Skip to main content

2013 | OriginalPaper | Buchkapitel

Cellulases from Insects

verfasst von : Rainer Fischer, Raluca Ostafe, Richard M. Twyman

Erschienen in: Yellow Biotechnology II

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Bioethanol is currently produced by the fermentation of sugary and starchy crops, but waste plant biomass is a more abundant source because sugars can be derived directly from cellulose. One of the limiting steps in the biomass-to-ethanol process is the degradation of cellulose to fermentable sugars (saccharification). This currently relies on the use of bacterial and/or fungal cellulases, which tend to have low activity under biorefinery conditions and are easily inhibited. Some insect species feed on plant biomass and can efficiently degrade cellulose to produce glucose as an energy source. Although insects were initially thought to require symbiotic relationships with bacteria and fungi to break down cellulose, several species in the orders Dictyoptera, Orthoptera, and Coleoptera have now been shown to produce their own cellulases in the midgut or salivary glands, and putative cellulase genes have been identified in other orders. Insect cellulases often work in concert with cellulases provided by symbiotic microbiota in the gut to achieve efficient cellulolysis. We discuss the current status of insect cellulases and potential strategies that could be used to find novel enzymes and improve their efficiency.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Farrell AE, Plevin RJ, Turner BT, Jones AD, O’Hare M, Kammen DM (2006) Ethanol can contribute to energy and environmental goals. Science 311:506–508CrossRef Farrell AE, Plevin RJ, Turner BT, Jones AD, O’Hare M, Kammen DM (2006) Ethanol can contribute to energy and environmental goals. Science 311:506–508CrossRef
2.
Zurück zum Zitat Hammerschlag R (2006) Ethanol’s energy return on investment: a survey of the literature 1999-present. Environ Sci Technol 40:1744–1750CrossRef Hammerschlag R (2006) Ethanol’s energy return on investment: a survey of the literature 1999-present. Environ Sci Technol 40:1744–1750CrossRef
3.
Zurück zum Zitat Jordan DB, Bowman MJ, Braker JD, Dien BS, Hector RE, Lee CC, Mertens JA, Wagschal K (2012) Plant cell walls to ethanol. Biochem J 442:241–252CrossRef Jordan DB, Bowman MJ, Braker JD, Dien BS, Hector RE, Lee CC, Mertens JA, Wagschal K (2012) Plant cell walls to ethanol. Biochem J 442:241–252CrossRef
4.
Zurück zum Zitat Himmel ME (2008) Biomass recalcitrance: deconstructing the plant cell wall for bioenergy. Blackwell Publishing, OxfordCrossRef Himmel ME (2008) Biomass recalcitrance: deconstructing the plant cell wall for bioenergy. Blackwell Publishing, OxfordCrossRef
5.
Zurück zum Zitat Gusakov AV (2011) Alternatives to Trichoderma reesei in biofuel production. Trends Biotechnol 29:419–425CrossRef Gusakov AV (2011) Alternatives to Trichoderma reesei in biofuel production. Trends Biotechnol 29:419–425CrossRef
6.
Zurück zum Zitat Wilson DB (2011) Microbial diversity in cellulose hydrolysis. Curr Opin Microbiol 14:259–263CrossRef Wilson DB (2011) Microbial diversity in cellulose hydrolysis. Curr Opin Microbiol 14:259–263CrossRef
7.
Zurück zum Zitat Gomez LD, Steele-King CG, McQueen-Mason SJ (2008) Sustainable liquid biofuels from biomass: the writing’s on the walls. New Phytol 178:473–485CrossRef Gomez LD, Steele-King CG, McQueen-Mason SJ (2008) Sustainable liquid biofuels from biomass: the writing’s on the walls. New Phytol 178:473–485CrossRef
8.
Zurück zum Zitat la Grange DC, den Haan R, van Zyl WH (2010) Engineering cellulolytic ability into bioprocessing organisms. Appl Environ Microbiol 87:1195–1208 la Grange DC, den Haan R, van Zyl WH (2010) Engineering cellulolytic ability into bioprocessing organisms. Appl Environ Microbiol 87:1195–1208
9.
