Skip to main content

2017 | OriginalPaper | Buchkapitel

11. Catalytic Transformation of CO2 to Fuels

verfasst von : Samira Bagheri

Erschienen in: Catalysis for Green Energy and Technology

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

By the year 2050, the European Commission are committed to reduce the emissions of greenhouse gas to 80–95% through the “Energy Roadmap 2050” that was adopted on December 15, 2011 (Schleicher-Tappeser 2012). The routes on system of energy for decarbonization was explored by this Energy Roadmap 2050, and in order to achieve this objective, many relevant contributions have been done, which has effects not only at the European but also worldwide level.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Ajhar M, Travesset M, Yüce S, Melin T (2010) Siloxane removal from landfill and digester gas–a technology overview. Biores Technol 101(9):2913–2923CrossRef Ajhar M, Travesset M, Yüce S, Melin T (2010) Siloxane removal from landfill and digester gas–a technology overview. Biores Technol 101(9):2913–2923CrossRef
Zurück zum Zitat An X, Zuo Y-Z, Zhang Q, D-z Wang, Wang J-F (2008) Dimethyl ether synthesis from CO2 hydrogenation on a CuO–ZnO–Al2O3–ZrO2/HZSM-5 bifunctional catalyst. Ind Eng Chem Res 47(17):6547–6554CrossRef An X, Zuo Y-Z, Zhang Q, D-z Wang, Wang J-F (2008) Dimethyl ether synthesis from CO2 hydrogenation on a CuO–ZnO–Al2O3–ZrO2/HZSM-5 bifunctional catalyst. Ind Eng Chem Res 47(17):6547–6554CrossRef
Zurück zum Zitat Appels L, Baeyens J, Degrève J, Dewil R (2008) Principles and potential of the anaerobic digestion of waste-activated sludge. Prog Energy Combust Sci 34(6):755–781CrossRef Appels L, Baeyens J, Degrève J, Dewil R (2008) Principles and potential of the anaerobic digestion of waste-activated sludge. Prog Energy Combust Sci 34(6):755–781CrossRef
Zurück zum Zitat Arakawa H (1998) Research and development on new synthetic routes for basic chemicals by catalytic hydrogenation of CO2. Stud Surf Sci Catal 114:19–30CrossRef Arakawa H (1998) Research and development on new synthetic routes for basic chemicals by catalytic hydrogenation of CO2. Stud Surf Sci Catal 114:19–30CrossRef
Zurück zum Zitat Boyer L, Vega J, Klasson K, Clausen E, Gaddy J (1992) The effects of furfural on ethanol production by saccharomyces cereyisiae in batch culture. Biomass Bioenerg 3(1):41–48CrossRef Boyer L, Vega J, Klasson K, Clausen E, Gaddy J (1992) The effects of furfural on ethanol production by saccharomyces cereyisiae in batch culture. Biomass Bioenerg 3(1):41–48CrossRef
Zurück zum Zitat Yong Y, Mims CA, Disselkamp RS, Ja-Hun K, Peden CHF, Campbell C (2010) (Non)formation of methanol by direct hydrogenation of formate on copper catalysts. J Phys Chem 100(114):17205–17211 Yong Y, Mims CA, Disselkamp RS, Ja-Hun K, Peden CHF, Campbell C (2010) (Non)formation of methanol by direct hydrogenation of formate on copper catalysts. J Phys Chem 100(114):17205–17211
Zurück zum Zitat Centi G, Perathoner S (2009) Opportunities and prospects in the chemical recycling of carbon dioxide to fuels. Catal Today 148(3):191–205CrossRef Centi G, Perathoner S (2009) Opportunities and prospects in the chemical recycling of carbon dioxide to fuels. Catal Today 148(3):191–205CrossRef
