Skip to main content

2019 | OriginalPaper | Buchkapitel

30. Cellulose-Based Absorbents for Oil Contaminant Removal

verfasst von : Wang Liao, Yu-Zhong Wang

Erschienen in: Cellulose-Based Superabsorbent Hydrogels

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

With the rapidly increasing exploitation, transportation, and utilization of fossil oils, oil spillage accidents occur frequently worldwide. Oil pollution can lead to a serious loss of valuable resources on coastal and marine ecosystems during a long period. Besides, industrial waste oil may have a broad impact on city ecological environments and human health. It is thus urgently required to solve oil pollution efficiently. Generally, current strategies are classified into three groups: (1) burning the oil spill in situ, (2) dispersing the oil in water by adding dispersants to facilitate nature degradation, and (3) extracting the oil from the water. The last method seems the “greenest” because both the absorbent and the oil can be recycled. Among the absorbents, cellulose-based absorbents are the first choices due to their environmental friendliness of renewability and biodegradability, good mechanical properties, low density, high porosity, high absorption capacity, and cost-effectiveness. In this chapter, we intend to demonstrate the following aspects of cellulose-based absorbents, including (1) raw materials: properties and pretreatments, (2) fabrication of the various absorbents, (3) characterization of the structure and properties, (4) cellulose-related absorbents and other applications, and (5) discussions and future scope. This work aims to draw a full outline of the cellulose absorbents to date and to promote the understanding and developing of these materials in the future.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Sabir S (2015) Approach of cost-effective adsorbents for oil removal from oily water. Crit Rev Environ Sci Tech 45:1916–1945 Sabir S (2015) Approach of cost-effective adsorbents for oil removal from oily water. Crit Rev Environ Sci Tech 45:1916–1945
2.
Zurück zum Zitat Dalton T, Jin D (2010) Extent and frequency of vessel oil spills in US marine protected areas. Mar Pollut Bull 60:1939–1945PubMed Dalton T, Jin D (2010) Extent and frequency of vessel oil spills in US marine protected areas. Mar Pollut Bull 60:1939–1945PubMed
3.
Zurück zum Zitat Peterson CH, Rice SD, Short JW, Esler D, Bodkin JL, Ballachey BE, Irons DB (2003) Long-term ecosystem response to the Exxon Valdez oil spill. Science 302:2082–2086PubMed Peterson CH, Rice SD, Short JW, Esler D, Bodkin JL, Ballachey BE, Irons DB (2003) Long-term ecosystem response to the Exxon Valdez oil spill. Science 302:2082–2086PubMed
4.
Zurück zum Zitat Syed S, Alhazzaa MI, Asif M (2011) Treatment of oily water using hydrophobic nano-silica. Chem Eng J 167:99–103 Syed S, Alhazzaa MI, Asif M (2011) Treatment of oily water using hydrophobic nano-silica. Chem Eng J 167:99–103
5.
Zurück zum Zitat Santander M, Rodrigues RT, Rubio J (2011) Modified jet flotation in oil (petroleum) emulsion/water separations. Colloid Surf A 375:237–244 Santander M, Rodrigues RT, Rubio J (2011) Modified jet flotation in oil (petroleum) emulsion/water separations. Colloid Surf A 375:237–244
6.
Zurück zum Zitat Cambiella A, Ortea E, Rios G, Benito JM, Pazos C, Coca J (2006) Treatment of oil-in-water emulsions: performance of a sawdust bed filter. J Hazard Mater 131:195–199PubMed Cambiella A, Ortea E, Rios G, Benito JM, Pazos C, Coca J (2006) Treatment of oil-in-water emulsions: performance of a sawdust bed filter. J Hazard Mater 131:195–199PubMed
7.
Zurück zum Zitat Angelova D, Uzunov I, Uzunova S, Gigova A, Minchev L (2011) Kinetics of oil and oil products adsorption by carbonized rice husks. Chem Eng J 172:306–311 Angelova D, Uzunov I, Uzunova S, Gigova A, Minchev L (2011) Kinetics of oil and oil products adsorption by carbonized rice husks. Chem Eng J 172:306–311
8.
Zurück zum Zitat Bayat A, Aghamiri SF, Moheb A, Vakili-Nezhaad GR (2005) Oil spill cleanup from sea water by sorbent materials. Chem Eng Technol 28:1525–1528 Bayat A, Aghamiri SF, Moheb A, Vakili-Nezhaad GR (2005) Oil spill cleanup from sea water by sorbent materials. Chem Eng Technol 28:1525–1528
9.
Zurück zum Zitat Dong X, Chen J, Ma Y, Wang J, Chan-Park MB, Liu X, Wang L, Huang W, Chen P (2012) Superhydrophobic and superoleophilic hybrid foam of graphene and carbon nanotube for selective removal of oils or organic solvents from the surface of water. Chem Commun 48:10660–10662 Dong X, Chen J, Ma Y, Wang J, Chan-Park MB, Liu X, Wang L, Huang W, Chen P (2012) Superhydrophobic and superoleophilic hybrid foam of graphene and carbon nanotube for selective removal of oils or organic solvents from the surface of water. Chem Commun 48:10660–10662
10.
Zurück zum Zitat Bi H, Xie X, Yin K, Zhou Y, Wan S, He L, Xu F, Banhart F, Sun L, Ruoff RS (2012) Spongy graphene as a highly efficient and recyclable sorbent for oils and organic solvents. Adv Funct Mater 22:4421–4425 Bi H, Xie X, Yin K, Zhou Y, Wan S, He L, Xu F, Banhart F, Sun L, Ruoff RS (2012) Spongy graphene as a highly efficient and recyclable sorbent for oils and organic solvents. Adv Funct Mater 22:4421–4425
11.
Zurück zum Zitat Yang Y, Tong Z, Ngai T, Wang C (2014) Nitrogen-rich and fire-resistant carbon aerogels for the removal of oil contaminants from water. ACS Appl Mater Interfaces 6:6351–6360PubMed Yang Y, Tong Z, Ngai T, Wang C (2014) Nitrogen-rich and fire-resistant carbon aerogels for the removal of oil contaminants from water. ACS Appl Mater Interfaces 6:6351–6360PubMed
12.
Zurück zum Zitat Wu ZY, Li C, Liang HW, Chen JF, Yu SH (2013) Ultralight, flexible, and fire-resistant carbon nanofiber aerogels from bacterial cellulose. Angew Chem Int Ed 52:2925–2929 Wu ZY, Li C, Liang HW, Chen JF, Yu SH (2013) Ultralight, flexible, and fire-resistant carbon nanofiber aerogels from bacterial cellulose. Angew Chem Int Ed 52:2925–2929
13.