Zurück zum Zitat Zhang S, Wolfgang D, Wilson DB (1999) Substrate heterogeneity causes the non-linear kinetics of insoluble cellulose hydrolysis. Biotechnol Bieng 66:35–41CrossRef Zhang S, Wolfgang D, Wilson DB (1999) Substrate heterogeneity causes the non-linear kinetics of insoluble cellulose hydrolysis. Biotechnol Bieng 66:35–41CrossRef
10.
Zurück zum Zitat Spezio M, Wilson DB, Karplus PA (1993) Crystal structure of the catalytic domain of a thermophilic endocellulase. Biochemistry 32:9906–9916CrossRef Spezio M, Wilson DB, Karplus PA (1993) Crystal structure of the catalytic domain of a thermophilic endocellulase. Biochemistry 32:9906–9916CrossRef
11.
Zurück zum Zitat Rouvinen J, Bergfors T, Teeri T, Knowles JK, Jones TA (1990) Three dimensional structure of cellobiohydrolase II from Trichoderma reesei. Science 249:380–386CrossRef Rouvinen J, Bergfors T, Teeri T, Knowles JK, Jones TA (1990) Three dimensional structure of cellobiohydrolase II from Trichoderma reesei. Science 249:380–386CrossRef
12.
Zurück zum Zitat Barr BK, Hsieh Y-L, Ganem B, Wilson DB (1996) Identification of two functionally different classes of exocellulases. Biochemistry 35:586–592CrossRef Barr BK, Hsieh Y-L, Ganem B, Wilson DB (1996) Identification of two functionally different classes of exocellulases. Biochemistry 35:586–592CrossRef
14.
Zurück zum Zitat Wilson DB (2008) Aerobic microbial cellulase systems. In: Himmel ME (ed) Biomass recalcitrance: deconstructing the plant cell wall for bioenergy. Blackwell Publishing, Oxford, pp 374–392CrossRef Wilson DB (2008) Aerobic microbial cellulase systems. In: Himmel ME (ed) Biomass recalcitrance: deconstructing the plant cell wall for bioenergy. Blackwell Publishing, Oxford, pp 374–392CrossRef
15.
Zurück zum Zitat Irwin DC, Spezio M, Walker LP, Wilson DB (1993) Activity studies of eight purified cellulases: specificity, synergism, and binding domain effects. Biotechnol Bioeng 42:1002–1013CrossRef Irwin DC, Spezio M, Walker LP, Wilson DB (1993) Activity studies of eight purified cellulases: specificity, synergism, and binding domain effects. Biotechnol Bioeng 42:1002–1013CrossRef
16.
Zurück zum Zitat Ding SY, Xu Q, Crowley M, Zeng Y, Nimlos M, Lamed R, Bayer EA, Himmel M (2008) A biophysical perspective on the cellulosome: new opportunities for biomass conversion. Curr Opin Biotechnol 19:218–227CrossRef Ding SY, Xu Q, Crowley M, Zeng Y, Nimlos M, Lamed R, Bayer EA, Himmel M (2008) A biophysical perspective on the cellulosome: new opportunities for biomass conversion. Curr Opin Biotechnol 19:218–227CrossRef
17.
Zurück zum Zitat Blumer-Schuette SE, Lewis DL, Kelly RM (2010) Phylogenetic, microbiological, and glycoside hydrolase diversities within the extremely thermophilic, plant biomass-degrading genus Caldicellulosiruptor. Appl Environ Microbiol 76:8084–8092CrossRef Blumer-Schuette SE, Lewis DL, Kelly RM (2010) Phylogenetic, microbiological, and glycoside hydrolase diversities within the extremely thermophilic, plant biomass-degrading genus Caldicellulosiruptor. Appl Environ Microbiol 76:8084–8092CrossRef
18.
Zurück zum Zitat Qi M, Jun HS, Forsberg CW (2007) Characterization and synergistic interactions of Fibrobacter succinogenes glycoside hydrolases. Appl Environ Microbiol 73:6098–6105CrossRef Qi M, Jun HS, Forsberg CW (2007) Characterization and synergistic interactions of Fibrobacter succinogenes glycoside hydrolases. Appl Environ Microbiol 73:6098–6105CrossRef
19.
Zurück zum Zitat Harris PV, Welner D, McFarland KC, Re E, Navarro Poulsen JC, Brown K, Salbo R, Ding H, Vlasenko E, Merino S (2010) Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large, enigmatic family. Biochemistry 49:3305–3316CrossRef Harris PV, Welner D, McFarland KC, Re E, Navarro Poulsen JC, Brown K, Salbo R, Ding H, Vlasenko E, Merino S (2010) Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large, enigmatic family. Biochemistry 49:3305–3316CrossRef
20.
