Skip to main content
Erschienen in: Biomass Conversion and Biorefinery 5/2021

25.11.2019 | Original Article

Catalytic torrefaction of pelletized agro-residues with Cu/Al2O3 catalysts

verfasst von: Nakorn Tippayawong, Thossaporn Onsree, Travis Williams, Katie McCullough, Blake MacQueen, Jochen Lauterbach

Erschienen in: Biomass Conversion and Biorefinery | Ausgabe 5/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The effect of the addition of a Cu/Al2O3 catalyst on the product distribution of gas-phase products during torrefaction of pelletized corn residues was investigated at temperatures between 220 and 300 °C. Pelletized corn residues were mechanically mixed with Cu/Al2O3 catalyst pellets. The mixture was then thermally treated in a fixed bed reactor for 40 min of residence time at low temperatures of wet flue gas simulated by O2 (4% v/v), CO2 (12% v/v), and steam (14% v/v), balanced with N2. The higher heating value (HHV) of torrefied pellets was also examined within the operating conditions. It was found that torrefaction temperature affected the product distribution, yields, and HHV significantly, while the presence of Cu/Al2O3 catalyst pellets promoted the conversion of CO to CO2 and the production of H2 from raw biomass pellets via CO oxidation and water-gas shift reactions. This finding provides a favorable outlook for the energy utilization of pelletized agro-residues via torrefaction with wet flue gas as a pretreatment method, in which inexpensive catalysts could be applied to eliminate toxic gases and/or generate valuable hydrogen during the torrefaction process.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Onsree T, Tippayawong N, Zheng A, Li H (2018) Pyrolysis behavior and kinetics of corn residue pellets and eucalyptus wood chips in a macro thermogravimetric analyzer. Case Stud Therm Eng 12:546–556CrossRef Onsree T, Tippayawong N, Zheng A, Li H (2018) Pyrolysis behavior and kinetics of corn residue pellets and eucalyptus wood chips in a macro thermogravimetric analyzer. Case Stud Therm Eng 12:546–556CrossRef
2.
Zurück zum Zitat Tippayawong N, Rerkkriangkrai P, Aggarangsi P, Pattiya A (2018) Characterization of biochar from pyrolysis of corn residues in a semi-continuous carbonizer. Chem Eng Trans 70:1387–1392 Tippayawong N, Rerkkriangkrai P, Aggarangsi P, Pattiya A (2018) Characterization of biochar from pyrolysis of corn residues in a semi-continuous carbonizer. Chem Eng Trans 70:1387–1392
3.
Zurück zum Zitat Tokarski S, Głód K, Ściążko M, Zuwała J (2015) Comparative assessment of the energy effects of biomass combustion and co-firing in selected technologies. Energy 92:24–32CrossRef Tokarski S, Głód K, Ściążko M, Zuwała J (2015) Comparative assessment of the energy effects of biomass combustion and co-firing in selected technologies. Energy 92:24–32CrossRef
4.
Zurück zum Zitat Piboon P, Tippayawong N, Wongsiriamnuay T (2017) Densification of corncobs using algae as a binder. Chiang Mai University Journal of Natural Sciences 16(3):175–182CrossRef Piboon P, Tippayawong N, Wongsiriamnuay T (2017) Densification of corncobs using algae as a binder. Chiang Mai University Journal of Natural Sciences 16(3):175–182CrossRef
5.
Zurück zum Zitat Wongsiriamnuay T, Tippayawong N (2015) Effect of densification parameters on the properties of maize residue pellets. Biosyst Eng 139:111–120CrossRef Wongsiriamnuay T, Tippayawong N (2015) Effect of densification parameters on the properties of maize residue pellets. Biosyst Eng 139:111–120CrossRef
6.
Zurück zum Zitat Chen W-H, Peng J, Bi XT (2015) A state-of-the-art review of biomass torrefaction, densification and applications. Renew Sust Energ Rev 44:847–866CrossRef Chen W-H, Peng J, Bi XT (2015) A state-of-the-art review of biomass torrefaction, densification and applications. Renew Sust Energ Rev 44:847–866CrossRef
7.
Zurück zum Zitat Chen W-H, Cheng C-L, Show P-L, Ong HC (2019) Torrefaction performance prediction approached by torrefaction severity factor. Fuel 251:126–135CrossRef Chen W-H, Cheng C-L, Show P-L, Ong HC (2019) Torrefaction performance prediction approached by torrefaction severity factor. Fuel 251:126–135CrossRef
8.
