Skip to main content
Erschienen in: Colloid and Polymer Science 11/2015

01.11.2015 | Invited Article

Catanionic surfactant systems—thermodynamic and structural conditions revisited

verfasst von: Leonardo Chiappisi, Hacer Yalcinkaya, Vicknesh Kumar Gopalakrishnan, Michael Gradzielski, Thomas Zemb

Erschienen in: Colloid and Polymer Science | Ausgabe 11/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, we review shortly the current state of knowledge about catanionic surfactant systems with a focus on the detailed understanding based on the molecular buildup of such systems and of the electrostatic interaction that controls their amphiphilic monolayer and bilayer. Particularly relevant here is the extent of hydrophobicity of the oppositely charged partners, which can range from just having a more or less hydrophobic counterion until a real surfactant of opposite charge. Based on this discussion, we then investigate different systems based on cetyltrimethylammonium (CTA) combined with either laurate (L) as an oppositely charged surfactant or naphthalenesulfonate (NS) as a strongly hydrophobic counterion. Both systems were studied for the case of having salt present by combining the two amphiphilic salts but also the salt-free situation which arises from combining the hydroxide with the acid. The phase behavior was determined as well as the mesoscopic structures present, as obtained by small-angle neutron scattering (SANS) and light scattering, which allow to discern formation of wormlike micelles and vesicles. Their presence was then further confirmed by rheological measurements, where in particular normal forces allow to distinguish the two types of aggregates, and control of rheology is a key property in such systems. In addition, the thermodynamic conditions in these systems were determined by means of differential scanning calorimetry (DSC). Based on these results, a consistent understanding of the formed structures and their macroscopic properties that arise from the molecular conditions in these systems is presented.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Kruyt HR, Jonker GH, Overbeek JTG (1952) In: Kruyt HR (ed) Colloid Science. Elsevier Publishing Company, Amsterdam Kruyt HR, Jonker GH, Overbeek JTG (1952) In: Kruyt HR (ed) Colloid Science. Elsevier Publishing Company, Amsterdam
2.
Zurück zum Zitat Jokela P, Jönsson B, Wennerstroem H (1985) Phase Equilibria in Systems Containing Both an Anionic and a Cationic Amphiphile. A Thermodynamic Model Calculation. In Surfactants, Adsorption, Surface Spectroscopy and Disperse Systems; Lindman, B., Olofsson G, Stenius P, Eds.; Progress in Colloid & Polymer Science; Steinkopff: Darmstadt. 70, 17–22 Jokela P, Jönsson B, Wennerstroem H (1985) Phase Equilibria in Systems Containing Both an Anionic and a Cationic Amphiphile. A Thermodynamic Model Calculation. In Surfactants, Adsorption, Surface Spectroscopy and Disperse Systems; Lindman, B., Olofsson G, Stenius P, Eds.; Progress in Colloid & Polymer Science; Steinkopff: Darmstadt. 70, 17–22
3.
Zurück zum Zitat Jokela P, Jönsson B, Eichmueller B, Fontell K (1988) Phase equilibria in the sodium octanoate-octylammonium octanoate-water system. Langmuir 4(1):187–192CrossRef Jokela P, Jönsson B, Eichmueller B, Fontell K (1988) Phase equilibria in the sodium octanoate-octylammonium octanoate-water system. Langmuir 4(1):187–192CrossRef
4.
Zurück zum Zitat Kaler EW, Murthy AK, Rodriguez BE, Zasadzinski JA (1989) Spontaneous vesicle formation in aqueous mixtures of single-tailed surfactants. Science (80-) 245(4924):1371–1374CrossRef Kaler EW, Murthy AK, Rodriguez BE, Zasadzinski JA (1989) Spontaneous vesicle formation in aqueous mixtures of single-tailed surfactants. Science (80-) 245(4924):1371–1374CrossRef
5.
Zurück zum Zitat Jokela P (1987) Catanionic surfactants, University of Lund Jokela P (1987) Catanionic surfactants, University of Lund
6.
Zurück zum Zitat Blaurock AE, Gamble RC (1979) Small phosphatidylcholine vesicles appear to be faceted below the thermal phase transition. J Membr Biol 50(2):187–204CrossRef Blaurock AE, Gamble RC (1979) Small phosphatidylcholine vesicles appear to be faceted below the thermal phase transition. J Membr Biol 50(2):187–204CrossRef
7.
