Skip to main content
Erschienen in: Biomass Conversion and Biorefinery 3/2021

04.01.2021 | Original Article

Catalytic transfer hydrogenation of cellulose to hydrocarbons using straight-chain aliphatic hydrocarbon as a solvent

verfasst von: Kentaro Kimura, Yuya Saika, Yusuke Kakuta, Kiyofumi Kurihara

Erschienen in: Biomass Conversion and Biorefinery | Ausgabe 3/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Catalytic transfer hydrogenation is effective for converting cellulose to liquid fuel. This method typically uses an alcohol or a cyclic compound as a liquid hydrogen resource. However, alcohol causes side reactions, and oxygen-containing compounds remain in liquid fuel. Cyclic compounds such as tetralin suppress side reactions, but negatively affect liquid fuel properties because of difficult cyclic compound-liquid fuel separation. Therefore, catalytic transfer hydrogenation of lignocellulose requires a hydrogen donor solvent that is easily separated or does not need to be separated from liquid fuel. Thus, we focused on the use of straight-chain aliphatic hydrocarbon as a solvent. When used with lignocellulose-based liquid fuel, straight-chain aliphatic hydrocarbon can remain in transportation fuel. In addition, a palladium catalyst added to this solvent is expected to behave as a hydrogen donor, because this catalyst dehydrogenates alkane while serving as a hydrogen resource. This expectation was investigated by using cellulose, a main component of lignocellulose, and hexadecane, as a straight-chain aliphatic hydrocarbon. Using this solvent for catalytic transfer hydrogenation resulted in suppressed formation of the solid residue and increased liquefied oil production. Because of this reaction, hexadecane dehydrogenation and the hydrogenation of ɤ-valerolactone and furfural from cellulose were promoted. The hydrocarbon (C10–44) yield in liquefied oil reached over 35 wt% of cellulose, and the liquefied oil was collected while still being mixed with hexadecane. Hexadecane served to extract the hydrocarbon derived from cellulose and acted as a hydrogen resource.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
22.
Zurück zum Zitat Bond JQ, Upadhye AA, Olcay H, Tompsett GA, Jae J, Xing R, Alonso DM, Wang D, Zhang T, Kumar R, Foster A, Sen SM, Maravelias CT, Malina R, Barrett SRH, Lobo R, Wyman CE, Dumesic JA, Huber GW (2014) Production of renewable jet fuel range alkanes and commodity chemicals from integrated catalytic processing of biomass. Energy Environ Sci 7:1500–1523. https://doi.org/10.1039/C3EE43846ECrossRef Bond JQ, Upadhye AA, Olcay H, Tompsett GA, Jae J, Xing R, Alonso DM, Wang D, Zhang T, Kumar R, Foster A, Sen SM, Maravelias CT, Malina R, Barrett SRH, Lobo R, Wyman CE, Dumesic JA, Huber GW (2014) Production of renewable jet fuel range alkanes and commodity chemicals from integrated catalytic processing of biomass. Energy Environ Sci 7:1500–1523. https://​doi.​org/​10.​1039/​C3EE43846ECrossRef
40.
Zurück zum Zitat Deneyer A, Peeters E, Renders T, Van den Bosch S, Van Oeckel N, Ennaert T, Szarvas T, Korányi TI, Dusselier M, Sels BF (2018) Direct upstream integration of biogasoline production into current light straight run naphtha petrorefinery processes. Nat Energy 3:969–977. https://doi.org/10.1038/s41560-018-0245-6CrossRef Deneyer A, Peeters E, Renders T, Van den Bosch S, Van Oeckel N, Ennaert T, Szarvas T, Korányi TI, Dusselier M, Sels BF (2018) Direct upstream integration of biogasoline production into current light straight run naphtha petrorefinery processes. Nat Energy 3:969–977. https://​doi.​org/​10.​1038/​s41560-018-0245-6CrossRef
42.
70.
Zurück zum Zitat Iqbal S, Liu X, Aldosari OF, Miedziak PJ, Edwards JK, Brett GL, Akram A, King GM, Davies TE, Morgan DJ, Knight DK, Hutchings GJ (2014) Conversion of furfuryl alcohol into 2-methylfuran at room temperature using Pd/TiO2 catalyst. Catal Sci Technol 4:2280–2286. https://doi.org/10.1039/C4CY00184BCrossRef Iqbal S, Liu X, Aldosari OF, Miedziak PJ, Edwards JK, Brett GL, Akram A, King GM, Davies TE, Morgan DJ, Knight DK, Hutchings GJ (2014) Conversion of furfuryl alcohol into 2-methylfuran at room temperature using Pd/TiO2 catalyst. Catal Sci Technol 4:2280–2286. https://​doi.​org/​10.​1039/​C4CY00184BCrossRef
71.
Metadaten
Titel
Catalytic transfer hydrogenation of cellulose to hydrocarbons using straight-chain aliphatic hydrocarbon as a solvent
verfasst von
Kentaro Kimura
Yuya Saika
Yusuke Kakuta
Kiyofumi Kurihara
Publikationsdatum
04.01.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Biomass Conversion and Biorefinery / Ausgabe 3/2021
Print ISSN: 2190-6815
Elektronische ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-020-01206-x

Weitere Artikel der Ausgabe 3/2021

Biomass Conversion and Biorefinery 3/2021 Zur Ausgabe