zum Zitat Schwengber CA, Alves HJ, Schaffner RA, Silva FA, Sequinel R, Bach VR, Ferracin RJ (2016) Overview of glycerol reforming for hydrogen production. Renew Sust Energ Rev 58:259–266CrossRef Schwengber CA, Alves HJ, Schaffner RA, Silva FA, Sequinel R, Bach VR, Ferracin RJ (2016) Overview of glycerol reforming for hydrogen production. Renew Sust Energ Rev 58:259–266CrossRef
8.
Zurück zum Zitat Olah GA, Geoppert A, Surya Prakash GK (1999) Beyond oil and gas: the methanol economy, 2nd edn. Wiley-VCH, Weinheim Olah GA, Geoppert A, Surya Prakash GK (1999) Beyond oil and gas: the methanol economy, 2nd edn. Wiley-VCH, Weinheim
9.
Zurück zum Zitat Cecere D, Giacomazzi E, Ingenito A (2014) A review on hydrogen industrial aerospace applications. Int J Hydrog Energy 39:10731–10747CrossRef Cecere D, Giacomazzi E, Ingenito A (2014) A review on hydrogen industrial aerospace applications. Int J Hydrog Energy 39:10731–10747CrossRef
10.
Zurück zum Zitat Ramachandran R, Menon RK (1998) An overview of industrial use of hydrogen. Int J Hydrog Energy 23:593–598CrossRef Ramachandran R, Menon RK (1998) An overview of industrial use of hydrogen. Int J Hydrog Energy 23:593–598CrossRef
11.
Zurück zum Zitat Kammert J, Moon J, Cheng Y, Daemen L, Irle S, Fung V, Liu J, Page K, Ma X, Phaneuf V, Tong J, Ramirez-Cuesta AJ, Wu Z (2020) Nature of reactive hydrogen for Ammonia synthesis over a Ru/ C12A7 Electride catalyst. J Am Chem Soc 142:7655–7667CrossRef Kammert J, Moon J, Cheng Y, Daemen L, Irle S, Fung V, Liu J, Page K, Ma X, Phaneuf V, Tong J, Ramirez-Cuesta AJ, Wu Z (2020) Nature of reactive hydrogen for Ammonia synthesis over a Ru/ C12A7 Electride catalyst. J Am Chem Soc 142:7655–7667CrossRef
12.
Zurück zum Zitat Mohammad N, Bepari S, Aravamudhan S, Kuila D (2019) Kinetics of Fischer–Tropsch synthesis in a 3-D printed stainless steel microreactor using different mesoporous silica supported co-Ru catalysts. Catalysts 9:872CrossRef Mohammad N, Bepari S, Aravamudhan S, Kuila D (2019) Kinetics of Fischer–Tropsch synthesis in a 3-D printed stainless steel microreactor using different mesoporous silica supported co-Ru catalysts. Catalysts 9:872CrossRef
13.
Zurück zum Zitat Mohammad N, Abrokwah RY, Stevens-Boyd RG, Aravamudhan S, Kuila D (2020) Fischer-tropsch studies in a 3d-printed stainless steel microchannel microreactor coated with cobalt-based bimetallic-mcm-41 catalysts. Catal Today 358:303–315 Mohammad N, Abrokwah RY, Stevens-Boyd RG, Aravamudhan S, Kuila D (2020) Fischer-tropsch studies in a 3d-printed stainless steel microchannel microreactor coated with cobalt-based bimetallic-mcm-41 catalysts. Catal Today 358:303–315
15.
Zurück zum Zitat Taboada E, Angurell I, Llorca J (2014) Dynamic photocatalytic hydrogen production from ethanol-water mixtures in an optical fiber honeycomb reactor loaded with au/TiO2. J Catal 309:460–467CrossRef Taboada E, Angurell I, Llorca J (2014) Dynamic photocatalytic hydrogen production from ethanol-water mixtures in an optical fiber honeycomb reactor loaded with au/TiO2. J Catal 309:460–467CrossRef
16.
Zurück zum Zitat Ni M, Leung MKH, Leung DYC, Sumathy K (2007) A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sust Energ Rev 11:401–425CrossRef Ni M, Leung MKH, Leung DYC, Sumathy K (2007) A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sust Energ Rev 11:401–425CrossRef
17.
Zurück zum Zitat Marone A, Izzo G, Mentuccia L, Massini G, Paganin P, Rosa S, Varrone C, Signorini A (2014) Vegetable waste as substrate and source of suitable microflora for bio-hydrogen production. Renew Energy 68:6–13CrossRef Marone A, Izzo G, Mentuccia L, Massini G, Paganin P, Rosa S, Varrone C, Signorini A (2014) Vegetable waste as substrate and source of suitable microflora for bio-hydrogen production. Renew Energy 68:6–13CrossRef
18.
Zurück zum Zitat Gallucci F, Basile A (2008) Palladium membrane reactor for steam reforming reaction: a comparison between deferent fuels. Int J Hydrog Energy 33:1671–1687CrossRef Gallucci F, Basile A (2008) Palladium membrane reactor for steam reforming reaction: a comparison between deferent fuels. Int J Hydrog Energy 33:1671–1687CrossRef
19.
Zurück zum Zitat Sun J, Qiu X, Wu F, Zhu W, Wang W, Hao S (2004) Hydrogen from steam reforming of ethanol in low and middle temperature range for fuel cell application. Int J Hydrog Energy 29:1075–1081CrossRef Sun J, Qiu X, Wu F, Zhu W, Wang W, Hao S (2004) Hydrogen from steam reforming of ethanol in low and middle temperature range for fuel cell application. Int J Hydrog Energy 29:1075–1081CrossRef
20.