Zurück zum Zitat Gui X, Li H, Wang K, Wei J, Jia Y, Li Z, Fan L, Cao A, Zhu H, Wu D (2011) Recyclable carbon nanotube sponges for oil absorption. Acta Mater 59:4798–4804 Gui X, Li H, Wang K, Wei J, Jia Y, Li Z, Fan L, Cao A, Zhu H, Wu D (2011) Recyclable carbon nanotube sponges for oil absorption. Acta Mater 59:4798–4804
14.
Zurück zum Zitat Liu H, Geng B, Chen Y, Wang H (2017) Review on the aerogel-type oil sorbents derived from Nanocellulose. ACS Sustain Chem Eng 5:49–66 Liu H, Geng B, Chen Y, Wang H (2017) Review on the aerogel-type oil sorbents derived from Nanocellulose. ACS Sustain Chem Eng 5:49–66
15.
Zurück zum Zitat Liao CY, Chiou JY, Lin JJ (2015) Temperature-dependent oil absorption of poly(oxypropylene)amine-intercalated clays for environmental remediation. RSC Adv 5:100702–100708 Liao CY, Chiou JY, Lin JJ (2015) Temperature-dependent oil absorption of poly(oxypropylene)amine-intercalated clays for environmental remediation. RSC Adv 5:100702–100708
16.
Zurück zum Zitat Carmody O, Frost R, Xi Y, Kokot S (2007) Adsorption of hydrocarbons on organo-clays – implications for oil spill remediation. J Colloid Interface Sci 305:17–24PubMed Carmody O, Frost R, Xi Y, Kokot S (2007) Adsorption of hydrocarbons on organo-clays – implications for oil spill remediation. J Colloid Interface Sci 305:17–24PubMed
17.
Zurück zum Zitat Zadaka-Amir D, Bleiman N, Mishael YG (2013) Sepiolite as an effective natural porous adsorbent for surface oil-spill. Microporous Mesoporous Mater 169:153–159 Zadaka-Amir D, Bleiman N, Mishael YG (2013) Sepiolite as an effective natural porous adsorbent for surface oil-spill. Microporous Mesoporous Mater 169:153–159
18.
Zurück zum Zitat Karakasi OK, Moutsatsou A (2010) Surface modification of high calcium fly ash for its application in oil spill clean up. Fuel 89:3966–3970 Karakasi OK, Moutsatsou A (2010) Surface modification of high calcium fly ash for its application in oil spill clean up. Fuel 89:3966–3970
19.
Zurück zum Zitat Teas C, Kalligeros S, Zanikos F, Stournas S, Lois E, Anastopoulos G (2001) Investigation of the effectiveness of absorbent materials in oil spills clean up. Desalination 140:259–264 Teas C, Kalligeros S, Zanikos F, Stournas S, Lois E, Anastopoulos G (2001) Investigation of the effectiveness of absorbent materials in oil spills clean up. Desalination 140:259–264
20.
Zurück zum Zitat Annunciado TR, Sydenstricker TH, Amico SC (2005) Experimental investigation of various vegetable fibers as sorbent materials for oil spills. Mar Pollut Bull 50:1340–1346PubMed Annunciado TR, Sydenstricker TH, Amico SC (2005) Experimental investigation of various vegetable fibers as sorbent materials for oil spills. Mar Pollut Bull 50:1340–1346PubMed
21.
Zurück zum Zitat Deschamps G, Caruel H, Borredon ME, Bonnin C, Vignoles C (2003) Oil removal from water by selective sorption on hydrophobic cotton fibers. 1. Study of sorption properties and comparison with other cotton fiber-based sorbents. Environ Sci Technol 37:1013–1015PubMed Deschamps G, Caruel H, Borredon ME, Bonnin C, Vignoles C (2003) Oil removal from water by selective sorption on hydrophobic cotton fibers. 1. Study of sorption properties and comparison with other cotton fiber-based sorbents. Environ Sci Technol 37:1013–1015PubMed
22.
Zurück zum Zitat Sun XF, Sun RC, Sun JX (2002) Acetylation of rice straw with or without catalysts and its characterization as a natural sorbent in oil spill cleanup. J Agric Food Chem 50:6428–6433PubMed Sun XF, Sun RC, Sun JX (2002) Acetylation of rice straw with or without catalysts and its characterization as a natural sorbent in oil spill cleanup. J Agric Food Chem 50:6428–6433PubMed
23.
Zurück zum Zitat Yu S, Tan H, Wang J, Liu X, Zhou K (2015) High porosity Supermacroporous polystyrene materials with excellent oil-water separation and gas permeability properties. ACS Appl Mater Interfaces 7:6745–6753PubMed Yu S, Tan H, Wang J, Liu X, Zhou K (2015) High porosity Supermacroporous polystyrene materials with excellent oil-water separation and gas permeability properties. ACS Appl Mater Interfaces 7:6745–6753PubMed
24.
Zurück zum Zitat Lin J, Tian F, Shang Y, Wang F, Ding B, Yu J, Guo Z (2013) Co-axial electrospun polystyrene/polyurethane fibres for oil collection from water surface. Nanoscale 5:2745–2755PubMed Lin J, Tian F, Shang Y, Wang F, Ding B, Yu J, Guo Z (2013) Co-axial electrospun polystyrene/polyurethane fibres for oil collection from water surface. Nanoscale 5:2745–2755PubMed
25.
Zurück zum Zitat Wu D, Wu W, Yu Z, Zhang C, Zhu H (2014) Facile preparation and characterization of modified polyurethane sponge for oil absorption. Ind Eng Chem Res 53:20139–20144 Wu D, Wu W, Yu Z, Zhang C, Zhu H (2014) Facile preparation and characterization of modified polyurethane sponge for oil absorption. Ind Eng Chem Res 53:20139–20144
26.
Zurück zum Zitat Zhu Q, Chu Y, Wang Z, Chen N, Lin L, Liu F, Pan Q (2013) Robust superhydrophobic polyurethane sponge as a highly reusable oil-absorption material. J Mater Chem A 1:5386–5393 Zhu Q, Chu Y, Wang Z, Chen N, Lin L, Liu F, Pan Q (2013) Robust superhydrophobic polyurethane sponge as a highly reusable oil-absorption material. J Mater Chem A 1:5386–5393
27.