Zurück zum Zitat Dubois M, Zemb T (2000) Swelling limits for bilayer microstructures: the implosion of lamellar structure versus disordered lamellae. Curr Opin Colloid Interface Sci 5(1–2):27–37CrossRef Dubois M, Zemb T (2000) Swelling limits for bilayer microstructures: the implosion of lamellar structure versus disordered lamellae. Curr Opin Colloid Interface Sci 5(1–2):27–37CrossRef
8.
Zurück zum Zitat Dubois M, Carrière D, Iyer R, Arunagirinathan MA, Bellare J, Verbavatz J-M, Zemb T (2008) From dispersed nanodiscs to thin films of layered organic material via reversible swelling. Colloids Surfaces A Physicochem Eng Asp 319(1–3):90–97CrossRef Dubois M, Carrière D, Iyer R, Arunagirinathan MA, Bellare J, Verbavatz J-M, Zemb T (2008) From dispersed nanodiscs to thin films of layered organic material via reversible swelling. Colloids Surfaces A Physicochem Eng Asp 319(1–3):90–97CrossRef
9.
Zurück zum Zitat Jokela P, Jönsson B, Khan A (1987) Phase equilibria of catanionic surfactant-water systems. J Phys Chem 91(12):3291–3298CrossRef Jokela P, Jönsson B, Khan A (1987) Phase equilibria of catanionic surfactant-water systems. J Phys Chem 91(12):3291–3298CrossRef
10.
Zurück zum Zitat Hao J, Hoffmann H, Horbaschek K (2001) A novel cationic/anionic surfactant system from a zwitterionic alkyldimethylamine oxide and dihydroperfluorooctanoic acid. Langmuir 17(14):4151–4160CrossRef Hao J, Hoffmann H, Horbaschek K (2001) A novel cationic/anionic surfactant system from a zwitterionic alkyldimethylamine oxide and dihydroperfluorooctanoic acid. Langmuir 17(14):4151–4160CrossRef
11.
Zurück zum Zitat Tanaka S, Kawasaki H, Suzuki M, Annaka M, Nemoto N, Almgren M, Maeda H (2004) Vesicle formation in oleyldimethylamine oxide/sodium oleate mixtures. Colloid Polym Sci 282(10):1140–1145CrossRef Tanaka S, Kawasaki H, Suzuki M, Annaka M, Nemoto N, Almgren M, Maeda H (2004) Vesicle formation in oleyldimethylamine oxide/sodium oleate mixtures. Colloid Polym Sci 282(10):1140–1145CrossRef
12.
Zurück zum Zitat Hao J, Hoffmann H, Horbaschek K (2000) A vesicle phase that is prepared by shear from a novel kinetically produced stacked L Α -Phase. J Phys Chem B 104(44):10144–10153CrossRef Hao J, Hoffmann H, Horbaschek K (2000) A vesicle phase that is prepared by shear from a novel kinetically produced stacked L Α -Phase. J Phys Chem B 104(44):10144–10153CrossRef
13.
Zurück zum Zitat Kawasaki H, Souda M, Tanaka S, Nemoto N, Karlsson G, Almgren M, Maeda H (2002) Reversible vesicle formation by changing pH. J Phys Chem B 106(7):1524–1527CrossRef Kawasaki H, Souda M, Tanaka S, Nemoto N, Karlsson G, Almgren M, Maeda H (2002) Reversible vesicle formation by changing pH. J Phys Chem B 106(7):1524–1527CrossRef
14.
Zurück zum Zitat Maeda H, Tanaka S, Ono Y, Miyahara M, Kawasaki H, Nemoto N, Almgren M (2006) Reversible micelle-vesicle conversion of oleyldimethylamine oxide by pH changes. J Phys Chem B 110(25):12451–12458CrossRef Maeda H, Tanaka S, Ono Y, Miyahara M, Kawasaki H, Nemoto N, Almgren M (2006) Reversible micelle-vesicle conversion of oleyldimethylamine oxide by pH changes. J Phys Chem B 110(25):12451–12458CrossRef
15.