Zurück zum Zitat Peng J et al (2015) Effects of thermal treatment on energy density and hardness of torrefied wood pellets. Fuel Process Technol 129:168–173CrossRef Peng J et al (2015) Effects of thermal treatment on energy density and hardness of torrefied wood pellets. Fuel Process Technol 129:168–173CrossRef
9.
Zurück zum Zitat Shang L et al (2012) Quality effects caused by torrefaction of pellets made from Scots pine. Fuel Process Technol 101:23–28CrossRef Shang L et al (2012) Quality effects caused by torrefaction of pellets made from Scots pine. Fuel Process Technol 101:23–28CrossRef
10.
Zurück zum Zitat Phanphanich M, Mani S (2011) Impact of torrefaction on the grindability and fuel characteristics of forest biomass. Bioresour Technol 102(2):1246–1253CrossRef Phanphanich M, Mani S (2011) Impact of torrefaction on the grindability and fuel characteristics of forest biomass. Bioresour Technol 102(2):1246–1253CrossRef
12.
Zurück zum Zitat Li J, Brzdekiewicz A, Yang W, Blasiak W (2012) Co-firing based on biomass torrefaction in a pulverized coal boiler with aim of 100% fuel switching. Appl Energy 99:344–354CrossRef Li J, Brzdekiewicz A, Yang W, Blasiak W (2012) Co-firing based on biomass torrefaction in a pulverized coal boiler with aim of 100% fuel switching. Appl Energy 99:344–354CrossRef
13.
Zurück zum Zitat Gil MV, García R, Pevida C, Rubiera F (2015) Grindability and combustion behavior of coal and torrefied biomass blends. Bioresour Technol 191:205–212CrossRef Gil MV, García R, Pevida C, Rubiera F (2015) Grindability and combustion behavior of coal and torrefied biomass blends. Bioresour Technol 191:205–212CrossRef
14.
Zurück zum Zitat Pal DB, Chand R, Upadhyay SN, Mishra PK (2018) Performance of water gas shift reaction catalysts: a review. Renew Sust Energ Rev 93:549–565CrossRef Pal DB, Chand R, Upadhyay SN, Mishra PK (2018) Performance of water gas shift reaction catalysts: a review. Renew Sust Energ Rev 93:549–565CrossRef
15.
Zurück zum Zitat Jeong D-W et al (2014) Low-temperature water–gas shift reaction over supported Cu catalysts. Renew Energy 65:102–107CrossRef Jeong D-W et al (2014) Low-temperature water–gas shift reaction over supported Cu catalysts. Renew Energy 65:102–107CrossRef
17.
Zurück zum Zitat Agarwal V, Patel S, Pant KK (2015) H2 production by steam reforming of methanol over Cu/ZnO/Al2O3 catalysts: transient deactivation kinetics modeling. Appl Catal A Gen 279(1):155–164 Agarwal V, Patel S, Pant KK (2015) H2 production by steam reforming of methanol over Cu/ZnO/Al2O3 catalysts: transient deactivation kinetics modeling. Appl Catal A Gen 279(1):155–164
18.
Zurück zum Zitat Wang C et al (2016) The water-gas shift reaction for hydrogen production from coke oven gas over Cu/ZnO/Al2O3 catalyst. Catal Today 263:46–51CrossRef Wang C et al (2016) The water-gas shift reaction for hydrogen production from coke oven gas over Cu/ZnO/Al2O3 catalyst. Catal Today 263:46–51CrossRef
19.
Zurück zum Zitat Parikh J, Channiwala SA, Ghosal GK (2005) A correlation for calculating HHV from proximate analysis of solid fuels. Fuel 84(5):487–494CrossRef Parikh J, Channiwala SA, Ghosal GK (2005) A correlation for calculating HHV from proximate analysis of solid fuels. Fuel 84(5):487–494CrossRef
20.
Zurück zum Zitat Yu Q, Yu T, Chen H, Fang G, Pan X, Bao X (2020) The effect of Al3+ coordination structure on the propane dehydrogenation activity of Pt/Ga/Al2O3 catalysts. J Energy Chem 41:93–99CrossRef Yu Q, Yu T, Chen H, Fang G, Pan X, Bao X (2020) The effect of Al3+ coordination structure on the propane dehydrogenation activity of Pt/Ga/Al2O3 catalysts. J Energy Chem 41:93–99CrossRef
21.
Zurück zum Zitat Zhang Q et al (2014) CuO nanostructures: synthesis, characterization, growth mechanisms, fundamental properties, and applications. Prog Mater Sci 60:208–337CrossRef Zhang Q et al (2014) CuO nanostructures: synthesis, characterization, growth mechanisms, fundamental properties, and applications. Prog Mater Sci 60:208–337CrossRef
22.
Zurück zum Zitat Azam A, Ahmed AS, Oves M, Khan M, Memic A (2012) Size-dependent antimicrobial properties of CuO nanoparticles against Gram-positive and -negative bacterial strains. Int J Nanomedicine 7:3527–3535CrossRef Azam A, Ahmed AS, Oves M, Khan M, Memic A (2012) Size-dependent antimicrobial properties of CuO nanoparticles against Gram-positive and -negative bacterial strains. Int J Nanomedicine 7:3527–3535CrossRef