Zurück zum Zitat Ribeirinha P, Alves I, Vidal Vazquez F, Schuller G, Boaventura M, Mendes A (2017) Heat integration of methanol steam reformer with a high-temperature polymeric electrolytic membrane cell. Energy 120:468–471CrossRef Ribeirinha P, Alves I, Vidal Vazquez F, Schuller G, Boaventura M, Mendes A (2017) Heat integration of methanol steam reformer with a high-temperature polymeric electrolytic membrane cell. Energy 120:468–471CrossRef
21.
Zurück zum Zitat Ribeirinha P, Abdollahzadeh M, Sousa JM, Boaventura M, Mendes A (2017) Modelling of a high-temperature polymer electrolyte membrane fuel cell integrated with a methanol steam reformer cell. Appl Energy 202:6–19CrossRef Ribeirinha P, Abdollahzadeh M, Sousa JM, Boaventura M, Mendes A (2017) Modelling of a high-temperature polymer electrolyte membrane fuel cell integrated with a methanol steam reformer cell. Appl Energy 202:6–19CrossRef
22.
Zurück zum Zitat Ewan BCR, Allen RWK (2005) A figure of merit assessment of the routes to hydrogen. Int J Hydrog Energy 30:809–819CrossRef Ewan BCR, Allen RWK (2005) A figure of merit assessment of the routes to hydrogen. Int J Hydrog Energy 30:809–819CrossRef
23.
Zurück zum Zitat Basile A, Lulianelli A, Longo T, Liguori S, De FM (2011) Pd-based selective membrane State-of-the Art [Chapter 2]. In: Marrwlli L, De Falco M, Laquaniello G (eds) Handbook of Membrane reactors for hydrogen production processes. Springer, London/Dordrecht/Heidelberg/New York, pp 21–55CrossRef Basile A, Lulianelli A, Longo T, Liguori S, De FM (2011) Pd-based selective membrane State-of-the Art [Chapter 2]. In: Marrwlli L, De Falco M, Laquaniello G (eds) Handbook of Membrane reactors for hydrogen production processes. Springer, London/Dordrecht/Heidelberg/New York, pp 21–55CrossRef
24.
Zurück zum Zitat Goltsov VA, Veziroglu TN, Goltsova LF (2006) Hydrogen civilization of the future–a new conception of the IAHE. Int J Hydrog Energy 31:153–159CrossRef Goltsov VA, Veziroglu TN, Goltsova LF (2006) Hydrogen civilization of the future–a new conception of the IAHE. Int J Hydrog Energy 31:153–159CrossRef
26.
Zurück zum Zitat Hyber GW, Iborra S, Corma A (2006) Synthesis of transition fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106:4044–4098CrossRef Hyber GW, Iborra S, Corma A (2006) Synthesis of transition fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106:4044–4098CrossRef
27.
Zurück zum Zitat Lytkina AA, Zhilyaeva NA, Ermilova MM, Orekhova NV, Yaroslavtsev AB (2015) Inference of the support structure and composition of Ni-cu-based catalysts on hydrogen production by methanol steam reforming. Int J Hydrog Energy 40:9677–9684CrossRef Lytkina AA, Zhilyaeva NA, Ermilova MM, Orekhova NV, Yaroslavtsev AB (2015) Inference of the support structure and composition of Ni-cu-based catalysts on hydrogen production by methanol steam reforming. Int J Hydrog Energy 40:9677–9684CrossRef
28.
Zurück zum Zitat Sengodan S, Lan R, Humphreys J, Du DW, Xu W, Wang HT, Tao SW (2018) Advances in reforming and partial oxidation of hydrocarbons for hydrogen production and fuel cell applications. Renew Sust Energ Rev 82:761–780CrossRef Sengodan S, Lan R, Humphreys J, Du DW, Xu W, Wang HT, Tao SW (2018) Advances in reforming and partial oxidation of hydrocarbons for hydrogen production and fuel cell applications. Renew Sust Energ Rev 82:761–780CrossRef
29.
Zurück zum Zitat Papavasiliou J, Avgouropoulos G, Ioannides T (2009) Steady-state isotopic transient kinetic analysis of steam reforming of methanol over Cu-based catalysts. Appl Catal B 88:490–496CrossRef Papavasiliou J, Avgouropoulos G, Ioannides T (2009) Steady-state isotopic transient kinetic analysis of steam reforming of methanol over Cu-based catalysts. Appl Catal B 88:490–496CrossRef
30.
Zurück zum Zitat Takahashi K, Takezawa N, Kobayashi H (1982) The mechanism of steam reforming of methanol over a copper-silica catalyst. Appl Catal 2:363–366CrossRef Takahashi K, Takezawa N, Kobayashi H (1982) The mechanism of steam reforming of methanol over a copper-silica catalyst. Appl Catal 2:363–366CrossRef
31.
Zurück zum Zitat Breen JP, Ross JRH (1999) Methanol reforming for fuel-cell applications: development of zirconia-containing Cu–Zn–Al catalysts. Catal Today 51:521–533CrossRef Breen JP, Ross JRH (1999) Methanol reforming for fuel-cell applications: development of zirconia-containing Cu–Zn–Al catalysts. Catal Today 51:521–533CrossRef
33.
Zurück zum Zitat Abrokwah RY, Deshmane VG, Kuila D (2016) Comparative performance of M-MCM-41 (M: cu, co, Ni, Pd, Zn and Sn) catalysts for steam reforming of methanol. J Mol Catal A Chem 425:10–20CrossRef Abrokwah RY, Deshmane VG, Kuila D (2016) Comparative performance of M-MCM-41 (M: cu, co, Ni, Pd, Zn and Sn) catalysts for steam reforming of methanol. J Mol Catal A Chem 425:10–20CrossRef
34.