Zurück zum Zitat Bergström LM (2001) Synergistic effects in mixtures of an anionic and a cationic surfactant. Langmuir 17(11):993–998CrossRef Bergström LM (2001) Synergistic effects in mixtures of an anionic and a cationic surfactant. Langmuir 17(11):993–998CrossRef
16.
Zurück zum Zitat Bauduin P, Zemb T (2014) Perpendicular and lateral equations of state in layered systems of amphiphiles. Curr Opin Colloid Interface Sci Bauduin P, Zemb T (2014) Perpendicular and lateral equations of state in layered systems of amphiphiles. Curr Opin Colloid Interface Sci
17.
Zurück zum Zitat Israelachvili JN, Mitchell DJ, Ninham BW (1976) Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J Chem Soc Faraday Trans 2 72:1525CrossRef Israelachvili JN, Mitchell DJ, Ninham BW (1976) Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J Chem Soc Faraday Trans 2 72:1525CrossRef
18.
Zurück zum Zitat Bergström LM (1996) Thermodynamics of vesicle formation from a mixture of anionic and cationic surfactants. Langmuir 12(7):2454–2463CrossRef Bergström LM (1996) Thermodynamics of vesicle formation from a mixture of anionic and cationic surfactants. Langmuir 12(7):2454–2463CrossRef
19.
Zurück zum Zitat Stellner KL, Amante JC, Scamehorn JF, Harwell JH (1988) Precipitation phenomena in mixtures of anionic and cationic surfactants in aqueous solutions. J Colloid Interface Sci 123(1):186–200CrossRef Stellner KL, Amante JC, Scamehorn JF, Harwell JH (1988) Precipitation phenomena in mixtures of anionic and cationic surfactants in aqueous solutions. J Colloid Interface Sci 123(1):186–200CrossRef
20.
Zurück zum Zitat Amante JC, Scamehorn JF, Harwell JH (1991) Precipitation of mixtures of anionic and cationic surfactants. J Colloid Interface Sci 144(1):243–253CrossRef Amante JC, Scamehorn JF, Harwell JH (1991) Precipitation of mixtures of anionic and cationic surfactants. J Colloid Interface Sci 144(1):243–253CrossRef
21.
Zurück zum Zitat Caria A, Khan A (1996) Phase behavior of catanionic surfactant mixtures: sodium bis(2-ethylhexyl)sulfosuccinate − didodecyldimethylammonium bromide − water system. Langmuir 12(26):6282–6290CrossRef Caria A, Khan A (1996) Phase behavior of catanionic surfactant mixtures: sodium bis(2-ethylhexyl)sulfosuccinate − didodecyldimethylammonium bromide − water system. Langmuir 12(26):6282–6290CrossRef
22.
Zurück zum Zitat Wolf C, Bressel K, Drechsler M, Gradzielski M (2009) Comparison of vesicle formation in zwitanionic and catanionic mixtures of hydrocarbon and fluorocarbon surfactants: phase behavior and structural progression. Langmuir 25(19):11358–11366CrossRef Wolf C, Bressel K, Drechsler M, Gradzielski M (2009) Comparison of vesicle formation in zwitanionic and catanionic mixtures of hydrocarbon and fluorocarbon surfactants: phase behavior and structural progression. Langmuir 25(19):11358–11366CrossRef
23.
Zurück zum Zitat Bressel K, Prevost S, Appavou M-S, Tiersch B, Koetz J, Gradzielski M (2011) Phase behaviour and structure of zwitanionic mixtures of perfluorocarboxylates and tetradecyldimethylamine oxide—dependence on chain length of the perfluoro surfactant. Soft Matter 7(23):11232CrossRef Bressel K, Prevost S, Appavou M-S, Tiersch B, Koetz J, Gradzielski M (2011) Phase behaviour and structure of zwitanionic mixtures of perfluorocarboxylates and tetradecyldimethylamine oxide—dependence on chain length of the perfluoro surfactant. Soft Matter 7(23):11232CrossRef
24.
Zurück zum Zitat Klein R, Touraud D, Kunz W (2008) Choline carboxylate surfactants: biocompatible and highly soluble in water. Green Chem 10(4):433CrossRef Klein R, Touraud D, Kunz W (2008) Choline carboxylate surfactants: biocompatible and highly soluble in water. Green Chem 10(4):433CrossRef
25.