Zurück zum Zitat Watanabe H, Tokuda G (2010) Cellulolytic systems in insects. Annu Rev Entomol 55:609–632CrossRef Watanabe H, Tokuda G (2010) Cellulolytic systems in insects. Annu Rev Entomol 55:609–632CrossRef
21.
Zurück zum Zitat Watanabe H, Noda H, Tokuda G, Lo N (1998) A cellulase gene of termite origin. Nature 394:330–331CrossRef Watanabe H, Noda H, Tokuda G, Lo N (1998) A cellulase gene of termite origin. Nature 394:330–331CrossRef
22.
Zurück zum Zitat Lo N, Tokuda G, Watanabe H, Rose H, Slaytor M et al (2000) Evidence from multiple gene sequences indicates that termites evolved from wood-feeding cockroaches. Curr Biol 10:801–804CrossRef Lo N, Tokuda G, Watanabe H, Rose H, Slaytor M et al (2000) Evidence from multiple gene sequences indicates that termites evolved from wood-feeding cockroaches. Curr Biol 10:801–804CrossRef
23.
Zurück zum Zitat Nakashima K, Watanabe H, Saitoh H, Tokuda G, Azuma JI (2002) Dual cellulose-digesting system of the wood-feeding termite, Coptotermes formosanus Shiraki. Insect Biochem Mol Biol 32:777–784CrossRef Nakashima K, Watanabe H, Saitoh H, Tokuda G, Azuma JI (2002) Dual cellulose-digesting system of the wood-feeding termite, Coptotermes formosanus Shiraki. Insect Biochem Mol Biol 32:777–784CrossRef
24.
Zurück zum Zitat Scharf ME, Wu-Scharf D, Pittendrigh BR, Bennett GW (2003) Caste- and development-associated gene expression in a lower termite. Genome Biol 4:R62CrossRef Scharf ME, Wu-Scharf D, Pittendrigh BR, Bennett GW (2003) Caste- and development-associated gene expression in a lower termite. Genome Biol 4:R62CrossRef
25.
Zurück zum Zitat Tokuda G, Lo N, Watanabe H, Arakawa G, Matsumoto T, Noda H (2004) Major alteration of the expression site of endogenous cellulases in members of an apical termite lineage. Mol Ecol 13:3219–3228CrossRef Tokuda G, Lo N, Watanabe H, Arakawa G, Matsumoto T, Noda H (2004) Major alteration of the expression site of endogenous cellulases in members of an apical termite lineage. Mol Ecol 13:3219–3228CrossRef
26.
Zurück zum Zitat Tokuda G, Lo N, Watanabe H, Slaytor M, Matsumoto T, Noda H (1999) Metazoan cellulase genes from termites: intron/exon structures and sites of expression. Biochim Biophys Acta 1447:146–159CrossRef Tokuda G, Lo N, Watanabe H, Slaytor M, Matsumoto T, Noda H (1999) Metazoan cellulase genes from termites: intron/exon structures and sites of expression. Biochim Biophys Acta 1447:146–159CrossRef
27.
Zurück zum Zitat Lee SJ, Kim SR, Yoon HJ, Kim I, Lee KS et al (2004) cDNA cloning, expression, and enzymatic activity of a cellulase from the mulberry longicorn beetle, Apriona germari. Comp Biochem Physiol B Biochem Mol Biol 139:107–116CrossRef Lee SJ, Kim SR, Yoon HJ, Kim I, Lee KS et al (2004) cDNA cloning, expression, and enzymatic activity of a cellulase from the mulberry longicorn beetle, Apriona germari. Comp Biochem Physiol B Biochem Mol Biol 139:107–116CrossRef
28.
Zurück zum Zitat Sugimura M, Watanabe H, Lo N, Saito H (2003) Purification, characterization, cDNA cloning and nucleotide sequencing of a cellulase from the yellow-spotted longicorn beetle, Psacothea hilaris. Eur J Biochem 270:3455–3460CrossRef Sugimura M, Watanabe H, Lo N, Saito H (2003) Purification, characterization, cDNA cloning and nucleotide sequencing of a cellulase from the yellow-spotted longicorn beetle, Psacothea hilaris. Eur J Biochem 270:3455–3460CrossRef
29.