Zurück zum Zitat Deshmane VG, Abrokwah RY, Kuila D (2015) Synthesis of stable cu-MCM-41 nanocatalysts for H2 production with high selectivity via steam reforming of methanol. Int J Hydrog Energy 40:10439–10452CrossRef Deshmane VG, Abrokwah RY, Kuila D (2015) Synthesis of stable cu-MCM-41 nanocatalysts for H2 production with high selectivity via steam reforming of methanol. Int J Hydrog Energy 40:10439–10452CrossRef
35.
Zurück zum Zitat Karim AM, Conant T, Datye AK (2008) Controlling ZnO morphology for improved methanol steam reforming reactivity. Phys Chem Chem Phys 10:5584–5590CrossRef Karim AM, Conant T, Datye AK (2008) Controlling ZnO morphology for improved methanol steam reforming reactivity. Phys Chem Chem Phys 10:5584–5590CrossRef
36.
Zurück zum Zitat Ranganathan ES, Bej SK, Thompson LT (2005) Methanol steam reforming over Pd/ZnO and Pd/CeO2 catalysts. Appl Catal A Gen 289:153–162CrossRef Ranganathan ES, Bej SK, Thompson LT (2005) Methanol steam reforming over Pd/ZnO and Pd/CeO2 catalysts. Appl Catal A Gen 289:153–162CrossRef
37.
Zurück zum Zitat Conant T, Karim AM, Lebarbier V, Wang Y, Girgsdies F, Schlogl R, Datye A (2008) Stability of bimetallic Pd–Zn catalysts for the steam reforming of methanol. J Catal 257:64–70CrossRef Conant T, Karim AM, Lebarbier V, Wang Y, Girgsdies F, Schlogl R, Datye A (2008) Stability of bimetallic Pd–Zn catalysts for the steam reforming of methanol. J Catal 257:64–70CrossRef
38.
Zurück zum Zitat Suwa Y, Ito SI, Kameoka S, Tomishige K, Kunimori K (2004) Comparative study between Zn–Pd/C and Pd/ZnO catalysts for steam reforming of methanol. Appl Catal A Gen 267:9–16CrossRef Suwa Y, Ito SI, Kameoka S, Tomishige K, Kunimori K (2004) Comparative study between Zn–Pd/C and Pd/ZnO catalysts for steam reforming of methanol. Appl Catal A Gen 267:9–16CrossRef
39.
Zurück zum Zitat Liguras DK, Kondarides DI, Verykios XE (2003) Production of hydrogen for fuel cells by steam reforming of ethanol over supported noble metal catalysts. Appl Catal B 43:345–354CrossRef Liguras DK, Kondarides DI, Verykios XE (2003) Production of hydrogen for fuel cells by steam reforming of ethanol over supported noble metal catalysts. Appl Catal B 43:345–354CrossRef
40.
Zurück zum Zitat Haryanto A, Fernando S, Murali N, Adhikari S (2005) Current status of hydrogen production techniques by steam reforming of ethanol: a review. Energy Fuel 19:2098–2106CrossRef Haryanto A, Fernando S, Murali N, Adhikari S (2005) Current status of hydrogen production techniques by steam reforming of ethanol: a review. Energy Fuel 19:2098–2106CrossRef
41.
Zurück zum Zitat Sun J, Qiu XP, Wu F, Zhu WT (2005) H2 from steam reforming of ethanol at low temperature over Ni/Y2O3, Ni/La2O3 and Ni/ Al2O3 catalysts for fuel-cell application. Int J Hydrog Energy 30:437–445CrossRef Sun J, Qiu XP, Wu F, Zhu WT (2005) H2 from steam reforming of ethanol at low temperature over Ni/Y2O3, Ni/La2O3 and Ni/ Al2O3 catalysts for fuel-cell application. Int J Hydrog Energy 30:437–445CrossRef
42.
Zurück zum Zitat Bepari S, Pradhan NC, Dalai AK (2017) Selective production of hydrogen by steam reforming of glycerol over Ni/Fly ash catalyst. Catal Today 291:36–46CrossRef Bepari S, Pradhan NC, Dalai AK (2017) Selective production of hydrogen by steam reforming of glycerol over Ni/Fly ash catalyst. Catal Today 291:36–46CrossRef
43.
Zurück zum Zitat Bepari S, Basu S, Pradhan NC, Dalai AK (2017) Steam reforming of ethanol over cerium-promoted Ni-Mg-Al hydrotalcite catalysts. Catal Today 291:47–57CrossRef Bepari S, Basu S, Pradhan NC, Dalai AK (2017) Steam reforming of ethanol over cerium-promoted Ni-Mg-Al hydrotalcite catalysts. Catal Today 291:47–57CrossRef
44.
Zurück zum Zitat Cheng CK, Foo SY, Adesina AA (2011) Steam reforming of glycerol over Ni/Al2O3 catalyst. Catal Today 178:25–33CrossRef Cheng CK, Foo SY, Adesina AA (2011) Steam reforming of glycerol over Ni/Al2O3 catalyst. Catal Today 178:25–33CrossRef
45.
Zurück zum Zitat Surendar M, Sagar TV, Babu BH, Lingaiah N, Rao KSR, Prasad PSS (2015) Glycerol steam reforming over La-Ce-Co mixed oxide-derived cobalt catalysts. RSC Adv 5:45184–45193CrossRef Surendar M, Sagar TV, Babu BH, Lingaiah N, Rao KSR, Prasad PSS (2015) Glycerol steam reforming over La-Ce-Co mixed oxide-derived cobalt catalysts. RSC Adv 5:45184–45193CrossRef
46.
Zurück zum Zitat Pompeo F, Santori GF, Nichio NN (2011) Hydrogen production by glycerol steam reforming with Pt/SiO2 and Ni/SiO2 catalysts. Catal Today 172:183–188CrossRef Pompeo F, Santori GF, Nichio NN (2011) Hydrogen production by glycerol steam reforming with Pt/SiO2 and Ni/SiO2 catalysts. Catal Today 172:183–188CrossRef
47.