Zurück zum Zitat Shikata T, Hirata H, Kotaka T (1988) Micelle formation of detergent molecules in aqueous media. 2. Role of free salicylate ions on viscoelastic properties of aqueous cetyltrimethylammonium bromide-sodium salicylate solutions. Langmuir 4(2):354–359CrossRef Shikata T, Hirata H, Kotaka T (1988) Micelle formation of detergent molecules in aqueous media. 2. Role of free salicylate ions on viscoelastic properties of aqueous cetyltrimethylammonium bromide-sodium salicylate solutions. Langmuir 4(2):354–359CrossRef
26.
Zurück zum Zitat Rehage H, Hoffmann H (1982) Shear induced phase transitions in highly dilute aqueous detergent solutions. Rheol Acta 21(4–5):561–563CrossRef Rehage H, Hoffmann H (1982) Shear induced phase transitions in highly dilute aqueous detergent solutions. Rheol Acta 21(4–5):561–563CrossRef
27.
Zurück zum Zitat Raghavan SR, Fritz G, Kaler EW (2002) Wormlike micelles formed by synergistic self-assembly in mixtures of anionic and cationic surfactants. Langmuir 18(10):3797–3803CrossRef Raghavan SR, Fritz G, Kaler EW (2002) Wormlike micelles formed by synergistic self-assembly in mixtures of anionic and cationic surfactants. Langmuir 18(10):3797–3803CrossRef
28.
Zurück zum Zitat Abdel-Rahem R, Gradzielski M, Hoffmann H (2005) A novel viscoelastic system from a cationic surfactant and a hydrophobic counterion. J Colloid Interface Sci 288(2):570–582CrossRef Abdel-Rahem R, Gradzielski M, Hoffmann H (2005) A novel viscoelastic system from a cationic surfactant and a hydrophobic counterion. J Colloid Interface Sci 288(2):570–582CrossRef
29.
Zurück zum Zitat Eastoe J, Rogueda P, Shariatmadari D, Heenan R (1996) Micelles of asymmetric chain catanionic surfactants. Colloids Surfaces A Physicochem Eng Asp 117(3):215–225CrossRef Eastoe J, Rogueda P, Shariatmadari D, Heenan R (1996) Micelles of asymmetric chain catanionic surfactants. Colloids Surfaces A Physicochem Eng Asp 117(3):215–225CrossRef
30.
Zurück zum Zitat Hao J, Hoffmann H (2004) Self-assembled structures in excess and salt-free catanionic surfactant solutions. Curr Opin Colloid Interface Sci 9(3–4):279–293CrossRef Hao J, Hoffmann H (2004) Self-assembled structures in excess and salt-free catanionic surfactant solutions. Curr Opin Colloid Interface Sci 9(3–4):279–293CrossRef
31.
Zurück zum Zitat Zemb T (1999) Self-assembly of flat nanodiscs in salt-free catanionic surfactant solutions. Science (80-) 283(5403):816–819CrossRef Zemb T (1999) Self-assembly of flat nanodiscs in salt-free catanionic surfactant solutions. Science (80-) 283(5403):816–819CrossRef
32.
Zurück zum Zitat Dubois M, Demé B, Gulik-Krzywicki T, Dedieu JC, Vautrin C, Désert S, Perez E, Zemb T (2001) Self-assembly of regular hollow icosahedra in salt-free catanionic solutions. Nature 411(6838):672–675CrossRef Dubois M, Demé B, Gulik-Krzywicki T, Dedieu JC, Vautrin C, Désert S, Perez E, Zemb T (2001) Self-assembly of regular hollow icosahedra in salt-free catanionic solutions. Nature 411(6838):672–675CrossRef
33.
Zurück zum Zitat Sun W, Shen Y, Hao J (2011) Phase behavior and rheological properties of salt-free catanionic TTAOH/DA/H2O system in the presence of hydrophilic and hydrophobic salts. Langmuir 27(5):1675–1682CrossRef Sun W, Shen Y, Hao J (2011) Phase behavior and rheological properties of salt-free catanionic TTAOH/DA/H2O system in the presence of hydrophilic and hydrophobic salts. Langmuir 27(5):1675–1682CrossRef
34.
