Skip to main content
Erschienen in: Cellulose 1/2019

03.01.2019 | Review Paper

Cellulose II aerogels: a review

verfasst von: Tatiana Budtova

Erschienen in: Cellulose | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Cellulose II aerogels are light-weight, open pores materials with high specific surface area. They are made in the same way as bio-aerogels based on other polysaccharides, via dissolution-(gelation)-solvent exchange-drying with supercritical CO2. Gelation step is often omitted as cellulose allows keeping 3D shape during solvent exchange (which leads to cellulose coagulation) and drying. Drying in supercritical conditions preserves the porosity of “wet” (coagulated) cellulose. There are numerous ways to vary cellulose II aerogel morphology and properties by changing processing conditions and cellulose type. Together with chemical and physical modifications of cellulose and possibility of making hybrid and composite materials (organic–inorganic and organic–organic), it opens up a huge variety of aerogel properties and applications. On one hand, they are similar to those of classical aerogels, i.e. can be used for absorption and adsorption, as catalysts and catalysts support and in electro-chemistry when pyrolysed. On the other hand, because the preparation of cellulose aerogels may not involve any toxic compounds, they can be used in life science applications such as pharma, bio-medical, food and cosmetics. The review makes an overview of results reported in literature on the structure and properties of cellulose II aerogels and their applications. The reader may be surprised finding more questions than answers and clear trends. The review shows that several fundamental questions still remain to be answered and applications to be explored.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Aaltonen O, Jauhiainen O (2009) The preparation of lignocellulosic aerogels from ionic liquid solutions. Carbohydr Polym 75:125–129CrossRef Aaltonen O, Jauhiainen O (2009) The preparation of lignocellulosic aerogels from ionic liquid solutions. Carbohydr Polym 75:125–129CrossRef
Zurück zum Zitat Aegerter MA, Leventis N, Koebel MM (2011) Aerogels handbook. Springer, New YorkCrossRef Aegerter MA, Leventis N, Koebel MM (2011) Aerogels handbook. Springer, New YorkCrossRef
Zurück zum Zitat Alaoui AH, Woignier T, Scherer GW, Phalippou J (2008) Comparison between flexural and uniaxial compression tests to measure the elastic modulus of silica aerogel. J Non Cryst Solids 354:4556–4561CrossRef Alaoui AH, Woignier T, Scherer GW, Phalippou J (2008) Comparison between flexural and uniaxial compression tests to measure the elastic modulus of silica aerogel. J Non Cryst Solids 354:4556–4561CrossRef
Zurück zum Zitat Bakierska M, Molenda M, Majda D, Dziembaj R (2014) Functional starch based carbon aerogels for energy applications. Proc Eng 98:14–19CrossRef Bakierska M, Molenda M, Majda D, Dziembaj R (2014) Functional starch based carbon aerogels for energy applications. Proc Eng 98:14–19CrossRef
Zurück zum Zitat Biener J, Stadermann M, Suss M, Worsley MA, Biener MM, Rose KA, Baumann TF (2011) Advanced carbon aerogels for energy applications. Energy Environ Sci 4:656–667CrossRef Biener J, Stadermann M, Suss M, Worsley MA, Biener MM, Rose KA, Baumann TF (2011) Advanced carbon aerogels for energy applications. Energy Environ Sci 4:656–667CrossRef
Zurück zum Zitat Biesmans G, Randall D, Francais E, Perrut M (1998) Polyurethane-based organic aerogels’ thermal performance. J Non Cryst Solids 225:36–40CrossRef Biesmans G, Randall D, Francais E, Perrut M (1998) Polyurethane-based organic aerogels’ thermal performance. J Non Cryst Solids 225:36–40CrossRef
Zurück zum Zitat Biganska O, Navard P (2005) Kinetics of precipitation of cellulose from cellulose–NMMO–water solutions. Biomacromolecules 6:1948–1953CrossRefPubMed Biganska O, Navard P (2005) Kinetics of precipitation of cellulose from cellulose–NMMO–water solutions. Biomacromolecules 6:1948–1953CrossRefPubMed
Zurück zum Zitat Borisova A, De Bruyn M, Budarin VL, Shuttleworth PS, Dodson Mateus JR, Segatto L, Clark JH (2015) A sustainable freeze-drying route to porous polysaccharides with tailored hierarchical meso- and macroporosity. Macromol Rapid Commun 36:774–779CrossRefPubMed Borisova A, De Bruyn M, Budarin VL, Shuttleworth PS, Dodson Mateus JR, Segatto L, Clark JH (2015) A sustainable freeze-drying route to porous polysaccharides with tailored hierarchical meso- and macroporosity. Macromol Rapid Commun 36:774–779CrossRefPubMed
Zurück zum Zitat Buchtova N, Budtova T (2016) Cellulose aero-, cryo- and xerogels: towards understanding of morphology control. Cellulose 23:2585–2595CrossRef Buchtova N, Budtova T (2016) Cellulose aero-, cryo- and xerogels: towards understanding of morphology control. Cellulose 23:2585–2595CrossRef