Zurück zum Zitat Hayase G, Kanamori K, Fukuchi M, Kaji H, Nakanishi K (2013) Facile synthesis of marshmallow-like macroporous gels usable under harsh conditions for the separation of oil and water. Angew Chem Int Ed 52:1986–1989 Hayase G, Kanamori K, Fukuchi M, Kaji H, Nakanishi K (2013) Facile synthesis of marshmallow-like macroporous gels usable under harsh conditions for the separation of oil and water. Angew Chem Int Ed 52:1986–1989
28.
Zurück zum Zitat Choi SJ, Kwon TH, Im H, Moon DI, Baek DJ, Seol ML, Duarte JP, Choi YK (2011) A polydimethylsiloxane (PDMS) sponge for the selective absorption of oil from water. ACS Appl Mater Interfaces 3:4552–4556PubMed Choi SJ, Kwon TH, Im H, Moon DI, Baek DJ, Seol ML, Duarte JP, Choi YK (2011) A polydimethylsiloxane (PDMS) sponge for the selective absorption of oil from water. ACS Appl Mater Interfaces 3:4552–4556PubMed
29.
Zurück zum Zitat Ruan C, Ai K, Li X, Lu L (2014) A Superhydrophobic sponge with excellent absorbency and flame Retardancy. Angew Chem Int Ed 53:5556–5560 Ruan C, Ai K, Li X, Lu L (2014) A Superhydrophobic sponge with excellent absorbency and flame Retardancy. Angew Chem Int Ed 53:5556–5560
30.
Zurück zum Zitat Gao Y, Zhou YS, Xiong W, Wang M, Fan L, Rabiee-Golgir H, Jiang L, Hou W, Huang X, Jiang L, Silvain JF, Lu YF (2014) Highly efficient and recyclable carbon soot sponge for oil cleanup. ACS Appl Mater Interfaces 6:5924–5929PubMed Gao Y, Zhou YS, Xiong W, Wang M, Fan L, Rabiee-Golgir H, Jiang L, Hou W, Huang X, Jiang L, Silvain JF, Lu YF (2014) Highly efficient and recyclable carbon soot sponge for oil cleanup. ACS Appl Mater Interfaces 6:5924–5929PubMed
31.
Zurück zum Zitat Wei QF, Mather RR, Fotheringham AF, Yang RD (2003) Evaluation of nonwoven polypropylene oil sorbents in marine oil-spill recovery. Mar Pollut Bull 46:780–783PubMed Wei QF, Mather RR, Fotheringham AF, Yang RD (2003) Evaluation of nonwoven polypropylene oil sorbents in marine oil-spill recovery. Mar Pollut Bull 46:780–783PubMed
32.
Zurück zum Zitat Karakutuk I, Okay O (2010) Macroporous rubber gels as reusable sorbents for the removal of oil from surface waters. React Funct Polym 70:585–595 Karakutuk I, Okay O (2010) Macroporous rubber gels as reusable sorbents for the removal of oil from surface waters. React Funct Polym 70:585–595
33.
Zurück zum Zitat Liang HW, Guan QF, Chen LF, Zhu Z, Zhang WJ, Yu SH (2012) Macroscopic-scale template synthesis of robust carbonaceous nanofiber hydrogels and aerogels and their applications. Angew Chem Int Ed 51:5101–5105 Liang HW, Guan QF, Chen LF, Zhu Z, Zhang WJ, Yu SH (2012) Macroscopic-scale template synthesis of robust carbonaceous nanofiber hydrogels and aerogels and their applications. Angew Chem Int Ed 51:5101–5105
34.
Zurück zum Zitat Wu T, Chen M, Zhang L, Xu X, Liu Y, Yan J, Wang W, Gao J (2013) Three-dimensional graphene-based aerogels prepared by a self-assembly process and its excellent catalytic and absorbing performance. J Mater Chem A 1:7612–7621 Wu T, Chen M, Zhang L, Xu X, Liu Y, Yan J, Wang W, Gao J (2013) Three-dimensional graphene-based aerogels prepared by a self-assembly process and its excellent catalytic and absorbing performance. J Mater Chem A 1:7612–7621
35.
Zurück zum Zitat Duc Dung N, Tai NH, Lee SB, Kuo WS (2012) Superhydrophobic and superoleophilic properties of graphene-based sponges fabricated using a facile dip coating method. Energy Environ Sci 5:7908–7912 Duc Dung N, Tai NH, Lee SB, Kuo WS (2012) Superhydrophobic and superoleophilic properties of graphene-based sponges fabricated using a facile dip coating method. Energy Environ Sci 5:7908–7912
36.
Zurück zum Zitat Zhao Y, Hu C, Hu Y, Cheng H, Shi G, Qu L (2012) A versatile, ultralight, nitrogen-doped graphene framework. Angew Chem Int Ed 51:11371–11375 Zhao Y, Hu C, Hu Y, Cheng H, Shi G, Qu L (2012) A versatile, ultralight, nitrogen-doped graphene framework. Angew Chem Int Ed 51:11371–11375
37.
Zurück zum Zitat Wang Y, Yadav S, Heinlein T, Konjik V, Breitzke H, Buntkowsky G, Schneider JJ, Zhang K (2014) Ultra-light nanocomposite aerogels of bacterial cellulose and reduced graphene oxide for specific absorption and separation of organic liquids. RSC Adv 4:21553–21558 Wang Y, Yadav S, Heinlein T, Konjik V, Breitzke H, Buntkowsky G, Schneider JJ, Zhang K (2014) Ultra-light nanocomposite aerogels of bacterial cellulose and reduced graphene oxide for specific absorption and separation of organic liquids. RSC Adv 4:21553–21558
38.
Zurück zum Zitat Gui X, Wei J, Wang K, Cao A, Zhu H, Jia Y, Shu Q, Wu D (2010) Carbon nanotube sponges. Adv Mater 22:617PubMed Gui X, Wei J, Wang K, Cao A, Zhu H, Jia Y, Shu Q, Wu D (2010) Carbon nanotube sponges. Adv Mater 22:617PubMed
39.
Zurück zum Zitat Zheng Q, Cai Z, Gong S (2014) Green synthesis of polyvinyl alcohol (PVA)-cellulose nanofibril (CNF) hybrid aerogels and their use as superabsorbents. J Mater Chem A 2:3110–3118 Zheng Q, Cai Z, Gong S (2014) Green synthesis of polyvinyl alcohol (PVA)-cellulose nanofibril (CNF) hybrid aerogels and their use as superabsorbents. J Mater Chem A 2:3110–3118
40.