Zurück zum Zitat Centi G, Perathoner S (2010) Towards solar fuels from water and CO2. Chemsuschem 3(2):195–208CrossRef Centi G, Perathoner S (2010) Towards solar fuels from water and CO2. Chemsuschem 3(2):195–208CrossRef
Zurück zum Zitat Centi G, Perathoner S (2011) CO2-based energy vectors for the storage of solar energy. Greenhouse Gases Sci Technol 1(1):21–35CrossRef Centi G, Perathoner S (2011) CO2-based energy vectors for the storage of solar energy. Greenhouse Gases Sci Technol 1(1):21–35CrossRef
Zurück zum Zitat Centi G, Lanzafame P, Perathoner S (2011a) Analysis of the alternative routes in the catalytic transformation of lignocellulosic materials. Catal Today 167(1):14–30CrossRef Centi G, Lanzafame P, Perathoner S (2011a) Analysis of the alternative routes in the catalytic transformation of lignocellulosic materials. Catal Today 167(1):14–30CrossRef
Zurück zum Zitat Centi G, Perathoner S, Passalacqua R, Ampelli C (2011b) Solar production of fuels from water and CO2. In: Nazim Z, Muradov T, Nejat V (eds) Carbon-neutral fuels and energy carriers series: green chemistry and chemical engineering CRC Press (Taylor & Francis group), Boca Raton, FL (US), pp 291–323 Centi G, Perathoner S, Passalacqua R, Ampelli C (2011b) Solar production of fuels from water and CO2. In: Nazim Z, Muradov T, Nejat V (eds) Carbon-neutral fuels and energy carriers series: green chemistry and chemical engineering CRC Press (Taylor & Francis group), Boca Raton, FL (US), pp 291–323
Zurück zum Zitat Centi G, Quadrelli EA, Perathoner S (2013) Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries. Energy Environ Sci 6(6):1711–1731CrossRef Centi G, Quadrelli EA, Perathoner S (2013) Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries. Energy Environ Sci 6(6):1711–1731CrossRef
Zurück zum Zitat Chang J, Fu Y, Luo Z (2012) Experimental study for dimethyl ether production from biomass gasification and simulation on dimethyl ether production. Biomass Bioenerg 39:67–72CrossRef Chang J, Fu Y, Luo Z (2012) Experimental study for dimethyl ether production from biomass gasification and simulation on dimethyl ether production. Biomass Bioenerg 39:67–72CrossRef
Zurück zum Zitat Chen YX, Miki A, Ye S, Sakai H, Osawa M (2003) Formate, an active intermediate for direct oxidation of methanol on Pt electrode. J Am Chem Soc 125(13):3680–3681CrossRef Chen YX, Miki A, Ye S, Sakai H, Osawa M (2003) Formate, an active intermediate for direct oxidation of methanol on Pt electrode. J Am Chem Soc 125(13):3680–3681CrossRef
Zurück zum Zitat Cherubini F, Jungmeier G (2010) LCA of a biorefinery concept producing bioethanol, bioenergy, and chemicals from switchgrass. Int J Life Cycle Assess 15(1):53–66CrossRef Cherubini F, Jungmeier G (2010) LCA of a biorefinery concept producing bioethanol, bioenergy, and chemicals from switchgrass. Int J Life Cycle Assess 15(1):53–66CrossRef
Zurück zum Zitat Cherubini F, Strømman AH (2011) Chemicals from lignocellulosic biomass: opportunities, perspectives, and potential of biorefinery systems. Biofuels Bioprod Biorefin 5(5):548–561CrossRef Cherubini F, Strømman AH (2011) Chemicals from lignocellulosic biomass: opportunities, perspectives, and potential of biorefinery systems. Biofuels Bioprod Biorefin 5(5):548–561CrossRef