Zurück zum Zitat Vlachy N, Renoncourt A, Drechsler M, Verbavatz J-M, Touraud D, Kunz W (2008) Blastulae aggregates: new intermediate structures in the micelle-to-vesicle transition of catanionic systems. J Colloid Interface Sci 320(1):360–363CrossRef Vlachy N, Renoncourt A, Drechsler M, Verbavatz J-M, Touraud D, Kunz W (2008) Blastulae aggregates: new intermediate structures in the micelle-to-vesicle transition of catanionic systems. J Colloid Interface Sci 320(1):360–363CrossRef
35.
Zurück zum Zitat Jung HT, Coldren B, Zasadzinski JA, Iampietro DJ, Kaler EW (2001) The origins of stability of spontaneous vesicles. Proc Natl Acad Sci 98(4):1353–1357CrossRef Jung HT, Coldren B, Zasadzinski JA, Iampietro DJ, Kaler EW (2001) The origins of stability of spontaneous vesicles. Proc Natl Acad Sci 98(4):1353–1357CrossRef
36.
Zurück zum Zitat Gummel J, Sztucki M, Narayanan T, Gradzielski M (2011) Concentration dependent pathways in spontaneous self-assembly of unilamellar vesicles. Soft Matter 7(12):5731CrossRef Gummel J, Sztucki M, Narayanan T, Gradzielski M (2011) Concentration dependent pathways in spontaneous self-assembly of unilamellar vesicles. Soft Matter 7(12):5731CrossRef
37.
Zurück zum Zitat He X, Schmid F (2008) Spontaneous formation of complex micelles from a homogeneous solution. Phys Rev Lett 100(13):137802CrossRef He X, Schmid F (2008) Spontaneous formation of complex micelles from a homogeneous solution. Phys Rev Lett 100(13):137802CrossRef
38.
Zurück zum Zitat Shioi A, Hatton TA (2002) Model for formation and growth of vesicles in mixed anionic/cationic (SOS/CTAB) surfactant systems. Langmuir 18(20):7341–7348CrossRef Shioi A, Hatton TA (2002) Model for formation and growth of vesicles in mixed anionic/cationic (SOS/CTAB) surfactant systems. Langmuir 18(20):7341–7348CrossRef
39.
Zurück zum Zitat Weiss T, Narayanan T, Wolf C, Gradzielski M, Panine P, Finet S, Helsby W (2005) Dynamics of the Self-Assembly of Unilamellar Vesicles. Phys Rev Lett 94 (3) Weiss T, Narayanan T, Wolf C, Gradzielski M, Panine P, Finet S, Helsby W (2005) Dynamics of the Self-Assembly of Unilamellar Vesicles. Phys Rev Lett 94 (3)
40.
Zurück zum Zitat Weiss TM, Narayanan T, Gradzielski M (2008) Dynamics of spontaneous vesicle formation in fluorocarbon and hydrocarbon surfactant mixtures. Langmuir 24(8):3759–3766CrossRef Weiss TM, Narayanan T, Gradzielski M (2008) Dynamics of spontaneous vesicle formation in fluorocarbon and hydrocarbon surfactant mixtures. Langmuir 24(8):3759–3766CrossRef
41.
Zurück zum Zitat Helfrich W (1974) The size of bilayer vesicles generated by sonication. Phys Lett A 50(2):115–116CrossRef Helfrich W (1974) The size of bilayer vesicles generated by sonication. Phys Lett A 50(2):115–116CrossRef
42.
Zurück zum Zitat Fromherz P (1983) Lipid-vesicle structure: size control by edge-active agents. Chem Phys Lett 94(3):259–266CrossRef Fromherz P (1983) Lipid-vesicle structure: size control by edge-active agents. Chem Phys Lett 94(3):259–266CrossRef
43.
Zurück zum Zitat Bressel K, Muthig M, Prevost S, Gummel JJ, Narayanan T, Gradzielski M, Prévost S (2012) Shaping vesicles-controlling size and stability by admixture of amphiphilic copolymer. ACS Nano 6(7):5858–5865CrossRef Bressel K, Muthig M, Prevost S, Gummel JJ, Narayanan T, Gradzielski M, Prévost S (2012) Shaping vesicles-controlling size and stability by admixture of amphiphilic copolymer. ACS Nano 6(7):5858–5865CrossRef
44.