Zurück zum Zitat Chiodo V, Freni S, Galvagno A, Mondello N, Frusteri F (2010) Catalytic features of Rh and Ni supported catalysts in the steam reforming of glycerol to produce hydrogen. Appl Catal A Gen 381:1–7CrossRef Chiodo V, Freni S, Galvagno A, Mondello N, Frusteri F (2010) Catalytic features of Rh and Ni supported catalysts in the steam reforming of glycerol to produce hydrogen. Appl Catal A Gen 381:1–7CrossRef
48.
Zurück zum Zitat A. Ebshish, Z. Yaakob, Y.H. Taufiq-Yap, A. Bshish, A. Shaibani, Catalytic steam reforming of glycerol over cerium and palladium-based catalysts for hydrogen production. J Fuel Cell Sci Technol 10, 021003 (1–6) (2013) A. Ebshish, Z. Yaakob, Y.H. Taufiq-Yap, A. Bshish, A. Shaibani, Catalytic steam reforming of glycerol over cerium and palladium-based catalysts for hydrogen production. J Fuel Cell Sci Technol 10, 021003 (1–6) (2013)
49.
Zurück zum Zitat Sundari R, Vaidya PD (2012) Reaction kinetics of glycerol steam reforming using a Ru/Al2O3 catalyst. Energy Fuel 26:4195–4204CrossRef Sundari R, Vaidya PD (2012) Reaction kinetics of glycerol steam reforming using a Ru/Al2O3 catalyst. Energy Fuel 26:4195–4204CrossRef
50.
Zurück zum Zitat Frusteri F, Freni S, Chiodo V, Spadaro L, Di Blasi O, Bonura G, Cavallaro S (2004) Steam reforming of bio-ethanol on alkali-doped Ni/MgO catalysts: hydrogen production for MC fuel cell. Appl Catal A Gen 270:1–7CrossRef Frusteri F, Freni S, Chiodo V, Spadaro L, Di Blasi O, Bonura G, Cavallaro S (2004) Steam reforming of bio-ethanol on alkali-doped Ni/MgO catalysts: hydrogen production for MC fuel cell. Appl Catal A Gen 270:1–7CrossRef
51.
Zurück zum Zitat Fatsikostas AN, Verykios XE (2004) Reaction network of steam reforming of ethanol over Ni-based catalysts. J Catal 225:439–452CrossRef Fatsikostas AN, Verykios XE (2004) Reaction network of steam reforming of ethanol over Ni-based catalysts. J Catal 225:439–452CrossRef
52.
Zurück zum Zitat Yang Y, Ma J, Wu F (2006) Production of hydrogen by steam reforming of ethanol over a Ni/ZnO catalyst. Int J Hydrog Energy 31:877–882CrossRef Yang Y, Ma J, Wu F (2006) Production of hydrogen by steam reforming of ethanol over a Ni/ZnO catalyst. Int J Hydrog Energy 31:877–882CrossRef
53.
Zurück zum Zitat Pompeo F, Santori G, Nichio NN (2010) Hydrogen and/or syngas from steam reforming of glycerol. Study of platinum catalysts. Int J Hydrogen Energy 35:8912–8920CrossRef Pompeo F, Santori G, Nichio NN (2010) Hydrogen and/or syngas from steam reforming of glycerol. Study of platinum catalysts. Int J Hydrogen Energy 35:8912–8920CrossRef
54.
Zurück zum Zitat Khzouz M, Wood J, Pollet B, Bujalski W (2013) Characterization and activity test of commercial Ni/Al2O3, cu/ZnO/Al2O3 and prepared Ni–cu/Al2O3 catalysts for hydrogen production from methane and methanol fuels. Int J Hydrog Energy 38:1664–1675CrossRef Khzouz M, Wood J, Pollet B, Bujalski W (2013) Characterization and activity test of commercial Ni/Al2O3, cu/ZnO/Al2O3 and prepared Ni–cu/Al2O3 catalysts for hydrogen production from methane and methanol fuels. Int J Hydrog Energy 38:1664–1675CrossRef
56.
Zurück zum Zitat Taguchi A, Schuth F (2005) Ordered mesoporous materials in catalysis. Microporous Mesoporous Mater 77:1–45CrossRef Taguchi A, Schuth F (2005) Ordered mesoporous materials in catalysis. Microporous Mesoporous Mater 77:1–45CrossRef
58.
Zurück zum Zitat Pakhare D, Spivey J (2014) A review of dry (CO2) reforming of methane over noble metal catalysts. Chem Soc Rev 43:7813–7837CrossRef Pakhare D, Spivey J (2014) A review of dry (CO2) reforming of methane over noble metal catalysts. Chem Soc Rev 43:7813–7837CrossRef
59.
Zurück zum Zitat Iulianelli A, Ribeirinha P, Mendes A, Basile A (2014) Methanol steam reforming for hydrogen generation via conventional and membrane reactors: a review. Renew Sust Energ Rev 29:355–368CrossRef Iulianelli A, Ribeirinha P, Mendes A, Basile A (2014) Methanol steam reforming for hydrogen generation via conventional and membrane reactors: a review. Renew Sust Energ Rev 29:355–368CrossRef
60.
Zurück zum Zitat Sa S, Silva H, Brandao L, Sousa JM, Mendes A (2010) Catalysts for methanol steam reforming—a review. Appl Catal B 99:43–57CrossRef Sa S, Silva H, Brandao L, Sousa JM, Mendes A (2010) Catalysts for methanol steam reforming—a review. Appl Catal B 99:43–57CrossRef
61.
