Skip to main content
Erschienen in: Journal of Material Cycles and Waste Management 4/2021

21.05.2021 | ORIGINAL ARTICLE

Catalytic pyrolysis of Eupatorium adenophorum by sodium salt

verfasst von: Kangqing Zeng, Heng Yan, Hongying Xia, Libo Zhang, Qi Zhang

Erschienen in: Journal of Material Cycles and Waste Management | Ausgabe 4/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Eupatorium adenophorum (EA) has been spread widely in China and its increasing number has posed potential threats and damages to the ecosystem and environment. Therefore, it is urgent to develop an economical and efficient method to convert low-value biomass into high-value products. In this paper, pyrolysis of EA with non-catalytic and with sodium chloride (NaCl) catalyst and sodium carbonate (Na2CO3) catalyst was carried out in a conventional resistance furnace. The maximum yield of bio-oil was obtained with 3 wt% NaCl and 3 wt% Na2CO3, respectively. The composition of bio-oil indicated that NaCl and Na2CO3 promoted the formation of hydrocarbon, alcohol substitution leading to a decrease in the yield of phenol and acid. For bio-gas, the addition of NaCl and Na2CO3 could reduce the elimination of CO and CH4 and promote the formation of H2 and CO2. The results indicated that NaCl and Na2CO3 had the potential to be used as a pretreatment of pyrolysis of EA to generate more resources with low cost.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Krishna BB, Biswas B et al (2016) Pyrolysis of Cedrus deodara saw mill shavings in hydrogen and nitrogen atmosphere for the production of bio-oil. Renewable Energy 98:238–244CrossRef Krishna BB, Biswas B et al (2016) Pyrolysis of Cedrus deodara saw mill shavings in hydrogen and nitrogen atmosphere for the production of bio-oil. Renewable Energy 98:238–244CrossRef
2.
Zurück zum Zitat Corton J, Donnison IS et al (2016) Expanding the biomass resource: sustainable oil production via fast pyrolysis of low input high diversity biomass and the potential integration of thermochemical and biological conversion routes. Appl Energy 177:852–862CrossRef Corton J, Donnison IS et al (2016) Expanding the biomass resource: sustainable oil production via fast pyrolysis of low input high diversity biomass and the potential integration of thermochemical and biological conversion routes. Appl Energy 177:852–862CrossRef
3.
Zurück zum Zitat Zhang LE, Liu R, Yin R, Mei Y (2013) Upgrading of bio-oil from biomass fast pyrolysis in China: a review. Renew Sustain Energy Rev 24(10):66–72CrossRef Zhang LE, Liu R, Yin R, Mei Y (2013) Upgrading of bio-oil from biomass fast pyrolysis in China: a review. Renew Sustain Energy Rev 24(10):66–72CrossRef
4.
Zurück zum Zitat Moralı U, Yavuzel N, Şensöz S (2016) Pyrolysis of hornbeam (Carpinus betulus L.) sawdust: characterization of bio-oil and bio-char. Bioresour Technol 221:682–685CrossRef Moralı U, Yavuzel N, Şensöz S (2016) Pyrolysis of hornbeam (Carpinus betulus L.) sawdust: characterization of bio-oil and bio-char. Bioresour Technol 221:682–685CrossRef
5.
Zurück zum Zitat Wu SR, Chang CC, Chang YH, Wan HP (2016) Comparison of oil-tea shell and Douglas-fir sawdust for the production of bio-oils and chars in a fluidized-bed fast pyrolysis system. Fuel 175:57–63CrossRef Wu SR, Chang CC, Chang YH, Wan HP (2016) Comparison of oil-tea shell and Douglas-fir sawdust for the production of bio-oils and chars in a fluidized-bed fast pyrolysis system. Fuel 175:57–63CrossRef
6.
Zurück zum Zitat Dhyani V, Bhaskar T (2018) A comprehensive review on the pyrolysis of lignocellulosic biomass. Renewable Energy 129:695–716CrossRef Dhyani V, Bhaskar T (2018) A comprehensive review on the pyrolysis of lignocellulosic biomass. Renewable Energy 129:695–716CrossRef
7.
Zurück zum Zitat Raja SA, Kennedy ZR, Pillai BC, Lee CLR (2010) Flash pyrolysis of jatropha oil cake in electrically heated fluidized bed reactor. Energy 35(7):2819–2823CrossRef Raja SA, Kennedy ZR, Pillai BC, Lee CLR (2010) Flash pyrolysis of jatropha oil cake in electrically heated fluidized bed reactor. Energy 35(7):2819–2823CrossRef
8.