23.
Zurück zum Zitat Amiri TY, Moghaddas J (2015) Cogeled copper–silica aerogel as a catalyst in hydrogen production from methanol steam reforming. Int J Hydrog Energy 40(3):1472–1480CrossRef Amiri TY, Moghaddas J (2015) Cogeled copper–silica aerogel as a catalyst in hydrogen production from methanol steam reforming. Int J Hydrog Energy 40(3):1472–1480CrossRef
24.
Zurück zum Zitat Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788CrossRef Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788CrossRef
26.
Zurück zum Zitat Kambo HS, Dutta A (2015) Comparative evaluation of torrefaction and hydrothermal carbonization of lignocellulosic biomass for the production of solid biofuel. Energy Convers Manag 105:746–755CrossRef Kambo HS, Dutta A (2015) Comparative evaluation of torrefaction and hydrothermal carbonization of lignocellulosic biomass for the production of solid biofuel. Energy Convers Manag 105:746–755CrossRef
27.
Zurück zum Zitat Kim D, Lee K, Park KY (2016) Upgrading the characteristics of biochar from cellulose, lignin, and xylan for solid biofuel production from biomass by hydrothermal carbonization. J Ind Eng Chem 42:95–100CrossRef Kim D, Lee K, Park KY (2016) Upgrading the characteristics of biochar from cellulose, lignin, and xylan for solid biofuel production from biomass by hydrothermal carbonization. J Ind Eng Chem 42:95–100CrossRef
28.
Zurück zum Zitat Stelt MJC, Gerhauser H, Kiel JHA, Ptasinski KJ (2011) Biomass upgrading by torrefaction for the production of biofuels: a review. Biomass Bioenergy 35:3748–3762 Stelt MJC, Gerhauser H, Kiel JHA, Ptasinski KJ (2011) Biomass upgrading by torrefaction for the production of biofuels: a review. Biomass Bioenergy 35:3748–3762
29.
Zurück zum Zitat Chen WH, Zhuang Y-Q, Liu S-H, Juang T-T, Tsai C-M (2016) Product characteristics from the torrefaction of oil palm fiber pellets in inert and oxidative atmospheres. Bioresour Technol 199:367–374CrossRef Chen WH, Zhuang Y-Q, Liu S-H, Juang T-T, Tsai C-M (2016) Product characteristics from the torrefaction of oil palm fiber pellets in inert and oxidative atmospheres. Bioresour Technol 199:367–374CrossRef
30.
Zurück zum Zitat Tong S et al (2018) A gas-pressurized torrefaction method for biomass wastes. Energy Convers Manag 173:29–36CrossRef Tong S et al (2018) A gas-pressurized torrefaction method for biomass wastes. Energy Convers Manag 173:29–36CrossRef
31.
Zurück zum Zitat Chen D, Cen K, Cao X, Li Y, Zhang Y, Ma H (2018) Restudy on torrefaction of corn stalk from the point of view of deoxygenation and decarbonization. J Anal Appl Pyrolysis 135:85–93CrossRef Chen D, Cen K, Cao X, Li Y, Zhang Y, Ma H (2018) Restudy on torrefaction of corn stalk from the point of view of deoxygenation and decarbonization. J Anal Appl Pyrolysis 135:85–93CrossRef
32.
Zurück zum Zitat Bartocci P, Zampilli M, Bidini G, Fantozzi F (2018) Hydrogen-rich gas production through steam gasification of charcoal pellet. Appl Therm Eng 132:817–823CrossRef Bartocci P, Zampilli M, Bidini G, Fantozzi F (2018) Hydrogen-rich gas production through steam gasification of charcoal pellet. Appl Therm Eng 132:817–823CrossRef
34.
Zurück zum Zitat Zhang L, Song H, Xu G, Wang W, Yang L (2019) MOFs derived mesoporous Co3O4 polyhedrons and plates for CO oxidation reaction. J Solid State Chem 276:87–92CrossRef Zhang L, Song H, Xu G, Wang W, Yang L (2019) MOFs derived mesoporous Co3O4 polyhedrons and plates for CO oxidation reaction. J Solid State Chem 276:87–92CrossRef
Metadaten
Titel
Catalytic torrefaction of pelletized agro-residues with Cu/Al2O3 catalysts
verfasst von
Nakorn Tippayawong
Thossaporn Onsree
Travis Williams
Katie McCullough
Blake MacQueen
Jochen Lauterbach
Publikationsdatum
25.11.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Biomass Conversion and Biorefinery / Ausgabe 5/2021
Print ISSN: 2190-6815
Elektronische ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-019-00535-w

Weitere Artikel der Ausgabe 5/2021

Biomass Conversion and Biorefinery 5/2021 Zur Ausgabe