Zurück zum Zitat Eswaramoorthi I, Dalai AK (2009) A comparative study on the performance of mesoporous SBA-15 supported Pd-Zn catalysts in partial oxidation and steam reforming of methanol for hydrogen production. Int J Hydrog Energy 34:2580–2590CrossRef Eswaramoorthi I, Dalai AK (2009) A comparative study on the performance of mesoporous SBA-15 supported Pd-Zn catalysts in partial oxidation and steam reforming of methanol for hydrogen production. Int J Hydrog Energy 34:2580–2590CrossRef
62.
Zurück zum Zitat Jampa S, Jamieson AM, Chaisuwan T, Luengnaruemitchai A, Wongkasemjit S (2017) Achievement of hydrogen production from autothermal steam reforming of methanol over Cu-loaded mesoporous CeO2 and Cu-loaded mesoporous CeO2-ZrO2 catalysts. Int J Hydrog Energy 42:15073–15084CrossRef Jampa S, Jamieson AM, Chaisuwan T, Luengnaruemitchai A, Wongkasemjit S (2017) Achievement of hydrogen production from autothermal steam reforming of methanol over Cu-loaded mesoporous CeO2 and Cu-loaded mesoporous CeO2-ZrO2 catalysts. Int J Hydrog Energy 42:15073–15084CrossRef
63.
Zurück zum Zitat Taghizadeh M, Akhoundzadeh H, Rezayan A, Sadeghian M (2018) Excellent catalytic performance of 3D-mesoporous KIT-6 supported Cu and Ce nanoparticles in methanol steam reforming. Int J Hydrog Energy 43:10926–10937CrossRef Taghizadeh M, Akhoundzadeh H, Rezayan A, Sadeghian M (2018) Excellent catalytic performance of 3D-mesoporous KIT-6 supported Cu and Ce nanoparticles in methanol steam reforming. Int J Hydrog Energy 43:10926–10937CrossRef
64.
Zurück zum Zitat Lenarda M, Moretti E, Storaro L, Patrono P, Pinzari F, Rodriguez-Castellon E, Jimenez-Lopez A, Busca G, Finocchio E, Montanari T, Frattini R (2006) Finely dispersed Pd-Zn catalyst supported on an organized mesoporous alumina for hydrogen production by methanol steam reforming. Appl Catal A Gen 312:220–228CrossRef Lenarda M, Moretti E, Storaro L, Patrono P, Pinzari F, Rodriguez-Castellon E, Jimenez-Lopez A, Busca G, Finocchio E, Montanari T, Frattini R (2006) Finely dispersed Pd-Zn catalyst supported on an organized mesoporous alumina for hydrogen production by methanol steam reforming. Appl Catal A Gen 312:220–228CrossRef
65.
Zurück zum Zitat Deshmane VG, Owen SL, Abrokwah RY, Kuila D (2015) Mesoporous nanocrystalline TiO2 supported metal (cu, co, Ni, Pd, Zn, and Sn) catalysts: effect of metal-support interactions on steam reforming of methanol. J Mol Catal A Chem 408:202–213CrossRef Deshmane VG, Owen SL, Abrokwah RY, Kuila D (2015) Mesoporous nanocrystalline TiO2 supported metal (cu, co, Ni, Pd, Zn, and Sn) catalysts: effect of metal-support interactions on steam reforming of methanol. J Mol Catal A Chem 408:202–213CrossRef
66.
Zurück zum Zitat Tajrishi OZ, Taghizadeh M, Kiadehi AD (2018) Methanol steam reforming in a microchannel reactor by Zn-, Ce- and Zr- modified mesoporous cu/SBA-15 nanocatalyst. Int J Hydrog Energy 43:14103–14120CrossRef Tajrishi OZ, Taghizadeh M, Kiadehi AD (2018) Methanol steam reforming in a microchannel reactor by Zn-, Ce- and Zr- modified mesoporous cu/SBA-15 nanocatalyst. Int J Hydrog Energy 43:14103–14120CrossRef
67.
Zurück zum Zitat Zhao D, Sun J, Li Q, Stucky GD (2000) Morphological control of highly ordered mesoporous silica SBA-15. Chem Mater 12:275–279CrossRef Zhao D, Sun J, Li Q, Stucky GD (2000) Morphological control of highly ordered mesoporous silica SBA-15. Chem Mater 12:275–279CrossRef
68.
Zurück zum Zitat Araujo VD, Bellido JDA, Bernardi MIB, Assaf JM, Assaf EM (2012) CuO-CeO2 catalysts synthesized in one-step: characterization and PROX performance. Int J Hydrog Energy 37:5498–5507CrossRef Araujo VD, Bellido JDA, Bernardi MIB, Assaf JM, Assaf EM (2012) CuO-CeO2 catalysts synthesized in one-step: characterization and PROX performance. Int J Hydrog Energy 37:5498–5507CrossRef
69.
Zurück zum Zitat Kleitz F, Berube F, Guillet-Nicolas R, Yang C-M, Thommes M (2010) Probing adsorption, pore condensation, and hysteresis behavior of pure fluids in three-dimensional cubic mesoporous KIT-6 silica. J Phys Chem C 114:9344–9355CrossRef Kleitz F, Berube F, Guillet-Nicolas R, Yang C-M, Thommes M (2010) Probing adsorption, pore condensation, and hysteresis behavior of pure fluids in three-dimensional cubic mesoporous KIT-6 silica. J Phys Chem C 114:9344–9355CrossRef
70.
Zurück zum Zitat Wan H, Li X, Ji S, Huang B, Wang K, Li C (2007) Effect of Ni loading and CexZr1-xO2 promoter on Ni based SBA-15 catalysts for steam reforming of methane. J Nat Gas Chem 16:139–147CrossRef Wan H, Li X, Ji S, Huang B, Wang K, Li C (2007) Effect of Ni loading and CexZr1-xO2 promoter on Ni based SBA-15 catalysts for steam reforming of methane. J Nat Gas Chem 16:139–147CrossRef
71.