Zurück zum Zitat Wei YD, Lee KS, Gui ZZ, Yoon HJ, Kim I et al (2006) Molecular cloning, expression, and enzymatic activity of a novel endogenous cellulase from the mulberry longicorn beetle, Apriona germari. Comp Biochem Physiol B Biochem Mol Biol 145:220–229CrossRef Wei YD, Lee KS, Gui ZZ, Yoon HJ, Kim I et al (2006) Molecular cloning, expression, and enzymatic activity of a novel endogenous cellulase from the mulberry longicorn beetle, Apriona germari. Comp Biochem Physiol B Biochem Mol Biol 145:220–229CrossRef
30.
Zurück zum Zitat Wei YD, Lee KS, Gui ZZ, Yoon HJ, Kim I et al (2006) N-linked glycosylation of a beetle (Apriona germari) cellulase Ag-EGase II is necessary for enzymatic activity. Insect Biochem Mol Biol 36:435–441CrossRef Wei YD, Lee KS, Gui ZZ, Yoon HJ, Kim I et al (2006) N-linked glycosylation of a beetle (Apriona germari) cellulase Ag-EGase II is necessary for enzymatic activity. Insect Biochem Mol Biol 36:435–441CrossRef
31.
Zurück zum Zitat Wei YD, Lee SJ, Lee KS, Gui ZZ, Yoon HJ et al (2005) N-glycosylation is necessary for enzymatic activity of a beetle (Apriona germari) cellulase. Biochem Biophys Res Commun 329:331–336CrossRef Wei YD, Lee SJ, Lee KS, Gui ZZ, Yoon HJ et al (2005) N-glycosylation is necessary for enzymatic activity of a beetle (Apriona germari) cellulase. Biochem Biophys Res Commun 329:331–336CrossRef
32.
Zurück zum Zitat Kim N, Choo YM, Lee KS, Hong SJ, Seol KY et al (2008) Molecular cloning and characterization of a glycosyl hydrolase family 9 cellulase distributed throughout the digestive tract of the cricket Teleogryllus emma. Comp Biochem Physiol B Biochem Mol Biol 150:368–376CrossRef Kim N, Choo YM, Lee KS, Hong SJ, Seol KY et al (2008) Molecular cloning and characterization of a glycosyl hydrolase family 9 cellulase distributed throughout the digestive tract of the cricket Teleogryllus emma. Comp Biochem Physiol B Biochem Mol Biol 150:368–376CrossRef
33.
Zurück zum Zitat Kunieda T, Fujiyuki T, Kucharski R, Foret S, Ament SA et al (2006) Carbohydrate metabolism genes and pathways in insects: insights from the honey bee genome. Insect Mol Biol 15:563–576CrossRef Kunieda T, Fujiyuki T, Kucharski R, Foret S, Ament SA et al (2006) Carbohydrate metabolism genes and pathways in insects: insights from the honey bee genome. Insect Mol Biol 15:563–576CrossRef
34.
Zurück zum Zitat Davison A, Blaxter M (2005) Ancient origin of glycosyl hydrolase family 9 cellulase genes. Mol Biol Evol 22:1273–1284CrossRef Davison A, Blaxter M (2005) Ancient origin of glycosyl hydrolase family 9 cellulase genes. Mol Biol Evol 22:1273–1284CrossRef
35.
Zurück zum Zitat Lo N, Watanabe H, Sugimura M (2003) Evidence for the presence of a cellulase gene in the last common ancestor of bilaterian animals. Proc R Soc London Sci Ser B 270(Suppl 1):S69–72 Lo N, Watanabe H, Sugimura M (2003) Evidence for the presence of a cellulase gene in the last common ancestor of bilaterian animals. Proc R Soc London Sci Ser B 270(Suppl 1):S69–72
36.
Zurück zum Zitat Suzuki K-I, Ojima T, Nishita K (2003) Purification and cDNA cloning of a cellulase from abalone Haliotis discus hannai. Eur J Biochem 270:771–778CrossRef Suzuki K-I, Ojima T, Nishita K (2003) Purification and cDNA cloning of a cellulase from abalone Haliotis discus hannai. Eur J Biochem 270:771–778CrossRef
37.