Zurück zum Zitat Clausen LR, Elmegaard B, Houbak N (2010a) Technoeconomic analysis of a low CO2 emission dimethyl ether (DME) plant based on gasification of torrefied biomass. Energy 35(12):4831–4842CrossRef Clausen LR, Elmegaard B, Houbak N (2010a) Technoeconomic analysis of a low CO2 emission dimethyl ether (DME) plant based on gasification of torrefied biomass. Energy 35(12):4831–4842CrossRef
Zurück zum Zitat Clausen LR, Houbak N, Elmegaard B (2010b) Technoeconomic analysis of a methanol plant based on gasification of biomass and electrolysis of water. Energy 35(5):2338–2347CrossRef Clausen LR, Houbak N, Elmegaard B (2010b) Technoeconomic analysis of a methanol plant based on gasification of biomass and electrolysis of water. Energy 35(5):2338–2347CrossRef
Zurück zum Zitat da Silva AL, Dick LFP, Müller IL (2012) Performance of a PEMFC system integrated with a biogas chemical looping reforming processor: a theoretical analysis and comparison with other fuel processors (steam reforming, partial oxidation and auto-thermal reforming). Int J Hydrogen Energy 37(8):6580–6600CrossRef da Silva AL, Dick LFP, Müller IL (2012) Performance of a PEMFC system integrated with a biogas chemical looping reforming processor: a theoretical analysis and comparison with other fuel processors (steam reforming, partial oxidation and auto-thermal reforming). Int J Hydrogen Energy 37(8):6580–6600CrossRef
Zurück zum Zitat De Wild P, Nyqvist R, De Bruijn F, Stobbe E (2006) Removal of sulphur-containing odorants from fuel gases for fuel cell-based combined heat and power applications. J Power Sources 159(2):995–1004CrossRef De Wild P, Nyqvist R, De Bruijn F, Stobbe E (2006) Removal of sulphur-containing odorants from fuel gases for fuel cell-based combined heat and power applications. J Power Sources 159(2):995–1004CrossRef
Zurück zum Zitat Demirbas A (2008) Biofuels sources, biofuel policy, biofuel economy and global biofuel projections. Energy Convers Manag 49(8):2106–2116CrossRef Demirbas A (2008) Biofuels sources, biofuel policy, biofuel economy and global biofuel projections. Energy Convers Manag 49(8):2106–2116CrossRef
Zurück zum Zitat Dewil R, Appels L, Baeyens J (2006) Energy use of biogas hampered by the presence of siloxanes. Energy Convers Manag 47(13):1711–1722CrossRef Dewil R, Appels L, Baeyens J (2006) Energy use of biogas hampered by the presence of siloxanes. Energy Convers Manag 47(13):1711–1722CrossRef
Zurück zum Zitat Ihm S-K, Baek S-W, Park Y-K, Jeon J-K (2003) CO2 hydrogenation over copper-based hybrid catalysts for the synthesis of oxygenates. ACS Publications Ihm S-K, Baek S-W, Park Y-K, Jeon J-K (2003) CO2 hydrogenation over copper-based hybrid catalysts for the synthesis of oxygenates. ACS Publications
Zurück zum Zitat Jiang Z, Xiao T, Vá Kuznetsov, Pá Edwards (2010) Turning carbon dioxide into fuel. Philos Trans R Soc Lond A Math Phys Eng Sci 368(1923):3343–3364CrossRef Jiang Z, Xiao T, Vá Kuznetsov, Pá Edwards (2010) Turning carbon dioxide into fuel. Philos Trans R Soc Lond A Math Phys Eng Sci 368(1923):3343–3364CrossRef
Zurück zum Zitat Kazemimoghadam M, Mohammadi T (2010) The pilot-scale pervaporation plant using tubular-type module with nano pore zeolite membrane. Desalination 255(1):196–200CrossRef Kazemimoghadam M, Mohammadi T (2010) The pilot-scale pervaporation plant using tubular-type module with nano pore zeolite membrane. Desalination 255(1):196–200CrossRef