Zurück zum Zitat Korhonen JT, Kettunen M, Ras RH, Ikkala O (2011) Hydrophobic nanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absorbents. ACS Appl Mater Interfaces 3:1813–1816PubMed Korhonen JT, Kettunen M, Ras RH, Ikkala O (2011) Hydrophobic nanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absorbents. ACS Appl Mater Interfaces 3:1813–1816PubMed
41.
Zurück zum Zitat Sai H, Fu R, Xing L, Xiang J, Li Z, Li F, Zhang T (2015) Surface modification of bacterial cellulose Aerogels' web-like skeleton for oil/water separation. ACS Appl Mater Interfaces 7:7373–7381PubMed Sai H, Fu R, Xing L, Xiang J, Li Z, Li F, Zhang T (2015) Surface modification of bacterial cellulose Aerogels' web-like skeleton for oil/water separation. ACS Appl Mater Interfaces 7:7373–7381PubMed
42.
Zurück zum Zitat Zhang Z, Sebe G, Rentsch D, Zimmermann T, Tingaut P (2014) Ultralightweight and flexible silylated nanocellulose sponges for the selective removal of oil from water. Chem Mater 26:2659–2668 Zhang Z, Sebe G, Rentsch D, Zimmermann T, Tingaut P (2014) Ultralightweight and flexible silylated nanocellulose sponges for the selective removal of oil from water. Chem Mater 26:2659–2668
43.
Zurück zum Zitat Jiang F, Hsieh YL (2014) Amphiphilic superabsorbent cellulose nanofibril aerogels. J Mater Chem A 2:6337–6342 Jiang F, Hsieh YL (2014) Amphiphilic superabsorbent cellulose nanofibril aerogels. J Mater Chem A 2:6337–6342
44.
Zurück zum Zitat Xiao S, Gao R, Lu Y, Li J, Sun Q (2015) Fabrication and characterization of nanofibrillated cellulose and its aerogels from natural pine needles. Carbohydr Polym 119:202–209PubMed Xiao S, Gao R, Lu Y, Li J, Sun Q (2015) Fabrication and characterization of nanofibrillated cellulose and its aerogels from natural pine needles. Carbohydr Polym 119:202–209PubMed
45.
Zurück zum Zitat Wang S, Peng X, Zhong L, Tan J, Jing S, Cao X, Chen W, Liu C, Sun R (2015) An ultralight, elastic, cost-effective, and highly recyclable superabsorbent from microfibrillated cellulose fibers for oil spillage cleanup. J Mater Chem A 3:8772–8781 Wang S, Peng X, Zhong L, Tan J, Jing S, Cao X, Chen W, Liu C, Sun R (2015) An ultralight, elastic, cost-effective, and highly recyclable superabsorbent from microfibrillated cellulose fibers for oil spillage cleanup. J Mater Chem A 3:8772–8781
46.
Zurück zum Zitat Duan B, Gao H, He M, Zhang L (2014) Hydrophobic modification on surface of chitin sponges for highly effective separation of oil. ACS Appl Mater Interfaces 6:19933–19942PubMed Duan B, Gao H, He M, Zhang L (2014) Hydrophobic modification on surface of chitin sponges for highly effective separation of oil. ACS Appl Mater Interfaces 6:19933–19942PubMed
47.
Zurück zum Zitat Toyoda M, Aizawa J, Inagaki M (1998) Sorption and recovery of heavy oil by using exfoliated graphite. Desalination 115:199–201 Toyoda M, Aizawa J, Inagaki M (1998) Sorption and recovery of heavy oil by using exfoliated graphite. Desalination 115:199–201
48.
Zurück zum Zitat Mikhalchan A, Fan Z, Tran TQ, Liu P, Tan VB, Tay TE, Duong HM (2016) Continuous and scalable fabrication and multifunctional properties of carbon nanotube aerogels from the floating catalyst method. Carbon 102:409–418 Mikhalchan A, Fan Z, Tran TQ, Liu P, Tan VB, Tay TE, Duong HM (2016) Continuous and scalable fabrication and multifunctional properties of carbon nanotube aerogels from the floating catalyst method. Carbon 102:409–418
49.
Zurück zum Zitat Singh V, Jinka S, Hake K, Parameswaran S, Kendall RJ, Ramkumar S (2014) Novel natural sorbent for oil spill cleanup. Ind Eng Chem Res 53:11954–11961 Singh V, Jinka S, Hake K, Parameswaran S, Kendall RJ, Ramkumar S (2014) Novel natural sorbent for oil spill cleanup. Ind Eng Chem Res 53:11954–11961
50.
Zurück zum Zitat Wang J, Zheng Y, Wang A (2012) Effect of kapok fiber treated with various solvents on oil absorbency. Ind Crop Prod 40:178–184 Wang J, Zheng Y, Wang A (2012) Effect of kapok fiber treated with various solvents on oil absorbency. Ind Crop Prod 40:178–184
51.
Zurück zum Zitat Ali N, El-Harbawi M, Jabal AA, Yin CY (2012) Characteristics and oil sorption effectiveness of kapok fibre, sugarcane bagasse and rice husks: oil removal suitability matrix. Environ Technol 33:481–486PubMed Ali N, El-Harbawi M, Jabal AA, Yin CY (2012) Characteristics and oil sorption effectiveness of kapok fibre, sugarcane bagasse and rice husks: oil removal suitability matrix. Environ Technol 33:481–486PubMed
52.
Zurück zum Zitat Ibrahim S, Ang HM, Wang S (2009) Removal of emulsified food and mineral oils from wastewater using surfactant modified barley straw. Bioresour Technol 100:5744–5749PubMed Ibrahim S, Ang HM, Wang S (2009) Removal of emulsified food and mineral oils from wastewater using surfactant modified barley straw. Bioresour Technol 100:5744–5749PubMed
53.
Zurück zum Zitat Khan E, Virojnagud W, Ratpukdi T (2004) Use of biomass sorbents for oil removal from gas station runoff. Chemosphere 57:681–689PubMed Khan E, Virojnagud W, Ratpukdi T (2004) Use of biomass sorbents for oil removal from gas station runoff. Chemosphere 57:681–689PubMed
54.