Zurück zum Zitat Panpranot J, Goodwin JG Jr, Sayari A (2002) Synthesis and characteristics of MCM-41 supported CoRu catalysts. Catal Today 77:269–284CrossRef Panpranot J, Goodwin JG Jr, Sayari A (2002) Synthesis and characteristics of MCM-41 supported CoRu catalysts. Catal Today 77:269–284CrossRef
72.
Zurück zum Zitat Abrokwah RY, Dade W, Owen SL, Deshmane V, Rahman M, Kuila D (2016) Effects of mesoporous supports and metals on steam reforming of alcohols [Chapter 6]. In: Nanda S, Sarangi PK, Vo D-VN (eds) Fuel processing and energy utilization. Taylor and Francis, New York, pp 93–108. ISBN 9780429489594. https://doi.org/10.1201/9780429489594CrossRef Abrokwah RY, Dade W, Owen SL, Deshmane V, Rahman M, Kuila D (2016) Effects of mesoporous supports and metals on steam reforming of alcohols [Chapter 6]. In: Nanda S, Sarangi PK, Vo D-VN (eds) Fuel processing and energy utilization. Taylor and Francis, New York, pp 93–108. ISBN 9780429489594. https://​doi.​org/​10.​1201/​9780429489594CrossRef
73.
Zurück zum Zitat Peppley BA, Amphlett JC, Kearns LM, Mann RF (1999) Methanol–steam reforming on Cu/ZnO/Al2O3. Part 1: the reaction network. Appl Catal A Gen, 179:21–29 Peppley BA, Amphlett JC, Kearns LM, Mann RF (1999) Methanol–steam reforming on Cu/ZnO/Al2O3. Part 1: the reaction network. Appl Catal A Gen, 179:21–29
74.
Zurück zum Zitat Gunter MM, Ressler T, Jentoft RE, Bems B (2001) Redox behavior of copper oxide/zinc oxide catalysts in the steam reforming of methanol studied by in situ x-ray diffraction and absorption spectroscopy. J Catal 203:133–149CrossRef Gunter MM, Ressler T, Jentoft RE, Bems B (2001) Redox behavior of copper oxide/zinc oxide catalysts in the steam reforming of methanol studied by in situ x-ray diffraction and absorption spectroscopy. J Catal 203:133–149CrossRef
75.
Zurück zum Zitat Yao C-Z, Wang L-C, Liu Y-M, Wu G-S, Cao Y, Dai W-L, He H-Y, Fan K-N (2006) Effect of preparation method on the hydrogen production from methanol steam reforming over binary Cu/ZrO2 catalysts. Appl Catal A Gen 297:151–158CrossRef Yao C-Z, Wang L-C, Liu Y-M, Wu G-S, Cao Y, Dai W-L, He H-Y, Fan K-N (2006) Effect of preparation method on the hydrogen production from methanol steam reforming over binary Cu/ZrO2 catalysts. Appl Catal A Gen 297:151–158CrossRef
76.
Zurück zum Zitat Chin Y-H, Dagle R, Hu J, Dohnalkova AC, Wang Y (2002) Steam reforming of methanol over highly active Pd/ZnO catalyst. Catal Today 77:79–88CrossRef Chin Y-H, Dagle R, Hu J, Dohnalkova AC, Wang Y (2002) Steam reforming of methanol over highly active Pd/ZnO catalyst. Catal Today 77:79–88CrossRef
77.
Zurück zum Zitat Heggen M, Penner S, Friedrich M, Dunin-Borkowski RE, Armbruster M (2016) Formation of ZnO patches on ZnPd/ZnO during methanol steam reforming: a strong metal−support interaction effect. J Phys Chem C 120:10460–10465CrossRef Heggen M, Penner S, Friedrich M, Dunin-Borkowski RE, Armbruster M (2016) Formation of ZnO patches on ZnPd/ZnO during methanol steam reforming: a strong metal−support interaction effect. J Phys Chem C 120:10460–10465CrossRef
78.
Zurück zum Zitat Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106:4044–4098CrossRef Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106:4044–4098CrossRef
79.
Zurück zum Zitat Vaidya PD, Rodrigues AD (2009) Glycerol reforming for hydrogen production: a review. Chem Eng Technol 32:1463–1469CrossRef Vaidya PD, Rodrigues AD (2009) Glycerol reforming for hydrogen production: a review. Chem Eng Technol 32:1463–1469CrossRef
80.
Zurück zum Zitat Velu S, Satoh N, Gopinath C, Suzuki K (2002) Oxidative reforming of bio-ethanol over CuNiZnAl mixed oxide catalysts for hydrogen production. Catal Letters 82:145–152CrossRef Velu S, Satoh N, Gopinath C, Suzuki K (2002) Oxidative reforming of bio-ethanol over CuNiZnAl mixed oxide catalysts for hydrogen production. Catal Letters 82:145–152CrossRef
81.
Zurück zum Zitat Han SJ, Song JH, Yoo J, Park S, Kang KH, Song IK (2017) Sorption-enhanced hydrogen production by steam reforming of ethanol over mesoporous Co/CaO-Al2O3 xerogel catalysts: effect of Ca/Al molar ratio. Int J Hydrog Energy 42:5886–5898CrossRef Han SJ, Song JH, Yoo J, Park S, Kang KH, Song IK (2017) Sorption-enhanced hydrogen production by steam reforming of ethanol over mesoporous Co/CaO-Al2O3 xerogel catalysts: effect of Ca/Al molar ratio. Int J Hydrog Energy 42:5886–5898CrossRef
82.
Zurück zum Zitat Gharahshiran VS, Yousefpour M, Amini V (2020) A comparative study of zirconia and yttria promoted mesoporous carbon-nickel-cobalt catalysts in steam reforming of ethanol for hydrogen production. Mol Catal 484:110767CrossRef Gharahshiran VS, Yousefpour M, Amini V (2020) A comparative study of zirconia and yttria promoted mesoporous carbon-nickel-cobalt catalysts in steam reforming of ethanol for hydrogen production. Mol Catal 484:110767CrossRef
83.