Zurück zum Zitat Lange JP, van der Heide E, van Buijtenen J, Price R (2012) Furfural—a promising platform for lignocellulosic biofuels. Chemsuschem 5(1):150–166CrossRef Lange JP, van der Heide E, van Buijtenen J, Price R (2012) Furfural—a promising platform for lignocellulosic biofuels. Chemsuschem 5(1):150–166CrossRef
Zurück zum Zitat Lantz E, Wiser R, Hand M (2012) The past and future cost of wind energy. Report No. NREL/TP-6A20-53510. National Renewable Energy Laboratory, Golden, CO, Lantz E, Wiser R, Hand M (2012) The past and future cost of wind energy. Report No. NREL/TP-6A20-53510. National Renewable Energy Laboratory, Golden, CO,
Zurück zum Zitat Lau C, Allen D, Tsolakis A, Golunski SE, Wyszynski M (2012) Biogas upgrade to syngas through thermochemical recovery using exhaust gas reforming. Biomass Bioenerg 40:86–95CrossRef Lau C, Allen D, Tsolakis A, Golunski SE, Wyszynski M (2012) Biogas upgrade to syngas through thermochemical recovery using exhaust gas reforming. Biomass Bioenerg 40:86–95CrossRef
Zurück zum Zitat Liang X-L, Dong X, Lin G-D, Zhang H-B (2009) Carbon nanotube-supported Pd–ZnO catalyst for hydrogenation of CO2 to methanol. Appl Catal B 88(3):315–322CrossRef Liang X-L, Dong X, Lin G-D, Zhang H-B (2009) Carbon nanotube-supported Pd–ZnO catalyst for hydrogenation of CO2 to methanol. Appl Catal B 88(3):315–322CrossRef
Zurück zum Zitat Lim H-W, Park M-J, Kang S-H, Chae H-J, Bae JW, Jun K-W (2009) Modeling of the kinetics for methanol synthesis using Cu/ZnO/Al2O3/ZrO2 catalyst: influence of carbon dioxide during hydrogenation. Ind Eng Chem Res 48(23):10448–10455CrossRef Lim H-W, Park M-J, Kang S-H, Chae H-J, Bae JW, Jun K-W (2009) Modeling of the kinetics for methanol synthesis using Cu/ZnO/Al2O3/ZrO2 catalyst: influence of carbon dioxide during hydrogenation. Ind Eng Chem Res 48(23):10448–10455CrossRef
Zurück zum Zitat Liu X-M, Lu G, Yan Z-F, Beltramini J (2003) Recent advances in catalysts for methanol synthesis via hydrogenation of CO and CO2. Ind Eng Chem Res 42(25):6518–6530CrossRef Liu X-M, Lu G, Yan Z-F, Beltramini J (2003) Recent advances in catalysts for methanol synthesis via hydrogenation of CO and CO2. Ind Eng Chem Res 42(25):6518–6530CrossRef
Zurück zum Zitat Liu P, Choi Y, Yang Y, White MG (2009) Methanol synthesis from H2 and CO2 on a Mo6S8 cluster: a density functional study. J Phy Chem A 114(11):3888–3895CrossRef Liu P, Choi Y, Yang Y, White MG (2009) Methanol synthesis from H2 and CO2 on a Mo6S8 cluster: a density functional study. J Phy Chem A 114(11):3888–3895CrossRef
Zurück zum Zitat Ma J, Sun N, Zhang X, Zhao N, Xiao F, Wei W, Sun Y (2009) A short review of catalysis for CO2 conversion. Catal Today 148(3):221–231CrossRef Ma J, Sun N, Zhang X, Zhao N, Xiao F, Wei W, Sun Y (2009) A short review of catalysis for CO2 conversion. Catal Today 148(3):221–231CrossRef
Zurück zum Zitat Mandl MG (2010) Status of green biorefining in Europe. Biofuels Bioprod Biorefin 4(3):268–274CrossRef Mandl MG (2010) Status of green biorefining in Europe. Biofuels Bioprod Biorefin 4(3):268–274CrossRef
Zurück zum Zitat McBean EA (2008) Siloxanes in biogases from landfills and wastewater digesters. Can J Civ Eng 35(4):431–436CrossRef McBean EA (2008) Siloxanes in biogases from landfills and wastewater digesters. Can J Civ Eng 35(4):431–436CrossRef