Zurück zum Zitat Schmölzer S, Gräbner D, Gradzielski M, Narayanan T (2002) Millisecond-range time-resolved small-angle X-Ray scattering studies of micellar transformations. Phys Rev Lett 88(25):258301CrossRef Schmölzer S, Gräbner D, Gradzielski M, Narayanan T (2002) Millisecond-range time-resolved small-angle X-Ray scattering studies of micellar transformations. Phys Rev Lett 88(25):258301CrossRef
45.
Zurück zum Zitat Khan A, Marques EF (1999) Synergism and polymorphism in mixed surfactant systems. Curr Opin Colloid Interface Sci 4(6):402–410CrossRef Khan A, Marques EF (1999) Synergism and polymorphism in mixed surfactant systems. Curr Opin Colloid Interface Sci 4(6):402–410CrossRef
46.
Zurück zum Zitat Li X, Kunieda H (2003) Catanionic surfactants: microemulsion formation and solubilization. Curr Opin Colloid Interface Sci 8(4–5):327–336CrossRef Li X, Kunieda H (2003) Catanionic surfactants: microemulsion formation and solubilization. Curr Opin Colloid Interface Sci 8(4–5):327–336CrossRef
47.
Zurück zum Zitat Zemb T, Dubois M (2003) Catanionic microcrystals: organic platelets, gigadalton “molecules”, or ionic solids? Aust J Chem 56(10):971CrossRef Zemb T, Dubois M (2003) Catanionic microcrystals: organic platelets, gigadalton “molecules”, or ionic solids? Aust J Chem 56(10):971CrossRef
48.
Zurück zum Zitat Carrière D, Page M, Dubois M, Zemb T, Cölfen H, Meister A, Belloni L, Schönhoff M, Möhwald H (2007) Osmotic pressure in colloid science: clay dispersions, catanionics, polyelectrolyte complexes and polyelectrolyte multilayers. Colloids Surfaces A Physicochem Eng Asp 303(1–2):137–143CrossRef Carrière D, Page M, Dubois M, Zemb T, Cölfen H, Meister A, Belloni L, Schönhoff M, Möhwald H (2007) Osmotic pressure in colloid science: clay dispersions, catanionics, polyelectrolyte complexes and polyelectrolyte multilayers. Colloids Surfaces A Physicochem Eng Asp 303(1–2):137–143CrossRef
49.
Zurück zum Zitat Fameau A-L, Zemb T (2014) Self-assembly of fatty acids in the presence of amines and cationic components. Adv Colloid Interface Sci 207:43–64CrossRef Fameau A-L, Zemb T (2014) Self-assembly of fatty acids in the presence of amines and cationic components. Adv Colloid Interface Sci 207:43–64CrossRef
50.
Zurück zum Zitat Vautrin C, Dubois M, Zemb T, Schmölzer S, Hoffmann H, Gradzielski M (2003) Chain melting in swollen catanionic bilayers. Colloids Surf A Physicochem Eng Asp 217(1–3):165–170CrossRef Vautrin C, Dubois M, Zemb T, Schmölzer S, Hoffmann H, Gradzielski M (2003) Chain melting in swollen catanionic bilayers. Colloids Surf A Physicochem Eng Asp 217(1–3):165–170CrossRef
51.
Zurück zum Zitat Michina Y, Carrière D, Charpentier T, Brito R, Marques EF, Douliez J-P, Zemb T (2010) Absence of lateral phase segregation in fatty acid-based catanionic mixtures. J Phys Chem B 114(5):1932–1938CrossRef Michina Y, Carrière D, Charpentier T, Brito R, Marques EF, Douliez J-P, Zemb T (2010) Absence of lateral phase segregation in fatty acid-based catanionic mixtures. J Phys Chem B 114(5):1932–1938CrossRef
52.
Zurück zum Zitat Gradzielski M (2003) Vesicles and vesicle gels—structure and dynamics of formation. J Phys Condens Matter 15(19):R655–R697CrossRef Gradzielski M (2003) Vesicles and vesicle gels—structure and dynamics of formation. J Phys Condens Matter 15(19):R655–R697CrossRef
53.