Zurück zum Zitat Moogi S, Lee I-G, Park J-Y (2019) Effect of La2O3 and CeO2 loadings on formation of nickel-phyllosilicate precursor during preparation of Ni/SBA-15 for hydrogen-rich gas production from ethanol steam reforming. Int J Hydrog Energy 44:29537–29546CrossRef Moogi S, Lee I-G, Park J-Y (2019) Effect of La2O3 and CeO2 loadings on formation of nickel-phyllosilicate precursor during preparation of Ni/SBA-15 for hydrogen-rich gas production from ethanol steam reforming. Int J Hydrog Energy 44:29537–29546CrossRef
84.
Zurück zum Zitat Chiou JYZ, Kung H-Y, Wang C-B (2017) Highly stable and active Ni-doped ordered mesoporous carbon catalyst on the steam reforming of ethanol application. J Saudi Chem Soc 21:205–209CrossRef Chiou JYZ, Kung H-Y, Wang C-B (2017) Highly stable and active Ni-doped ordered mesoporous carbon catalyst on the steam reforming of ethanol application. J Saudi Chem Soc 21:205–209CrossRef
85.
Zurück zum Zitat He S, He S, Zhang L, Li X, Wang J, He D, Lu J, Luo Y (2015) Hydrogen production by ethanol steam reforming over Ni/SBA-15 mesoporous catalysts: effect of Au addition. Catal Today 258:162–168CrossRef He S, He S, Zhang L, Li X, Wang J, He D, Lu J, Luo Y (2015) Hydrogen production by ethanol steam reforming over Ni/SBA-15 mesoporous catalysts: effect of Au addition. Catal Today 258:162–168CrossRef
86.
Zurück zum Zitat Nejat T, Jalalinezhad P, Hormozi F, Bahrami Z (2019) Hydrogen production from steam reforming of ethanol Ni-Co bimetallic catalysts and MCM-41 as support. J Taiwan Inst Chem Eng 97:216–226CrossRef Nejat T, Jalalinezhad P, Hormozi F, Bahrami Z (2019) Hydrogen production from steam reforming of ethanol Ni-Co bimetallic catalysts and MCM-41 as support. J Taiwan Inst Chem Eng 97:216–226CrossRef
87.
Zurück zum Zitat Arslan A, Gunduz S, Dogu T (2014) Steam reforming of ethanol with zirconia incorporated mesoporous silicate supported catalysts. Int J Hydrog Energy 37:5498–5507 Arslan A, Gunduz S, Dogu T (2014) Steam reforming of ethanol with zirconia incorporated mesoporous silicate supported catalysts. Int J Hydrog Energy 37:5498–5507
88.
Zurück zum Zitat Han SJ, Bang Y, Yoo J, Kang KH, Song JH, Seo JG, Song IK (2013) Hydrogen production by steam reforming of ethanol over mesoporous Ni-Al2O3-ZrO2 aerogel catalyst. Int J Hydrog Energy 38:15119–15127CrossRef Han SJ, Bang Y, Yoo J, Kang KH, Song JH, Seo JG, Song IK (2013) Hydrogen production by steam reforming of ethanol over mesoporous Ni-Al2O3-ZrO2 aerogel catalyst. Int J Hydrog Energy 38:15119–15127CrossRef
89.
Zurück zum Zitat Han SJ, Song JH, Bang Y, Yoo J, Park S, Kang KH, Song IK (2016) Hydrogen production by steam reforming of ethanol over mesoporous Cu-Ni-Al2O3-ZrO2 xerogel catalysts. Int J Hydrog Energy 41:2554–2563CrossRef Han SJ, Song JH, Bang Y, Yoo J, Park S, Kang KH, Song IK (2016) Hydrogen production by steam reforming of ethanol over mesoporous Cu-Ni-Al2O3-ZrO2 xerogel catalysts. Int J Hydrog Energy 41:2554–2563CrossRef
90.
Zurück zum Zitat Han SJ, Bang Y, Yoo J, Park S, Kang KH, Choi JH, Song JH, Song IK (2014) Hydrogen production by steam reforming of ethanol over P123-assisted mesoporous Ni-Al2O3-ZrO2 xerogel catalysts. Int J Hydrog Energy 39:10445–10453CrossRef Han SJ, Bang Y, Yoo J, Park S, Kang KH, Choi JH, Song JH, Song IK (2014) Hydrogen production by steam reforming of ethanol over P123-assisted mesoporous Ni-Al2O3-ZrO2 xerogel catalysts. Int J Hydrog Energy 39:10445–10453CrossRef
91.
Zurück zum Zitat Han SJ, Bang Y, Yoo J, Seo JG, Song IK (2013) Hydrogen production by steam reforming of ethanol over mesoporous Ni-Al2O3-ZrO2 xerogel catalysts: effect of nickel content. Int J Hydrog Energy 38:8285–8292CrossRef Han SJ, Bang Y, Yoo J, Seo JG, Song IK (2013) Hydrogen production by steam reforming of ethanol over mesoporous Ni-Al2O3-ZrO2 xerogel catalysts: effect of nickel content. Int J Hydrog Energy 38:8285–8292CrossRef
92.
Zurück zum Zitat Gupta M, Kumar N (2012) Scope and opportunities of using glycerol as an energy source. Renew Sust Energ Rev 16:4551–4556CrossRef Gupta M, Kumar N (2012) Scope and opportunities of using glycerol as an energy source. Renew Sust Energ Rev 16:4551–4556CrossRef
93.