Zurück zum Zitat Menegazzo F, Pinna F, Signoretto M, Trevisan V, Boccuzzi F, Chiorino A, Manzoli M (2008) Highly dispersed gold on zirconia: characterization and activity in low-temperature water gas shift tests. Chemsuschem 1(4):320–326CrossRef Menegazzo F, Pinna F, Signoretto M, Trevisan V, Boccuzzi F, Chiorino A, Manzoli M (2008) Highly dispersed gold on zirconia: characterization and activity in low-temperature water gas shift tests. Chemsuschem 1(4):320–326CrossRef
Zurück zum Zitat Mota N, Alvarez-Galvan C, Navarro R, Fierro J (2011) Biogas as a source of renewable syngas production: advances and challenges. Biofuels 2(3):325–343CrossRef Mota N, Alvarez-Galvan C, Navarro R, Fierro J (2011) Biogas as a source of renewable syngas production: advances and challenges. Biofuels 2(3):325–343CrossRef
Zurück zum Zitat Osorio F, Torres J (2009) Biogas purification from anaerobic digestion in a wastewater treatment plant for biofuel production. Renew Energy 34(10):2164–2171CrossRef Osorio F, Torres J (2009) Biogas purification from anaerobic digestion in a wastewater treatment plant for biofuel production. Renew Energy 34(10):2164–2171CrossRef
Zurück zum Zitat Piccolo C, Bezzo F (2009) A techno-economic comparison between two technologies for bioethanol production from lignocellulose. Biomass Bioenerg 33(3):478–491CrossRef Piccolo C, Bezzo F (2009) A techno-economic comparison between two technologies for bioethanol production from lignocellulose. Biomass Bioenerg 33(3):478–491CrossRef
Zurück zum Zitat Powell E, Hill G (2009) Economic assessment of an integrated bioethanol–biodiesel–microbial fuel cell facility utilizing yeast and photosynthetic algae. Chem Eng Res Des 87(9):1340–1348CrossRef Powell E, Hill G (2009) Economic assessment of an integrated bioethanol–biodiesel–microbial fuel cell facility utilizing yeast and photosynthetic algae. Chem Eng Res Des 87(9):1340–1348CrossRef
Zurück zum Zitat Quadrelli EA, Centi G, Duplan JL, Perathoner S (2011) Carbon dioxide recycling: emerging large-scale technologies with industrial potential. Chemsuschem 4(9):1194–1215CrossRef Quadrelli EA, Centi G, Duplan JL, Perathoner S (2011) Carbon dioxide recycling: emerging large-scale technologies with industrial potential. Chemsuschem 4(9):1194–1215CrossRef
Zurück zum Zitat Raudaskoski R, Turpeinen E, Lenkkeri R, Pongrácz E, Keiski R (2009) Catalytic activation of CO2: use of secondary CO2 for the production of synthesis gas and for methanol synthesis over copper-based zirconia-containing catalysts. Catal Today 144(3):318–323CrossRef Raudaskoski R, Turpeinen E, Lenkkeri R, Pongrácz E, Keiski R (2009) Catalytic activation of CO2: use of secondary CO2 for the production of synthesis gas and for methanol synthesis over copper-based zirconia-containing catalysts. Catal Today 144(3):318–323CrossRef
Zurück zum Zitat Rosenberg JN, Mathias A, Korth K, Betenbaugh MJ, Oyler GA (2011) Microalgal biomass production and carbon dioxide sequestration from an integrated ethanol biorefinery in Iowa: a technical appraisal and economic feasibility evaluation. Biomass Bioenerg 35(9):3865–3876CrossRef Rosenberg JN, Mathias A, Korth K, Betenbaugh MJ, Oyler GA (2011) Microalgal biomass production and carbon dioxide sequestration from an integrated ethanol biorefinery in Iowa: a technical appraisal and economic feasibility evaluation. Biomass Bioenerg 35(9):3865–3876CrossRef