Zurück zum Zitat The International Silkworm Genome Consortium (2008) The genome of a lepidopteran model insect, the silkworm Bombyx mori. Insect Biochem Mol Biol 38(1036–45):8 The International Silkworm Genome Consortium (2008) The genome of a lepidopteran model insect, the silkworm Bombyx mori. Insect Biochem Mol Biol 38(1036–45):8
38.
Zurück zum Zitat Dasmahapatra KK, Walters JR, Briscoe AD, Davey JW, Whibley A, Nadeau NJ, Zimin AV, Hughes DS, Ferguson LC, Martin SH et al (2012) Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature 487:94–98 Dasmahapatra KK, Walters JR, Briscoe AD, Davey JW, Whibley A, Nadeau NJ, Zimin AV, Hughes DS, Ferguson LC, Martin SH et al (2012) Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature 487:94–98
39.
Zurück zum Zitat Zhan S, Merlin C, Boore JL, Reppert SM (2011) The monarch butterfly genome yields insights into long-distance migration. Cell 147(5):1171–1185CrossRef Zhan S, Merlin C, Boore JL, Reppert SM (2011) The monarch butterfly genome yields insights into long-distance migration. Cell 147(5):1171–1185CrossRef
40.
Zurück zum Zitat Willis JD, Oppert B, Oppert C, Klingeman WE, Jurat-Fuentes JL (2011) Identification, cloning, and expression of a GHF9 cellulase from Tribolium castaneum (Coleoptera: Tenebrionidae). J Insect Physiol 57(2):300–306CrossRef Willis JD, Oppert B, Oppert C, Klingeman WE, Jurat-Fuentes JL (2011) Identification, cloning, and expression of a GHF9 cellulase from Tribolium castaneum (Coleoptera: Tenebrionidae). J Insect Physiol 57(2):300–306CrossRef
41.
Zurück zum Zitat Byeon GM, Lee KS, Gui ZZ, Kim I, Kang PD et al (2005) A digestive beta-glucosidase from the silk-worm, Bombyx mori: cDNA cloning, expression and enzymatic characterization. Comp Biochem Physiol B Biochem Mol Biol 141:418–427CrossRef Byeon GM, Lee KS, Gui ZZ, Kim I, Kang PD et al (2005) A digestive beta-glucosidase from the silk-worm, Bombyx mori: cDNA cloning, expression and enzymatic characterization. Comp Biochem Physiol B Biochem Mol Biol 141:418–427CrossRef
42.
Zurück zum Zitat Yuki M, Moriya S, Inoue T, Kudo T (2008) Transcriptome analysis of the digestive organs of Hodotermopsis sjostedti, a lower termite that hosts mutualistic microorganisms in its hindgut. Zool Sci 25:401–406CrossRef Yuki M, Moriya S, Inoue T, Kudo T (2008) Transcriptome analysis of the digestive organs of Hodotermopsis sjostedti, a lower termite that hosts mutualistic microorganisms in its hindgut. Zool Sci 25:401–406CrossRef
43.
Zurück zum Zitat Bhat MK, Bhat S (1997) Cellulose degrading enzymes and their potential industrial applications. Biotechnol Adv 1997(15):583–620CrossRef Bhat MK, Bhat S (1997) Cellulose degrading enzymes and their potential industrial applications. Biotechnol Adv 1997(15):583–620CrossRef
44.
Zurück zum Zitat Ni J, Takehara M, Watanabe H (2005) Heterologous overexpression of a mutant termite cellulase gene in Escherichia coli by DNA shuffling of four orthologous parental cDNAs. Biosci Biotechnol Biochem 69:1711–1720CrossRef Ni J, Takehara M, Watanabe H (2005) Heterologous overexpression of a mutant termite cellulase gene in Escherichia coli by DNA shuffling of four orthologous parental cDNAs. Biosci Biotechnol Biochem 69:1711–1720CrossRef
45.
Zurück zum Zitat Fields S, Song O (1989) A novel genetic system to detect protein–protein interactions. Nature 340:245–246CrossRef Fields S, Song O (1989) A novel genetic system to detect protein–protein interactions. Nature 340:245–246CrossRef
46.