Zurück zum Zitat Lim TT, Huang X (2006) In situ oil/water separation using hydrophobic-oleophilic fibrous wall: a lab-scale feasibility study for groundwater cleanup. J Hazard Mater 137:820–826PubMed Lim TT, Huang X (2006) In situ oil/water separation using hydrophobic-oleophilic fibrous wall: a lab-scale feasibility study for groundwater cleanup. J Hazard Mater 137:820–826PubMed
55.
Zurück zum Zitat Tansel B, Sevimoglu O (2006) Coalescence and size distribution characteristics of oil droplets attached on flocs after coagulation. Water Air Soil Pollut 169:293–302 Tansel B, Sevimoglu O (2006) Coalescence and size distribution characteristics of oil droplets attached on flocs after coagulation. Water Air Soil Pollut 169:293–302
56.
Zurück zum Zitat Pasila A (2004) A biological oil adsorption filter. Mar Pollut Bull 49:1006–1012PubMed Pasila A (2004) A biological oil adsorption filter. Mar Pollut Bull 49:1006–1012PubMed
57.
Zurück zum Zitat Rengasamy RS, Das D, Karan CP (2011) Study of oil sorption behavior of filled and structured fiber assemblies made from polypropylene, kapok and milkweed fibers. J Hazard Mater 186:526–532PubMed Rengasamy RS, Das D, Karan CP (2011) Study of oil sorption behavior of filled and structured fiber assemblies made from polypropylene, kapok and milkweed fibers. J Hazard Mater 186:526–532PubMed
58.
Zurück zum Zitat Wahi R, Chuah LA, Choong TS, Ngaini Z, Nourouzi MM (2013) Oil removal from aqueous state by natural fibrous sorbent: an overview. Sep Purif Technol 113:51–63 Wahi R, Chuah LA, Choong TS, Ngaini Z, Nourouzi MM (2013) Oil removal from aqueous state by natural fibrous sorbent: an overview. Sep Purif Technol 113:51–63
59.
Zurück zum Zitat Nakagaito AN, Kondo H, Takagi H (2013) Cellulose nanofiber aerogel production and applications. J Reinf Plast Compos 32:1547–1552 Nakagaito AN, Kondo H, Takagi H (2013) Cellulose nanofiber aerogel production and applications. J Reinf Plast Compos 32:1547–1552
60.
Zurück zum Zitat Innerlohinger J, Weber HK, Kraft G (2006) Aerocellulose: aerogels and aerogel-like materials made from cellulose. Macromol Symp 244:126–135 Innerlohinger J, Weber HK, Kraft G (2006) Aerocellulose: aerogels and aerogel-like materials made from cellulose. Macromol Symp 244:126–135
61.
Zurück zum Zitat Cai J, Kimura S, Wada M, Kuga S, Zhang L (2008) Cellulose aerogels from aqueous alkali hydroxide-urea solution. Chem Sus Chem 1:149–154 Cai J, Kimura S, Wada M, Kuga S, Zhang L (2008) Cellulose aerogels from aqueous alkali hydroxide-urea solution. Chem Sus Chem 1:149–154
62.
Zurück zum Zitat Gavillon R, Budtova T (2008) Aerocellulose: new highly porous cellulose prepared from cellulose-NaOH aqueous solutions. Biomacromolecules 9:269–277PubMed Gavillon R, Budtova T (2008) Aerocellulose: new highly porous cellulose prepared from cellulose-NaOH aqueous solutions. Biomacromolecules 9:269–277PubMed
63.
Zurück zum Zitat Pinnow M, Fink HP, Fanter C, Kinize J (2008) Characterization of highly porous materials from cellulose carbamate. Macromol Symp 262:129–139 Pinnow M, Fink HP, Fanter C, Kinize J (2008) Characterization of highly porous materials from cellulose carbamate. Macromol Symp 262:129–139
64.
Zurück zum Zitat Osullivan AC (1997) Cellulose: the structure slowly unravels. Cellulose 4:173–207 Osullivan AC (1997) Cellulose: the structure slowly unravels. Cellulose 4:173–207
65.
Zurück zum Zitat Samir M, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626 Samir M, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626
66.
Zurück zum Zitat Nishiyama Y (2009) Structure and properties of the cellulose microfibril. J Wood Sci 55:241–249 Nishiyama Y (2009) Structure and properties of the cellulose microfibril. J Wood Sci 55:241–249
67.
Zurück zum Zitat Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994PubMed Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994PubMed
68.
Zurück zum Zitat Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500PubMed Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500PubMed
69.
Zurück zum Zitat Postek MT, Vladar A, Dagata J, Farkas N, Ming B, Wagner R, Raman A, Moon RJ, Sabo R, Wegner TH, Beecher J (2011) Development of the metrology and imaging of cellulose nanocrystals. Meas Sci Technol 22:024005 Postek MT, Vladar A, Dagata J, Farkas N, Ming B, Wagner R, Raman A, Moon RJ, Sabo R, Wegner TH, Beecher J (2011) Development of the metrology and imaging of cellulose nanocrystals. Meas Sci Technol 22:024005
70.
Zurück zum Zitat Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494 Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494
71.
Zurück zum Zitat Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466 Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466
72.
Zurück zum Zitat Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 16:220–227 Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 16:220–227
73.
Zurück zum Zitat Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85PubMed Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85PubMed
74.
Zurück zum Zitat Hudson SM, Cuculo JA (1980) The solubility of cellulose in liquid ammonia-salt solutions. J Polym Sci Part A 18:3469–3481 Hudson SM, Cuculo JA (1980) The solubility of cellulose in liquid ammonia-salt solutions. J Polym Sci Part A 18:3469–3481
75.
Zurück zum Zitat Hattori K, Cuculo JA, Hudson SM (2002) New solvents for cellulose: hydrazine/thiocyanate salt system. J Polym Sci Part A 40:601–611 Hattori K, Cuculo JA, Hudson SM (2002) New solvents for cellulose: hydrazine/thiocyanate salt system. J Polym Sci Part A 40:601–611
76.
Zurück zum Zitat Dawsey TR, McCormick CL (1990) The lithium chloride/dimethylacetamide solvent for cellulose – a literature-review. J Macromol Sci Rev Macromol Chem Phys C30:405–440 Dawsey TR, McCormick CL (1990) The lithium chloride/dimethylacetamide solvent for cellulose – a literature-review. J Macromol Sci Rev Macromol Chem Phys C30:405–440
77.