Zurück zum Zitat Ryckebosch E, Drouillon M, Vervaeren H (2011) Techniques for transformation of biogas to biomethane. Biomass Bioenerg 35(5):1633–1645CrossRef Ryckebosch E, Drouillon M, Vervaeren H (2011) Techniques for transformation of biogas to biomethane. Biomass Bioenerg 35(5):1633–1645CrossRef
Zurück zum Zitat Saito M, Murata K (2004) Development of high performance Cu/ZnO-based catalysts for methanol synthesis and the water-gas shift reaction. Catal Surv Asia 8(4):285–294CrossRef Saito M, Murata K (2004) Development of high performance Cu/ZnO-based catalysts for methanol synthesis and the water-gas shift reaction. Catal Surv Asia 8(4):285–294CrossRef
Zurück zum Zitat Schleicher-Tappeser R (2012) How renewables will change electricity markets in the next five years. Energy policy 48:64–75CrossRef Schleicher-Tappeser R (2012) How renewables will change electricity markets in the next five years. Energy policy 48:64–75CrossRef
Zurück zum Zitat Supekar SD, Skerlos SJ (2014) Market-driven emissions from recovery of carbon dioxide gas. Environ Sci Technol 48(24):14615–14623CrossRef Supekar SD, Skerlos SJ (2014) Market-driven emissions from recovery of carbon dioxide gas. Environ Sci Technol 48(24):14615–14623CrossRef
Zurück zum Zitat Taarning E, Nielsen IS, Egeblad K, Madsen R, Christensen CH (2008) Chemicals from renewables: aerobic oxidation of furfural and hydroxymethylfurfural over gold catalysts. Chemsuschem 1(1–2):75–78CrossRef Taarning E, Nielsen IS, Egeblad K, Madsen R, Christensen CH (2008) Chemicals from renewables: aerobic oxidation of furfural and hydroxymethylfurfural over gold catalysts. Chemsuschem 1(1–2):75–78CrossRef
Zurück zum Zitat Tang Q-L, Hong Q-J, Liu Z-P (2009) CO2 fixation into methanol at Cu/ZrO2 interface from first principles kinetic Monte Carlo. J Catal 263(1):114–122CrossRef Tang Q-L, Hong Q-J, Liu Z-P (2009) CO2 fixation into methanol at Cu/ZrO2 interface from first principles kinetic Monte Carlo. J Catal 263(1):114–122CrossRef
Zurück zum Zitat Toyir J, Miloua R, Elkadri N, Nawdali M, Toufik H, Miloua F, Saito M (2009) Sustainable process for the production of methanol from CO2 and H2 using Cu/ZnO-based multicomponent catalyst. Physics Procedia 2(3):1075–1079CrossRef Toyir J, Miloua R, Elkadri N, Nawdali M, Toufik H, Miloua F, Saito M (2009) Sustainable process for the production of methanol from CO2 and H2 using Cu/ZnO-based multicomponent catalyst. Physics Procedia 2(3):1075–1079CrossRef
Zurück zum Zitat Wang J, Zeng C (2005) Al2O3 effect on the catalytic activity of Cu–ZnO–Al2O3–SiO2 catalysts for dimethyl ether synthesis from CO2 hydrogenation. J Nat Gas Chem 14(3):156–162MathSciNet Wang J, Zeng C (2005) Al2O3 effect on the catalytic activity of Cu–ZnO–Al2O3–SiO2 catalysts for dimethyl ether synthesis from CO2 hydrogenation. J Nat Gas Chem 14(3):156–162MathSciNet
Zurück zum Zitat Wang S, Mao D, Guo X, Wu G, Lu G (2009) Dimethyl ether synthesis via CO2 hydrogenation over CuO–TiO2–ZrO2/HZSM-5 bifunctional catalysts. Catal Commun 10(10):1367–1370CrossRef Wang S, Mao D, Guo X, Wu G, Lu G (2009) Dimethyl ether synthesis via CO2 hydrogenation over CuO–TiO2–ZrO2/HZSM-5 bifunctional catalysts. Catal Commun 10(10):1367–1370CrossRef