Zurück zum Zitat Georgiou G (2000) Analysis of large libraries of protein mutants using flow cytometry. Adv Protein Chem 55:293–315CrossRef Georgiou G (2000) Analysis of large libraries of protein mutants using flow cytometry. Adv Protein Chem 55:293–315CrossRef
47.
Zurück zum Zitat Roberts RW (1999) Totally in vitro protein selection using mRNA-protein fusions and ribosome display. Curr Opin Chem Biol 3:268–273CrossRef Roberts RW (1999) Totally in vitro protein selection using mRNA-protein fusions and ribosome display. Curr Opin Chem Biol 3:268–273CrossRef
48.
Zurück zum Zitat Cohen N, Abramov S, Dror Y, Freeman A (2001) In vitro enzyme evolution: the screening challenge of isolating the one in a million. Trends Biotechnol 19:507–510CrossRef Cohen N, Abramov S, Dror Y, Freeman A (2001) In vitro enzyme evolution: the screening challenge of isolating the one in a million. Trends Biotechnol 19:507–510CrossRef
49.
Zurück zum Zitat Lin H, Cornish VW (2002) Screening and selection methods for large-scale analysis of protein function. Angewandte Chemie 41:4402–4425CrossRef Lin H, Cornish VW (2002) Screening and selection methods for large-scale analysis of protein function. Angewandte Chemie 41:4402–4425CrossRef
50.
Zurück zum Zitat Olsen M, Iverson B, Georgiou G (2000) High-throughput screening of enzyme libraries. Current Opin Biotechnol 11:331–337CrossRef Olsen M, Iverson B, Georgiou G (2000) High-throughput screening of enzyme libraries. Current Opin Biotechnol 11:331–337CrossRef
51.
Zurück zum Zitat Aharoni A, Amitai G, Bernath K, Magdassi S, Tawfik DS (2005) High-throughput screening of enzyme libraries: thiolactonases evolved by fluorescence-activated sorting of single cells in emulsion compartments. Chem Biol 12:1281–1289CrossRef Aharoni A, Amitai G, Bernath K, Magdassi S, Tawfik DS (2005) High-throughput screening of enzyme libraries: thiolactonases evolved by fluorescence-activated sorting of single cells in emulsion compartments. Chem Biol 12:1281–1289CrossRef
52.
Zurück zum Zitat Dashtban M, Maki M, Leung KT, Mao C, Qin W (2010) Cellulase activities in biomass conversion: measurement methods and comparison. Critical Rev Biotechnol 30:302–309CrossRef Dashtban M, Maki M, Leung KT, Mao C, Qin W (2010) Cellulase activities in biomass conversion: measurement methods and comparison. Critical Rev Biotechnol 30:302–309CrossRef
53.
Zurück zum Zitat Boschker HT, Cappenberg TE, Using ASM (1994) A sensitive method using 4-methylumbelliferyl-β-cellobiose as a substrate to measure (1,4)-β-glucanase activity in sediments. Appl Env Microbiol 60:3592–3596 Boschker HT, Cappenberg TE, Using ASM (1994) A sensitive method using 4-methylumbelliferyl-β-cellobiose as a substrate to measure (1,4)-β-glucanase activity in sediments. Appl Env Microbiol 60:3592–3596
54.
Zurück zum Zitat Ostafe R, Prodanovic R, Commandeur U, Fischer R (2012) Flow cytometry-based ultra-high-throughput screening assay for cellulase activity. Anal Biochem 2012 (published online ahead of print) Ostafe R, Prodanovic R, Commandeur U, Fischer R (2012) Flow cytometry-based ultra-high-throughput screening assay for cellulase activity. Anal Biochem 2012 (published online ahead of print)
55.
Zurück zum Zitat Ohkuma M (2003) Termite symbiotic systems: efficient bio-recycling of lignocellulose. Appl Microbiol Biotechnol 61:1–9CrossRef Ohkuma M (2003) Termite symbiotic systems: efficient bio-recycling of lignocellulose. Appl Microbiol Biotechnol 61:1–9CrossRef
56.
Zurück zum Zitat Itakura S, Ueshima K, Tanaka H, Enoki A (1995) Degradation of wood components by subterranean termite, Coptotermes formosanus Shiraki. Mokuzai Gakkaishi 41:580–586 Itakura S, Ueshima K, Tanaka H, Enoki A (1995) Degradation of wood components by subterranean termite, Coptotermes formosanus Shiraki. Mokuzai Gakkaishi 41:580–586
57.