Zurück zum Zitat McCormick CL, Shen TC (1981) A new cellulose solvent for preparing derivatives under homogeneous conditions. Abstr Pap Am Chem Soc 182:63 McCormick CL, Shen TC (1981) A new cellulose solvent for preparing derivatives under homogeneous conditions. Abstr Pap Am Chem Soc 182:63
78.
Zurück zum Zitat Chanzy H, Paillet M, Peguy A (1986) Spinning of exploded wood from amine oxide solutions. Polym Comm 27:171–172 Chanzy H, Paillet M, Peguy A (1986) Spinning of exploded wood from amine oxide solutions. Polym Comm 27:171–172
79.
Zurück zum Zitat Jin H, Nishiyama Y, Wada M, Kuga S (2004) Nanofibrillar cellulose aerogels. Colloid Surf A 240:63–67 Jin H, Nishiyama Y, Wada M, Kuga S (2004) Nanofibrillar cellulose aerogels. Colloid Surf A 240:63–67
80.
Zurück zum Zitat Paakko M, Ankerfors M, Kosonen H, Nykanen A, Ahola S, Osterberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindstrom T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941PubMed Paakko M, Ankerfors M, Kosonen H, Nykanen A, Ahola S, Osterberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindstrom T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941PubMed
81.
Zurück zum Zitat Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 8:3276–3278PubMed Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 8:3276–3278PubMed
82.
Zurück zum Zitat Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8:2485–2491PubMed Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8:2485–2491PubMed
83.
Zurück zum Zitat Paakko M, Vapaavuori J, Silvennoinen R, Kosonen H, Ankerfors M, Lindstrom T, Berglund LA, Ikkala O (2008) Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities. Soft Matter 4:2492–2499 Paakko M, Vapaavuori J, Silvennoinen R, Kosonen H, Ankerfors M, Lindstrom T, Berglund LA, Ikkala O (2008) Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities. Soft Matter 4:2492–2499
84.
Zurück zum Zitat Korhonen JT, Hiekkataipale P, Malm J, Karppinen M, Ikkala O, Ras RH (2011) Inorganic hollow nanotube aerogels by atomic layer deposition onto native Nanocellulose templates. ACS Nano 5:1967–1974PubMed Korhonen JT, Hiekkataipale P, Malm J, Karppinen M, Ikkala O, Ras RH (2011) Inorganic hollow nanotube aerogels by atomic layer deposition onto native Nanocellulose templates. ACS Nano 5:1967–1974PubMed
85.
Zurück zum Zitat Okita Y, Saito T, Isogai A (2010) Entire surface oxidation of various cellulose microfibrils by TEMPO-mediated oxidation. Biomacromolecules 11:1696–1700PubMed Okita Y, Saito T, Isogai A (2010) Entire surface oxidation of various cellulose microfibrils by TEMPO-mediated oxidation. Biomacromolecules 11:1696–1700PubMed
86.
Zurück zum Zitat Besbes I, Alila S, Boufi S (2011) Nanofibrillated cellulose from TEMPO-oxidized eucalyptus fibres: effect of the carboxyl content. Carbohydr Polym 84:975–983 Besbes I, Alila S, Boufi S (2011) Nanofibrillated cellulose from TEMPO-oxidized eucalyptus fibres: effect of the carboxyl content. Carbohydr Polym 84:975–983
87.
Zurück zum Zitat Heath L, Thielemans W (2010) Cellulose nanowhisker aerogels. Green Chem 12:1448–1453 Heath L, Thielemans W (2010) Cellulose nanowhisker aerogels. Green Chem 12:1448–1453
88.
Zurück zum Zitat Stamm AJ, Tarkow H (1950) Penetration of cellulose fibers. J Phys Colloid Chem 54:745–753PubMed Stamm AJ, Tarkow H (1950) Penetration of cellulose fibers. J Phys Colloid Chem 54:745–753PubMed
89.
Zurück zum Zitat Tan CB, Fung BM, Newman JK, Vu C (2001) Organic aerogels with very high impact strength. Adv Mater 13:644–646 Tan CB, Fung BM, Newman JK, Vu C (2001) Organic aerogels with very high impact strength. Adv Mater 13:644–646
90.
Zurück zum Zitat Fischer F, Rigacci A, Pirard R, Berthon-Fabry S, Achard P (2006) Cellulose-based aerogels. Polymer 47:7636–7645 Fischer F, Rigacci A, Pirard R, Berthon-Fabry S, Achard P (2006) Cellulose-based aerogels. Polymer 47:7636–7645
91.
Zurück zum Zitat Granstrom M, Paakko MK, Jin H, Kolehmainen E, Kilpelainen I, Ikkala O (2011) Highly water repellent aerogels based on cellulose stearoyl esters. Polym Chem 2:1789–1796 Granstrom M, Paakko MK, Jin H, Kolehmainen E, Kilpelainen I, Ikkala O (2011) Highly water repellent aerogels based on cellulose stearoyl esters. Polym Chem 2:1789–1796
92.
Zurück zum Zitat Cai J, Liu S, Feng J, Kimura S, Wada M, Kuga S, Zhang L (2012) Cellulose-silica nanocomposite aerogels by in situ formation of silica in cellulose gel. Angew Chem Int Ed 51:2076–2079 Cai J, Liu S, Feng J, Kimura S, Wada M, Kuga S, Zhang L (2012) Cellulose-silica nanocomposite aerogels by in situ formation of silica in cellulose gel. Angew Chem Int Ed 51:2076–2079
93.
Zurück zum Zitat Zhang J, Cao Y, Feng J, Wu P (2012) Graphene-oxide-sheet-induced gelation of cellulose and promoted mechanical properties of composite aerogels. J Phys Chem C 116:8063–8068 Zhang J, Cao Y, Feng J, Wu P (2012) Graphene-oxide-sheet-induced gelation of cellulose and promoted mechanical properties of composite aerogels. J Phys Chem C 116:8063–8068
94.
Zurück zum Zitat Sescousse R, Gavillon R, Budtova T (2011) Aerocellulose from cellulose-ionic liquid solutions: preparation, properties and comparison with cellulose-NaOH and cellulose-NMMO routes. Carbohydr Polym 83:1766–1774 Sescousse R, Gavillon R, Budtova T (2011) Aerocellulose from cellulose-ionic liquid solutions: preparation, properties and comparison with cellulose-NaOH and cellulose-NMMO routes. Carbohydr Polym 83:1766–1774
95.