Zurück zum Zitat Yue Y, Lin Q et al (2016) Characteristics and potential values of bio-oil, syngas and biochar derived from Salsola collina Pall. in a fixed bed slow pyrolysis system. Bioresour Technol 220:378–383CrossRef Yue Y, Lin Q et al (2016) Characteristics and potential values of bio-oil, syngas and biochar derived from Salsola collina Pall. in a fixed bed slow pyrolysis system. Bioresour Technol 220:378–383CrossRef
9.
Zurück zum Zitat Wei L, Wei M, Yulin D (2015) High-performance liquid-catalyst fuel cell for direct biomass-into-electricity conversion. Angew Chem Int Ed Engl 53(49):13558–13562 Wei L, Wei M, Yulin D (2015) High-performance liquid-catalyst fuel cell for direct biomass-into-electricity conversion. Angew Chem Int Ed Engl 53(49):13558–13562
10.
Zurück zum Zitat Kan T, Strezov V, Evans TJ (2016) Lignocellulosic biomass pyrolysis: a review of product properties and effects of pyrolysis parameters. Renew Sustain Energy Rev 57(28):1126–1140CrossRef Kan T, Strezov V, Evans TJ (2016) Lignocellulosic biomass pyrolysis: a review of product properties and effects of pyrolysis parameters. Renew Sustain Energy Rev 57(28):1126–1140CrossRef
11.
Zurück zum Zitat Zhang H, Xiao R, Huang H, Xiao G (2009) Comparison of non-catalytic and catalytic fast pyrolysis of corncob in a fluidized bed reactor. Bioresour Technol 99(3):1428–1434CrossRef Zhang H, Xiao R, Huang H, Xiao G (2009) Comparison of non-catalytic and catalytic fast pyrolysis of corncob in a fluidized bed reactor. Bioresour Technol 99(3):1428–1434CrossRef
12.
Zurück zum Zitat Varhegyi G, Antal MJ, Szekely T et al (1988) Simultaneous thermogravimetric-mass spectrometric studies of the thermal decomposition of biopolymers. 2. Sugarcane bagasse in the presence and absence of catalysts. Energy Fuels 2(3):273–277CrossRef Varhegyi G, Antal MJ, Szekely T et al (1988) Simultaneous thermogravimetric-mass spectrometric studies of the thermal decomposition of biopolymers. 2. Sugarcane bagasse in the presence and absence of catalysts. Energy Fuels 2(3):273–277CrossRef
13.
Zurück zum Zitat Chen MQ, Wang J, Zhang MX et al (2008) Catalytic effects of eight inorganic additives on pyrolysis of pine wood sawdust by microwave heating. J Anal Appl Pyrol 82(1):145–150CrossRef Chen MQ, Wang J, Zhang MX et al (2008) Catalytic effects of eight inorganic additives on pyrolysis of pine wood sawdust by microwave heating. J Anal Appl Pyrol 82(1):145–150CrossRef
14.
Zurück zum Zitat Patwardhan PR, Satrio JA, Brown RC et al (2010) Influence of inorganic salts on the primary pyrolysis products of cellulose. Bioresour Technol 101(12):4646–4655CrossRef Patwardhan PR, Satrio JA, Brown RC et al (2010) Influence of inorganic salts on the primary pyrolysis products of cellulose. Bioresour Technol 101(12):4646–4655CrossRef
15.
Zurück zum Zitat Çağlar A et al (2000) Conversion of cotton cocoon shell to liquid products by pyrolysis. Energy Convers Manag 41(16):1749–1756CrossRef Çağlar A et al (2000) Conversion of cotton cocoon shell to liquid products by pyrolysis. Energy Convers Manag 41(16):1749–1756CrossRef
16.
Zurück zum Zitat Nguyen TS, Zabeti M et al (2013) Conversion of lignocellulosic biomass to green fuel oil over sodium based catalysts. Bioresour Technol 142:353–360CrossRef Nguyen TS, Zabeti M et al (2013) Conversion of lignocellulosic biomass to green fuel oil over sodium based catalysts. Bioresour Technol 142:353–360CrossRef
17.
Zurück zum Zitat Li C, Zhang L, Xia H et al (2016) Kinetics and isotherms studies for congo red adsorption on mesoporous Eupatorium adenophorum -based activated carbon via microwave-induced H3PO4 activation. J Mol Liq 224:737–744CrossRef Li C, Zhang L, Xia H et al (2016) Kinetics and isotherms studies for congo red adsorption on mesoporous Eupatorium adenophorum -based activated carbon via microwave-induced H3PO4 activation. J Mol Liq 224:737–744CrossRef
18.