Zurück zum Zitat Yoshimura T, Tsunoda K, Takahashi M (1996) Degradation of wood in the digestive tract of a higher termite, Nasutitermes takasagoensis (Shiraki) (Isoptera: Termitidae). Mokuzai Gakkaishi 42:1250–1257 Yoshimura T, Tsunoda K, Takahashi M (1996) Degradation of wood in the digestive tract of a higher termite, Nasutitermes takasagoensis (Shiraki) (Isoptera: Termitidae). Mokuzai Gakkaishi 42:1250–1257
58.
Zurück zum Zitat Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729CrossRef Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729CrossRef
59.
Zurück zum Zitat Nieves RA, Ehrman CI, Adney WS, Elander RT, Himmel ME (1998) Technical communication: survey and analysis of commercial cellulase preparations suitable for biomass conversion to ethanol. World J Microbiol Biotechnol 14:301–304CrossRef Nieves RA, Ehrman CI, Adney WS, Elander RT, Himmel ME (1998) Technical communication: survey and analysis of commercial cellulase preparations suitable for biomass conversion to ethanol. World J Microbiol Biotechnol 14:301–304CrossRef
60.
Zurück zum Zitat Gusakov AV, Salanovich TN, Antonov AI, Ustinov BB, Okunev ON et al (2007) Design of highly efficient cellulase mixtures for enzymatic hydrolysis of cellulose. Biotechnol Bioeng 97:1028–1038CrossRef Gusakov AV, Salanovich TN, Antonov AI, Ustinov BB, Okunev ON et al (2007) Design of highly efficient cellulase mixtures for enzymatic hydrolysis of cellulose. Biotechnol Bioeng 97:1028–1038CrossRef
61.
Zurück zum Zitat Teeri TT (1997) Crystalline cellulose degradation: new insight into the function of cellobiohydrolases. Trends Biotechnol 15:160–167CrossRef Teeri TT (1997) Crystalline cellulose degradation: new insight into the function of cellobiohydrolases. Trends Biotechnol 15:160–167CrossRef
62.
Zurück zum Zitat Warnecke F, Luginbuhl P, Ivanova N, Ghassemian M, Richardson TH et al (2007) Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450:560–565CrossRef Warnecke F, Luginbuhl P, Ivanova N, Ghassemian M, Richardson TH et al (2007) Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450:560–565CrossRef
63.
Zurück zum Zitat Jeoh T, Ishizawa CI, Davis MF, Himmel ME, Adney WS, Johnson DK (2007) Cellulase digestibility of pretreated biomass is limited by cellulose accessibility. Biotechnol Bioeng 122:112–122CrossRef Jeoh T, Ishizawa CI, Davis MF, Himmel ME, Adney WS, Johnson DK (2007) Cellulase digestibility of pretreated biomass is limited by cellulose accessibility. Biotechnol Bioeng 122:112–122CrossRef
64.
Zurück zum Zitat Takematsu Y (1998) Comparative morphology of the gut of termite genera from Japan. Bull Inst Trop Agr Kyushu Univ 21:3–41 Takematsu Y (1998) Comparative morphology of the gut of termite genera from Japan. Bull Inst Trop Agr Kyushu Univ 21:3–41
65.
Zurück zum Zitat Tokuda G, Lo N, Watanabe H, Arakawa G, Matsumoto T, Noda H (2004) Major alteration of the expression site of endogenous cellulases in members of an apical termite lineage. Mol Ecol 13:3219–3228CrossRef Tokuda G, Lo N, Watanabe H, Arakawa G, Matsumoto T, Noda H (2004) Major alteration of the expression site of endogenous cellulases in members of an apical termite lineage. Mol Ecol 13:3219–3228CrossRef
66.
Zurück zum Zitat Scharf ME (2008) Termite digestomes as sources for novel lignocellulases. Biofuels Bioprod Biorefining 2:540–552CrossRef Scharf ME (2008) Termite digestomes as sources for novel lignocellulases. Biofuels Bioprod Biorefining 2:540–552CrossRef
Metadaten
Titel
Cellulases from Insects
verfasst von
Rainer Fischer
Raluca Ostafe
Richard M. Twyman
Copyright-Jahr
2013
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/10_2013_206

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.