Zurück zum Zitat Aaltonen O, Jauhiainen O (2009) The preparation of lignocellulosic aerogels from ionic liquid solutions. Carbohydr Polym 75:125–129 Aaltonen O, Jauhiainen O (2009) The preparation of lignocellulosic aerogels from ionic liquid solutions. Carbohydr Polym 75:125–129
96.
Zurück zum Zitat Hoepfner S, Ratke L, Milow B (2008) Synthesis and characterisation of nanofibrillar cellulose aerogels. Cellulose 15:121–129 Hoepfner S, Ratke L, Milow B (2008) Synthesis and characterisation of nanofibrillar cellulose aerogels. Cellulose 15:121–129
97.
Zurück zum Zitat Duchemin BJ, Staiger MP, Tucker N, Newman RH (2010) Aerocellulose based on all-cellulose composites. J Appl Polym Sci 115:216–221 Duchemin BJ, Staiger MP, Tucker N, Newman RH (2010) Aerocellulose based on all-cellulose composites. J Appl Polym Sci 115:216–221
98.
Zurück zum Zitat Nguyen ST, Feng J, Ng SK, Wong JP, Tan VB, Duong HM (2014) Advanced thermal insulation and absorption properties of recycled cellulose aerogels. Colloid Surf A 445:128–134 Nguyen ST, Feng J, Ng SK, Wong JP, Tan VB, Duong HM (2014) Advanced thermal insulation and absorption properties of recycled cellulose aerogels. Colloid Surf A 445:128–134
99.
Zurück zum Zitat Wan C, Lu Y, Cao J, Sun Q, Li J (2015) Preparation, characterization and oil adsorption properties of cellulose aerogels from four kinds of plant materials via a NaOH/PEG aqueous solution. Fibers Polym 16:302–307 Wan C, Lu Y, Cao J, Sun Q, Li J (2015) Preparation, characterization and oil adsorption properties of cellulose aerogels from four kinds of plant materials via a NaOH/PEG aqueous solution. Fibers Polym 16:302–307
100.
Zurück zum Zitat Nguyen ST, Feng J, Le NT, Le AT, Nguyen H, Tan VB, Duong HM (2013) Cellulose aerogel from paper waste for crude oil spill cleaning. Ind Eng Chem Res 52:18386–18391 Nguyen ST, Feng J, Le NT, Le AT, Nguyen H, Tan VB, Duong HM (2013) Cellulose aerogel from paper waste for crude oil spill cleaning. Ind Eng Chem Res 52:18386–18391
101.
Zurück zum Zitat Feng J, Nguyen ST, Fan Z, Duong HM (2015) Advanced fabrication and oil absorption properties of super-hydrophobic recycled cellulose aerogels. Chem Eng J 270:168–175 Feng J, Nguyen ST, Fan Z, Duong HM (2015) Advanced fabrication and oil absorption properties of super-hydrophobic recycled cellulose aerogels. Chem Eng J 270:168–175
102.
Zurück zum Zitat Meng Y, Young TM, Liu P, Contescu CI, Huang B, Wang S (2015) Ultralight carbon aerogel from nanocellulose as a highly selective oil absorption material. Cellulose 22:435–447 Meng Y, Young TM, Liu P, Contescu CI, Huang B, Wang S (2015) Ultralight carbon aerogel from nanocellulose as a highly selective oil absorption material. Cellulose 22:435–447
103.
Zurück zum Zitat Kobayashi Y, Saito T, Isogai A (2014) Aerogels with 3D ordered nanofiber skeletons of liquid-crystalline nanocellulose derivatives as tough and transparent insulators. Angew Chem Int Ed 53:10394–10397 Kobayashi Y, Saito T, Isogai A (2014) Aerogels with 3D ordered nanofiber skeletons of liquid-crystalline nanocellulose derivatives as tough and transparent insulators. Angew Chem Int Ed 53:10394–10397
104.
Zurück zum Zitat Sehaqui H, Zhou Q, Berglund LA (2011) High-porosity aerogels of high specific surface area prepared from nanofibrillated cellulose (NFC). Compos Sci Technol 71:1593–1599 Sehaqui H, Zhou Q, Berglund LA (2011) High-porosity aerogels of high specific surface area prepared from nanofibrillated cellulose (NFC). Compos Sci Technol 71:1593–1599
105.
Zurück zum Zitat Russler A, Wieland M, Bacher M, Henniges U, Miethe P, Liebner F, Potthast A, Rosenau T (2012) AKD-modification of bacterial cellulose aerogels in supercritical CO2. Cellulose 19:1337–1349 Russler A, Wieland M, Bacher M, Henniges U, Miethe P, Liebner F, Potthast A, Rosenau T (2012) AKD-modification of bacterial cellulose aerogels in supercritical CO2. Cellulose 19:1337–1349
106.
Zurück zum Zitat Fumagalli M, Ouhab D, Boisseau SM, Heux L (2013) Versatile gas-phase reactions for surface to bulk esterification of cellulose microfibrils aerogels. Biomacromolecules 14:3246–3255PubMed Fumagalli M, Ouhab D, Boisseau SM, Heux L (2013) Versatile gas-phase reactions for surface to bulk esterification of cellulose microfibrils aerogels. Biomacromolecules 14:3246–3255PubMed
107.
Zurück zum Zitat Inoue T, Osatake H (1988) A new drying method of biological specimens for scanning electron-microscopy – the tert-butyl alcohol freeze-drying method. Arch Histol Cytol 51:53–59PubMed Inoue T, Osatake H (1988) A new drying method of biological specimens for scanning electron-microscopy – the tert-butyl alcohol freeze-drying method. Arch Histol Cytol 51:53–59PubMed
108.
Zurück zum Zitat Ishida O, Kim DY, Kuga S, Nishiyama Y, Brown RM (2004) Microfibrillar carbon from native cellulose. Cellulose 11:475–480 Ishida O, Kim DY, Kuga S, Nishiyama Y, Brown RM (2004) Microfibrillar carbon from native cellulose. Cellulose 11:475–480
109.
Zurück zum Zitat Nemoto J, Saito T, Isogai A (2015) Simple freeze-drying procedure for producing Nanocellulose aerogel-containing, high-performance air filters. ACS Appl Mater Interfaces 7:19809–19815PubMed Nemoto J, Saito T, Isogai A (2015) Simple freeze-drying procedure for producing Nanocellulose aerogel-containing, high-performance air filters. ACS Appl Mater Interfaces 7:19809–19815PubMed
111.