Zurück zum Zitat Sahoo A, Singh B, Sharma OP (2011) Evaluation of feeding value of Eupatorium adenophorum in combination with mulberry leaves. Livest Sci 136(2):175–183CrossRef Sahoo A, Singh B, Sharma OP (2011) Evaluation of feeding value of Eupatorium adenophorum in combination with mulberry leaves. Livest Sci 136(2):175–183CrossRef
19.
Zurück zum Zitat Cheng S, Shu J, Xia H et al (2018) Pyrolysis of Crofton weed for the production of aldehyde rich bio-oil and combustible matter rich bio-gas. Appl Therm Eng 148:1164–1170CrossRef Cheng S, Shu J, Xia H et al (2018) Pyrolysis of Crofton weed for the production of aldehyde rich bio-oil and combustible matter rich bio-gas. Appl Therm Eng 148:1164–1170CrossRef
20.
Zurück zum Zitat Encinar JM, Beltrán FJ, Antonio R, González JF (1997) Catalyzed pyrolysis of grape and olive bagasse. Influence of catalyst type and chemical treatment. Ind Eng Chem Res 36(10):4176–4183CrossRef Encinar JM, Beltrán FJ, Antonio R, González JF (1997) Catalyzed pyrolysis of grape and olive bagasse. Influence of catalyst type and chemical treatment. Ind Eng Chem Res 36(10):4176–4183CrossRef
21.
Zurück zum Zitat Zhang W, Min C, Zhang S (2006) Catalytic effects of six inorganic compounds on pyrolysis of three kinds of biomass. Thermochim Acta 444(1):110–114CrossRef Zhang W, Min C, Zhang S (2006) Catalytic effects of six inorganic compounds on pyrolysis of three kinds of biomass. Thermochim Acta 444(1):110–114CrossRef
22.
Zurück zum Zitat Bradbury AGW, Sakai Y, Shafizadeh F (1979) A kinetic model for pyrolysis of cellulose. J Appl Polym Sci 23(11):3271–3280CrossRef Bradbury AGW, Sakai Y, Shafizadeh F (1979) A kinetic model for pyrolysis of cellulose. J Appl Polym Sci 23(11):3271–3280CrossRef
23.
Zurück zum Zitat Mishra G, Kumar J, Bhaskar T (2015) Kinetic studies on the pyrolysis of pinewood. Bioresour Technol 182:282–288CrossRef Mishra G, Kumar J, Bhaskar T (2015) Kinetic studies on the pyrolysis of pinewood. Bioresour Technol 182:282–288CrossRef
24.
Zurück zum Zitat Park WC, Atreya A, Baum HR (2010) Experimental and theoretical investigation of heat and mass transfer processes during wood pyrolysis. Combust Flame 157(3):481–494CrossRef Park WC, Atreya A, Baum HR (2010) Experimental and theoretical investigation of heat and mass transfer processes during wood pyrolysis. Combust Flame 157(3):481–494CrossRef
25.
Zurück zum Zitat Guo DL, Yuan HY et al (2014) Effects of chemical form of sodium on the product characteristics of alkali lignin pyrolysis. Bioresour Technol 152:147–153CrossRef Guo DL, Yuan HY et al (2014) Effects of chemical form of sodium on the product characteristics of alkali lignin pyrolysis. Bioresour Technol 152:147–153CrossRef
26.
Zurück zum Zitat Zhao N, Li BX (2016) The effect of sodium chloride on the pyrolysis of rice husk’. Appl Energy 178:346–352CrossRef Zhao N, Li BX (2016) The effect of sodium chloride on the pyrolysis of rice husk’. Appl Energy 178:346–352CrossRef
27.
Zurück zum Zitat Wu H, Hayashi JI et al (2004) Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part V. Combined effects of Na concentration and char structure on char reactivity. Fuel 83(1):23–30CrossRef Wu H, Hayashi JI et al (2004) Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part V. Combined effects of Na concentration and char structure on char reactivity. Fuel 83(1):23–30CrossRef
28.
Zurück zum Zitat Song X, Ying Z, Chang C (2012) Novel method for preparing activated carbons with high specific surface area from rice husk. Ind Eng Chem Res 51(46):15075–15081CrossRef Song X, Ying Z, Chang C (2012) Novel method for preparing activated carbons with high specific surface area from rice husk. Ind Eng Chem Res 51(46):15075–15081CrossRef
29.