Zurück zum Zitat Brown W, Johansson K, Almgren M (1989) Threadlike micelles from cetyltrimethylammonium bromide in aqueous sodium naphthalenesulfonate solutions studied by static and dynamic light scattering. J Phys Chem 93(15):5888–5894CrossRef Brown W, Johansson K, Almgren M (1989) Threadlike micelles from cetyltrimethylammonium bromide in aqueous sodium naphthalenesulfonate solutions studied by static and dynamic light scattering. J Phys Chem 93(15):5888–5894CrossRef
54.
Zurück zum Zitat Keiderling U, Wiedenmann A (1995) New SANS instrument at the BER II Reactor in Berlin, Germany. Phys B Condens Matter 213–214:895–897CrossRef Keiderling U, Wiedenmann A (1995) New SANS instrument at the BER II Reactor in Berlin, Germany. Phys B Condens Matter 213–214:895–897CrossRef
55.
Zurück zum Zitat Horbaschek K, Hoffmann H, Hao J (2000) Classic L Α phases as opposed to vesicle phases in cationic − anionic surfactant mixtures. J Phys Chem B 104(13):2781–2784CrossRef Horbaschek K, Hoffmann H, Hao J (2000) Classic L Α phases as opposed to vesicle phases in cationic − anionic surfactant mixtures. J Phys Chem B 104(13):2781–2784CrossRef
56.
Zurück zum Zitat Hao J, Liu W, Xu G, Zheng L (2003) Vesicles from salt-free cationic and anionic surfactant solutions. Langmuir 19(26):10635–10640CrossRef Hao J, Liu W, Xu G, Zheng L (2003) Vesicles from salt-free cationic and anionic surfactant solutions. Langmuir 19(26):10635–10640CrossRef
57.
Zurück zum Zitat Abdel-Rahem R, Hoffmann H (2006) The distinction of viscoelastic phases from entangled wormlike micelles and of densely packed multilamellar vesicles on the basis of rheological measurements. Rheol Acta 45(6):781–792CrossRef Abdel-Rahem R, Hoffmann H (2006) The distinction of viscoelastic phases from entangled wormlike micelles and of densely packed multilamellar vesicles on the basis of rheological measurements. Rheol Acta 45(6):781–792CrossRef
58.
Zurück zum Zitat Vautrin C, Zemb T, Schneider M, Tanaka M (2004) Balance of pH and ionic strength influences on chain melting transition in catanionic vesicles. J Phys Chem B 108(23):7986–7991CrossRef Vautrin C, Zemb T, Schneider M, Tanaka M (2004) Balance of pH and ionic strength influences on chain melting transition in catanionic vesicles. J Phys Chem B 108(23):7986–7991CrossRef
59.
Zurück zum Zitat Matos MRA, Silva BFB, Marques EF (2013) Chain length mismatch and packing effects on the thermotropic phase behavior of salt-free catanionic surfactants. J Colloid Interface Sci 405:134–144CrossRef Matos MRA, Silva BFB, Marques EF (2013) Chain length mismatch and packing effects on the thermotropic phase behavior of salt-free catanionic surfactants. J Colloid Interface Sci 405:134–144CrossRef
60.
Zurück zum Zitat Meister A, Dubois M, Belloni L, Zemb T (2003) Equation of state of self-assembled disklike and icosahedral crystallites in the dilute range. Langmuir 19(18):7259–7263CrossRef Meister A, Dubois M, Belloni L, Zemb T (2003) Equation of state of self-assembled disklike and icosahedral crystallites in the dilute range. Langmuir 19(18):7259–7263CrossRef
61.
Zurück zum Zitat Thomas CK, Olvera de la Cruz M (2013) Theory and simulations of crystalline control via salinity and pH in ionizable membranes. Soft Matter 9(2):429–434CrossRef Thomas CK, Olvera de la Cruz M (2013) Theory and simulations of crystalline control via salinity and pH in ionizable membranes. Soft Matter 9(2):429–434CrossRef
62.
Zurück zum Zitat Carrière D, Belloni L, Demé B, Dubois M, Vautrin C, Meister A, Zemb T (2009) In-plane distribution in mixtures of cationic and anionic surfactants. Soft Matter 5(24):4983CrossRef Carrière D, Belloni L, Demé B, Dubois M, Vautrin C, Meister A, Zemb T (2009) In-plane distribution in mixtures of cationic and anionic surfactants. Soft Matter 5(24):4983CrossRef
63.