Zurück zum Zitat Cervin NT, Aulin C, Larsson PT, Wagberg L (2012) Ultra porous nanocellulose aerogels as separation medium for mixtures of oil/water liquids. Cellulose 19:401–410 Cervin NT, Aulin C, Larsson PT, Wagberg L (2012) Ultra porous nanocellulose aerogels as separation medium for mixtures of oil/water liquids. Cellulose 19:401–410
112.
Zurück zum Zitat Lindman B, Karlstrom G, Stigsson L (2010) On the mechanism of dissolution of cellulose. J Mol Liq 156:76–81 Lindman B, Karlstrom G, Stigsson L (2010) On the mechanism of dissolution of cellulose. J Mol Liq 156:76–81
113.
Zurück zum Zitat Rein DM, Khalfin R, Cohen Y (2012) Cellulose as a novel amphiphilic coating for oil-in-water and water-in-oil dispersions. J Colloid Interface Sci 386:456–463PubMed Rein DM, Khalfin R, Cohen Y (2012) Cellulose as a novel amphiphilic coating for oil-in-water and water-in-oil dispersions. J Colloid Interface Sci 386:456–463PubMed
114.
Zurück zum Zitat Wang J, Zheng Y, Wang A (2013) Coated kapok fiber for removal of spilled oil. Mar Pollut Bull 69:91–96PubMed Wang J, Zheng Y, Wang A (2013) Coated kapok fiber for removal of spilled oil. Mar Pollut Bull 69:91–96PubMed
115.
Zurück zum Zitat Choi HM, Cloud RM (1992) Natural sorbents in oil-spill cleanup. Environ Sci Technol 26:772–776 Choi HM, Cloud RM (1992) Natural sorbents in oil-spill cleanup. Environ Sci Technol 26:772–776
116.
Zurück zum Zitat Wang J, Zhao D, Shang K, Wang YT, Ye DD, Kang AH, Liao W, Wang YZ (2016) Ultrasoft gelatin aerogels for oil contaminant removal. J Mater Chem A 4:9381–9389 Wang J, Zhao D, Shang K, Wang YT, Ye DD, Kang AH, Liao W, Wang YZ (2016) Ultrasoft gelatin aerogels for oil contaminant removal. J Mater Chem A 4:9381–9389
117.
Zurück zum Zitat Sharma P, Saikia BK, Das MR (2014) Removal of methyl green dye molecule from aqueous system using reduced graphene oxide as an efficient adsorbent: kinetics, isotherm and thermodynamic parameters. Colloid Surf A 457:125–133 Sharma P, Saikia BK, Das MR (2014) Removal of methyl green dye molecule from aqueous system using reduced graphene oxide as an efficient adsorbent: kinetics, isotherm and thermodynamic parameters. Colloid Surf A 457:125–133
118.
Zurück zum Zitat Vargas AM, Cazetta AL, Kunita MH, Silva TL, Almeida VC (2011) Adsorption of methylene blue on activated carbon produced from flamboyant pods (Delonix regia): study of adsorption isotherms and kinetic models. Chem Eng J 168:722–730 Vargas AM, Cazetta AL, Kunita MH, Silva TL, Almeida VC (2011) Adsorption of methylene blue on activated carbon produced from flamboyant pods (Delonix regia): study of adsorption isotherms and kinetic models. Chem Eng J 168:722–730
119.
Zurück zum Zitat Chen Y, Zhang D (2014) Adsorption kinetics, isotherm and thermodynamics studies of flavones from Vaccinium Bracteatum Thunb leaves on NKA-2 resin. Chem Eng J 254:579–585 Chen Y, Zhang D (2014) Adsorption kinetics, isotherm and thermodynamics studies of flavones from Vaccinium Bracteatum Thunb leaves on NKA-2 resin. Chem Eng J 254:579–585
120.
Zurück zum Zitat Bastani D, Safekordi AA, Alihosseini A, Taghikhani V (2006) Study of oil sorption by expanded perlite at 298.15 K. Sep Purif Technol 52:295–300 Bastani D, Safekordi AA, Alihosseini A, Taghikhani V (2006) Study of oil sorption by expanded perlite at 298.15 K. Sep Purif Technol 52:295–300
121.
Zurück zum Zitat Sokker HH, El-Sawy NM, Hassan MA, El-Anadouli BE (2011) Adsorption of crude oil from aqueous solution by hydrogel of chitosan based polyacrylamide prepared by radiation induced graft polymerization. J Hazard Mater 190:359–365PubMed Sokker HH, El-Sawy NM, Hassan MA, El-Anadouli BE (2011) Adsorption of crude oil from aqueous solution by hydrogel of chitosan based polyacrylamide prepared by radiation induced graft polymerization. J Hazard Mater 190:359–365PubMed
122.
Zurück zum Zitat Wu D, Fu R (2008) Requirements of organic gels for a successful ambient pressure drying preparation of carbon aerogels. J Porous Mater 15:29–34 Wu D, Fu R (2008) Requirements of organic gels for a successful ambient pressure drying preparation of carbon aerogels. J Porous Mater 15:29–34
123.
Zurück zum Zitat Pekala RW (1989) Organic aerogels from the polycondensation of resorcinol with formaldehyde. J Mater Sci 24:3221–3227 Pekala RW (1989) Organic aerogels from the polycondensation of resorcinol with formaldehyde. J Mater Sci 24:3221–3227
124.
Zurück zum Zitat Wu DC, Fu RW, Zhang ST, Dresselhaus MS, Dresselhaus G (2004) Preparation of low-density carbon aerogels by ambient pressure drying. Carbon 42:2033–2039 Wu DC, Fu RW, Zhang ST, Dresselhaus MS, Dresselhaus G (2004) Preparation of low-density carbon aerogels by ambient pressure drying. Carbon 42:2033–2039
125.
Zurück zum Zitat Fu RW, Zheng B, Liu J, Dresselhaus MS, Dresselhaus G, Satcher JH, Baumann TE (2003) The fabrication and characterization of carbon aerogels by gelation and supercritical drying in isopropanol. Adv Funct Mater 13:558–562 Fu RW, Zheng B, Liu J, Dresselhaus MS, Dresselhaus G, Satcher JH, Baumann TE (2003) The fabrication and characterization of carbon aerogels by gelation and supercritical drying in isopropanol. Adv Funct Mater 13:558–562
Metadaten
Titel
Cellulose-Based Absorbents for Oil Contaminant Removal
verfasst von
Wang Liao
Yu-Zhong Wang
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-319-77830-3_31

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.