Zurück zum Zitat Almeida JRM, Favaro LCL, Quirino BF (2012) Biodiesel biorefinery: opportunities and challenges for microbial production of fuels and chemicals from glycerol waste. Biotechnol Biofuels 5:48CrossRef Almeida JRM, Favaro LCL, Quirino BF (2012) Biodiesel biorefinery: opportunities and challenges for microbial production of fuels and chemicals from glycerol waste. Biotechnol Biofuels 5:48CrossRef
94.
Zurück zum Zitat Sad ME, Duarte HA, Vignatti C, Padro CL, Apesteguia CR (2015) Steam reforming of glycerol: hydrogen production optimization. Int J Hydrog Energy 40:6097–6106CrossRef Sad ME, Duarte HA, Vignatti C, Padro CL, Apesteguia CR (2015) Steam reforming of glycerol: hydrogen production optimization. Int J Hydrog Energy 40:6097–6106CrossRef
95.
Zurück zum Zitat Dou B, Song Y, Wang C, Chen H, Xu Y (2014) Hydrogen production from catalytic steam reforming of biodiesel byproduct glycerol: issues and challenges. Renew Sust Energ Rev 30:950–960CrossRef Dou B, Song Y, Wang C, Chen H, Xu Y (2014) Hydrogen production from catalytic steam reforming of biodiesel byproduct glycerol: issues and challenges. Renew Sust Energ Rev 30:950–960CrossRef
96.
Zurück zum Zitat Alcala R, Mavrikakis M, Dumesic JA (2003) DFT studies for cleavage of C-C and C-O bonds in surface species derived from ethanol on Pt (111). J Catal 218:178–190CrossRef Alcala R, Mavrikakis M, Dumesic JA (2003) DFT studies for cleavage of C-C and C-O bonds in surface species derived from ethanol on Pt (111). J Catal 218:178–190CrossRef
97.
Zurück zum Zitat Calles JA, Carrero A, Vizcaino AJ, Garcia-Moreno L (2014) Hydrogen production by glycerol steam reforming over SBA-15-supported nickel catalysts: effect of alkaline earth promoters on activity and stability. Catal Today 227:198–206CrossRef Calles JA, Carrero A, Vizcaino AJ, Garcia-Moreno L (2014) Hydrogen production by glycerol steam reforming over SBA-15-supported nickel catalysts: effect of alkaline earth promoters on activity and stability. Catal Today 227:198–206CrossRef
98.
Zurück zum Zitat Carrero A, Vizcaino AJ, Calles JA, Garcia-Moreno L (2017) Hydrogen production through glycerol steam reforming using Co catalysts supported on SBA-15 doped with Zr, Ce and La. J Energy Chem 26:42–48CrossRef Carrero A, Vizcaino AJ, Calles JA, Garcia-Moreno L (2017) Hydrogen production through glycerol steam reforming using Co catalysts supported on SBA-15 doped with Zr, Ce and La. J Energy Chem 26:42–48CrossRef
99.
Zurück zum Zitat Al-Salihi S, Abrokwah R, Dade W, Deshmane V, Hossain T, Kuila D (2020) Renewable hydrogen from glycerol steam reforming using Co-Ni-MgO based SBA-15 nanocatalysts. Int J Hydrog Energy 45:14183–14198CrossRef Al-Salihi S, Abrokwah R, Dade W, Deshmane V, Hossain T, Kuila D (2020) Renewable hydrogen from glycerol steam reforming using Co-Ni-MgO based SBA-15 nanocatalysts. Int J Hydrog Energy 45:14183–14198CrossRef
100.
Zurück zum Zitat Senseni AZ, Meshkani F, Rezaei M (2016) Steam reforming of glycerol on mesoporous nanocrystalline Ni/Al2O3 catalysts for H2 production. Int J Hydrog Energy 41:20137–20146CrossRef Senseni AZ, Meshkani F, Rezaei M (2016) Steam reforming of glycerol on mesoporous nanocrystalline Ni/Al2O3 catalysts for H2 production. Int J Hydrog Energy 41:20137–20146CrossRef
101.
Zurück zum Zitat Silva JM, Soria MA, Madeira LM (2015) Challenges and strategies for optimization of glycerol steam reforming process. Renew Sust Energ Rev 42:1187–1213CrossRef Silva JM, Soria MA, Madeira LM (2015) Challenges and strategies for optimization of glycerol steam reforming process. Renew Sust Energ Rev 42:1187–1213CrossRef
102.
Zurück zum Zitat Lee D, Lee HC (2012) A direct synthesis of nickel nanoclusters embedded on multicomponent mesoporous metal oxides and their catalytic properties for glycerol steam reforming to hydrogen. Int J Hydrog Energy 37:18773–18781CrossRef Lee D, Lee HC (2012) A direct synthesis of nickel nanoclusters embedded on multicomponent mesoporous metal oxides and their catalytic properties for glycerol steam reforming to hydrogen. Int J Hydrog Energy 37:18773–18781CrossRef
103.
Zurück zum Zitat Sadanandam G, Ramya K, Kishore DB, Durgakumari V, Subrahmanyam M, Chary KVR (2014) A study to initiate development of sustainable Ni/γ-Al2O3 catalyst for hydrogen production from steam reforming of biomass-derived glycerol. RSC Adv 4:32429–32437CrossRef Sadanandam G, Ramya K, Kishore DB, Durgakumari V, Subrahmanyam M, Chary KVR (2014) A study to initiate development of sustainable Ni/γ-Al2O3 catalyst for hydrogen production from steam reforming of biomass-derived glycerol. RSC Adv 4:32429–32437CrossRef
Metadaten
Titel
Steam Reforming of Methanol, Ethanol and Glycerol over Catalysts with Mesoporous Supports: A Comparative Study
verfasst von
S. Bepari
R. Abrokwah
V. Deshmane
D. Kuila
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-65017-9_17