Zurück zum Zitat Maurer E, Belloni L, Zemb T, Carrière D (2007) Ion exchange in catanionic mixtures: from ion pair amphiphiles to surfactant mixtures. Langmuir 23(12):6554–6560CrossRef Maurer E, Belloni L, Zemb T, Carrière D (2007) Ion exchange in catanionic mixtures: from ion pair amphiphiles to surfactant mixtures. Langmuir 23(12):6554–6560CrossRef
64.
Zurück zum Zitat Dubois M, Lizunov V, Meister A, Gulik-Krzywicki T, Verbavatz JM, Perez E, Zimmerberg J, Zemb T (2004) Shape control through molecular segregation in giant surfactant aggregates. Proc Natl Acad Sci U S A 101(42):15082–15087CrossRef Dubois M, Lizunov V, Meister A, Gulik-Krzywicki T, Verbavatz JM, Perez E, Zimmerberg J, Zemb T (2004) Shape control through molecular segregation in giant surfactant aggregates. Proc Natl Acad Sci U S A 101(42):15082–15087CrossRef
65.
Zurück zum Zitat Dubois M, Belloni L, Zemb T, Demé B, Gulik-Krzywicki T (2000) Formation of rigid nanodiscs: edge formation and molecular separation. Prog Colloid Polym Sci 115:238–242CrossRef Dubois M, Belloni L, Zemb T, Demé B, Gulik-Krzywicki T (2000) Formation of rigid nanodiscs: edge formation and molecular separation. Prog Colloid Polym Sci 115:238–242CrossRef
66.
Zurück zum Zitat Okamoto R, Onuki A (2011) Charged colloids in an aqueous mixture with a salt. Phys Rev E - Stat Nonlinear Soft Matter Phys 84(5):051401CrossRef Okamoto R, Onuki A (2011) Charged colloids in an aqueous mixture with a salt. Phys Rev E - Stat Nonlinear Soft Matter Phys 84(5):051401CrossRef
67.
Zurück zum Zitat Onuki A, Okamoto R (2011) Selective solvation effects in phase separation in aqueous mixtures. Curr Opin Colloid Interface Sci 525–533 Onuki A, Okamoto R (2011) Selective solvation effects in phase separation in aqueous mixtures. Curr Opin Colloid Interface Sci 525–533
68.
Zurück zum Zitat Kaler EW, Herrington KL, Murthy AK, Zasadzinski JA (1992) Phase behavior and structures of mixtures of anionic and cationic surfactants. J Phys Chem 96(16):6698–6707CrossRef Kaler EW, Herrington KL, Murthy AK, Zasadzinski JA (1992) Phase behavior and structures of mixtures of anionic and cationic surfactants. J Phys Chem 96(16):6698–6707CrossRef
69.
Zurück zum Zitat Arnould A, Perez AA, Gaillard C, Douliez J-P, Cousin F, Santiago LG, Zemb T, Anton M, Fameau A-L (2015) Self-assembly of myristic acid in the presence of choline hydroxide: effect of molar ratio and temperature. J Colloid Interface Sci 445:285–293CrossRef Arnould A, Perez AA, Gaillard C, Douliez J-P, Cousin F, Santiago LG, Zemb T, Anton M, Fameau A-L (2015) Self-assembly of myristic acid in the presence of choline hydroxide: effect of molar ratio and temperature. J Colloid Interface Sci 445:285–293CrossRef
Metadaten
Titel
Catanionic surfactant systems—thermodynamic and structural conditions revisited
verfasst von
Leonardo Chiappisi
Hacer Yalcinkaya
Vicknesh Kumar Gopalakrishnan
Michael Gradzielski
Thomas Zemb
Publikationsdatum
01.11.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Colloid and Polymer Science / Ausgabe 11/2015
Print ISSN: 0303-402X
Elektronische ISSN: 1435-1536
DOI
https://doi.org/10.1007/s00396-015-3739-9

Weitere Artikel der Ausgabe 11/2015

Colloid and Polymer Science 11/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.