Zurück zum Zitat Sharma RK, Wooten JB et al (2004) Characterization of chars from pyrolysis of lignin. Fuel 83(11):1469–1482CrossRef Sharma RK, Wooten JB et al (2004) Characterization of chars from pyrolysis of lignin. Fuel 83(11):1469–1482CrossRef
30.
Zurück zum Zitat Xiao R, Chen X, Zhou Z, Yu G (2010) Effect of temperature on organic structure of biomass pyrolysis products. Renewable Energy 50(4):136–141 Xiao R, Chen X, Zhou Z, Yu G (2010) Effect of temperature on organic structure of biomass pyrolysis products. Renewable Energy 50(4):136–141
31.
Zurück zum Zitat Mirmohamadsadeghi S, Zhu C, Wan C (2016) Reducing biomass recalcitrance via mild sodium carbonate pretreatment. Bioresour Technol 209:386–390CrossRef Mirmohamadsadeghi S, Zhu C, Wan C (2016) Reducing biomass recalcitrance via mild sodium carbonate pretreatment. Bioresour Technol 209:386–390CrossRef
32.
Zurück zum Zitat Guo D, Wu S et al (2012) Catalytic effects of NaOH and Na2CO3 additives on alkali lignin pyrolysis and gasification. Appl Energy 95(2):22–30CrossRef Guo D, Wu S et al (2012) Catalytic effects of NaOH and Na2CO3 additives on alkali lignin pyrolysis and gasification. Appl Energy 95(2):22–30CrossRef
33.
Zurück zum Zitat Caballero JA, Conesa JA, Font R, Marcilla A (1997) Pyrolysis kinetics of almond shells and olive stones considering their organic fractions. J Anal Appl Pyrol 42(2):159–175CrossRef Caballero JA, Conesa JA, Font R, Marcilla A (1997) Pyrolysis kinetics of almond shells and olive stones considering their organic fractions. J Anal Appl Pyrol 42(2):159–175CrossRef
34.
Zurück zum Zitat Wang S, Wang K, Liu Q, Gu Y, Luo Z, Cen K, Fransson T (2009) Comparison of the pyrolysis behavior of lignins from different tree species. Biotechnol Adv 27(5):562–567CrossRef Wang S, Wang K, Liu Q, Gu Y, Luo Z, Cen K, Fransson T (2009) Comparison of the pyrolysis behavior of lignins from different tree species. Biotechnol Adv 27(5):562–567CrossRef
35.
Zurück zum Zitat Valin S, Cances J et al (2009) Upgrading biomass pyrolysis gas by conversion of methane at high temperature: experiments and modelling. Fuel 88(5):834–842CrossRef Valin S, Cances J et al (2009) Upgrading biomass pyrolysis gas by conversion of methane at high temperature: experiments and modelling. Fuel 88(5):834–842CrossRef
36.
Zurück zum Zitat Chen MQ, Wang J et al (2008) Catalytic effects of eight inorganic additives on pyrolysis of pine wood sawdust by microwave heating. J Anal Appl Pyrol 82(1):145–150CrossRef Chen MQ, Wang J et al (2008) Catalytic effects of eight inorganic additives on pyrolysis of pine wood sawdust by microwave heating. J Anal Appl Pyrol 82(1):145–150CrossRef
37.
Zurück zum Zitat Guo DL, Wu SB, Liu B et al (2012) Catalytic effects of NaOH and Na2CO3 additives on alkali lignin pyrolysis and gasification. Appl Energy 95(2):22–30CrossRef Guo DL, Wu SB, Liu B et al (2012) Catalytic effects of NaOH and Na2CO3 additives on alkali lignin pyrolysis and gasification. Appl Energy 95(2):22–30CrossRef
Metadaten
Titel
Catalytic pyrolysis of Eupatorium adenophorum by sodium salt
verfasst von
Kangqing Zeng
Heng Yan
Hongying Xia
Libo Zhang
Qi Zhang
Publikationsdatum
21.05.2021
Verlag
Springer Japan
Erschienen in
Journal of Material Cycles and Waste Management / Ausgabe 4/2021
Print ISSN: 1438-4957
Elektronische ISSN: 1611-8227
DOI
https://doi.org/10.1007/s10163-021-01244-1

Weitere Artikel der Ausgabe 4/2021

Journal of Material Cycles and Waste Management 4/2021 Zur Ausgabe