Zurück zum Zitat Wellisch M, Jungmeier G, Karbowski A, Patel MK, Rogulska M (2010) Biorefinery systems—potential contributors to sustainable innovation. Biofuels Bioprod Biorefin 4(3):275–286CrossRef Wellisch M, Jungmeier G, Karbowski A, Patel MK, Rogulska M (2010) Biorefinery systems—potential contributors to sustainable innovation. Biofuels Bioprod Biorefin 4(3):275–286CrossRef
Zurück zum Zitat Woods J, Black M, Murphy R (2008) Future feedstocks for biofuel systems. Biofuels: environmental consequences and interactions with changing land use. In: Proceedings of the scientific committee on problems of the environment (SCOPE) international biofuels project rapid assessment, pp 22–25 Woods J, Black M, Murphy R (2008) Future feedstocks for biofuel systems. Biofuels: environmental consequences and interactions with changing land use. In: Proceedings of the scientific committee on problems of the environment (SCOPE) international biofuels project rapid assessment, pp 22–25
Zurück zum Zitat Xu J, Zhou W, Li Z, Wang J, Ma J (2009) Biogas reforming for hydrogen production over nickel and cobalt bimetallic catalysts. Int J Hydrogen Energy 34(16):6646–6654CrossRef Xu J, Zhou W, Li Z, Wang J, Ma J (2009) Biogas reforming for hydrogen production over nickel and cobalt bimetallic catalysts. Int J Hydrogen Energy 34(16):6646–6654CrossRef
Zurück zum Zitat Xu Y, Isom L, Hanna MA (2010) Adding value to carbon dioxide from ethanol fermentations. Biores Technol 101(10):3311–3319CrossRef Xu Y, Isom L, Hanna MA (2010) Adding value to carbon dioxide from ethanol fermentations. Biores Technol 101(10):3311–3319CrossRef
Zurück zum Zitat Yang R, Yu X, Zhang Y, Li W, Tsubaki N (2008) A new method of low-temperature methanol synthesis on Cu/ZnO/Al2O3 catalysts from CO/CO2/H2. Fuel 87(4):443–450CrossRef Yang R, Yu X, Zhang Y, Li W, Tsubaki N (2008) A new method of low-temperature methanol synthesis on Cu/ZnO/Al2O3 catalysts from CO/CO2/H2. Fuel 87(4):443–450CrossRef
Zurück zum Zitat Zhang Q, Zuo Y-Z, Han M-H, Wang J-F, Jin Y, Wei F (2010) Long carbon nanotubes intercrossed Cu/Zn/Al/Zr catalyst for CO/CO2 hydrogenation to methanol/dimethyl ether. Catal Today 150(1):55–60CrossRef Zhang Q, Zuo Y-Z, Han M-H, Wang J-F, Jin Y, Wei F (2010) Long carbon nanotubes intercrossed Cu/Zn/Al/Zr catalyst for CO/CO2 hydrogenation to methanol/dimethyl ether. Catal Today 150(1):55–60CrossRef
Zurück zum Zitat Zhao Y, Chen J, Zhang J (2007) Effects of ZrO2 on the performance of CuO–ZnO–Al2O3/HZSM-5 catalyst for dimethyl ether synthesis from CO2 hydrogenation. J Nat Gas Chem 16(4):389–392CrossRef Zhao Y, Chen J, Zhang J (2007) Effects of ZrO2 on the performance of CuO–ZnO–Al2O3/HZSM-5 catalyst for dimethyl ether synthesis from CO2 hydrogenation. J Nat Gas Chem 16(4):389–392CrossRef
Zurück zum Zitat Zinoviev S, Müller-Langer F, Das P, Bertero N, Fornasiero P, Kaltschmitt M, Centi G, Miertus S (2010) Next-generation biofuels: survey of emerging technologies and sustainability issues. Chemsuschem 3(10):1106–1133CrossRef Zinoviev S, Müller-Langer F, Das P, Bertero N, Fornasiero P, Kaltschmitt M, Centi G, Miertus S (2010) Next-generation biofuels: survey of emerging technologies and sustainability issues. Chemsuschem 3(10):1106–1133CrossRef
Metadaten
Titel
Catalytic Transformation of CO2 to Fuels
verfasst von
Samira Bagheri
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-43104-8_11