Zurück zum Zitat Budarin V, Clark JH, Hardy JJA, Luque R, Milkowski K, Tavener SJ, Wilson AJ (2006) Starbons: new starch-derived mesoporous carbonaceous materials with tunable properties. Angew Chem Int Ed 45:3782–3786CrossRef Budarin V, Clark JH, Hardy JJA, Luque R, Milkowski K, Tavener SJ, Wilson AJ (2006) Starbons: new starch-derived mesoporous carbonaceous materials with tunable properties. Angew Chem Int Ed 45:3782–3786CrossRef
Zurück zum Zitat Budtova T, Navard P (2016) Cellulose in NaOH–water based solvents: a review. Cellulose 23:5–55CrossRef Budtova T, Navard P (2016) Cellulose in NaOH–water based solvents: a review. Cellulose 23:5–55CrossRef
Zurück zum Zitat Cai J, Kimura S, Wada M, Kuga S, Zhang L (2008) Cellulose aerogels from aqueous alkali hydroxide–urea solution. ChemSusChem 1:149–154CrossRefPubMed Cai J, Kimura S, Wada M, Kuga S, Zhang L (2008) Cellulose aerogels from aqueous alkali hydroxide–urea solution. ChemSusChem 1:149–154CrossRefPubMed
Zurück zum Zitat Cai J, Kimura S, Wada M, Kuga S (2009) Nanoporous cellulose as metal nanoparticles support. Biomacromolecules 10:87–94CrossRefPubMed Cai J, Kimura S, Wada M, Kuga S (2009) Nanoporous cellulose as metal nanoparticles support. Biomacromolecules 10:87–94CrossRefPubMed
Zurück zum Zitat Cai J, Liu S, Feng J, Kimura S, Wada M, Kuga S, Zhang L (2012) Cellulose-silica nanocomposite aerogels by in situ formation of silica in cellulose gel. Angew Chem Int Ed 51:2076–2079CrossRef Cai J, Liu S, Feng J, Kimura S, Wada M, Kuga S, Zhang L (2012) Cellulose-silica nanocomposite aerogels by in situ formation of silica in cellulose gel. Angew Chem Int Ed 51:2076–2079CrossRef
Zurück zum Zitat Cai H, Sharma S, Liu W, Mu W, Liu W, Zhang X, Deng Y (2014) Aerogel microspheres from natural cellulose nanofibrils and their application as cell culture scaffold. Biomacromolecules 15:2540–2547CrossRefPubMed Cai H, Sharma S, Liu W, Mu W, Liu W, Zhang X, Deng Y (2014) Aerogel microspheres from natural cellulose nanofibrils and their application as cell culture scaffold. Biomacromolecules 15:2540–2547CrossRefPubMed
Zurück zum Zitat Cervin NT, Aulin C, Larsson PT, Wagberg L (2012) Ultra porous nanocellulose aerogels as separation medium for mixtures of oil/water liquids. Cellulose 19:401–410CrossRef Cervin NT, Aulin C, Larsson PT, Wagberg L (2012) Ultra porous nanocellulose aerogels as separation medium for mixtures of oil/water liquids. Cellulose 19:401–410CrossRef
Zurück zum Zitat Cervin NT, Andersson L, Ng JBS, Olin P, Bergström L, Wågberg L (2013) Lightweight and strong cellulose materials made from aqueous foams stabilized by nanofibrillated cellulose. Biomacromolecules 14:503–511CrossRefPubMed Cervin NT, Andersson L, Ng JBS, Olin P, Bergström L, Wågberg L (2013) Lightweight and strong cellulose materials made from aqueous foams stabilized by nanofibrillated cellulose. Biomacromolecules 14:503–511CrossRefPubMed
Zurück zum Zitat Chin SF, Romainor ANB, Pang SC (2014) Fabrication of hydrophobic and magnetic cellulose aerogel with high oil absorption capacity. Mater Lett 115:241–243CrossRef Chin SF, Romainor ANB, Pang SC (2014) Fabrication of hydrophobic and magnetic cellulose aerogel with high oil absorption capacity. Mater Lett 115:241–243CrossRef
Zurück zum Zitat Chtchigrovsky M, Primo A, Gonzalez P, Molvinger K, Robitzer M, Quignard F et al (2009) Functionalized chitosan as a green, recyclable, biopolymer-supported catalyst for the [3 + 2] Huisgen cycloaddition. Angew Chem Int E. 48(32):5916–5920CrossRef Chtchigrovsky M, Primo A, Gonzalez P, Molvinger K, Robitzer M, Quignard F et al (2009) Functionalized chitosan as a green, recyclable, biopolymer-supported catalyst for the [3 + 2] Huisgen cycloaddition. Angew Chem Int E. 48(32):5916–5920CrossRef
Zurück zum Zitat Cross J, Goswin R, Gerlach R, Fricke J (1989) Mechanical properties of SiO2–aerogels. Revue de physique appliquée, Colloque c4, Supplement au n° 4, tome 24, c4-184-c4-195 Cross J, Goswin R, Gerlach R, Fricke J (1989) Mechanical properties of SiO2–aerogels. Revue de physique appliquée, Colloque c4, Supplement au n° 4, tome 24, c4-184-c4-195
Zurück zum Zitat Cui S, Wang X, Zhang X, Xia W, Tang X, Lin B, Qi W, Zhang X, Shen X (2018) Preparation of magnetic MnFe2O4-cellulose aerogel composite and its kinetics and thermodynamics of Cu(II) adsorption. Cellulose 25:735–751CrossRef Cui S, Wang X, Zhang X, Xia W, Tang X, Lin B, Qi W, Zhang X, Shen X (2018) Preparation of magnetic MnFe2O4-cellulose aerogel composite and its kinetics and thermodynamics of Cu(II) adsorption. Cellulose 25:735–751CrossRef
Zurück zum Zitat De Cicco F, Russo P, Reverchon E, García-González CA, Aquino RP, Del Gaudio P (2016) Prilling and supercritical drying: a successful duo to producecore-shell polysaccharide aerogel beads for wound healing. Carbohydr Polym 147:482–489CrossRefPubMed De Cicco F, Russo P, Reverchon E, García-González CA, Aquino RP, Del Gaudio P (2016) Prilling and supercritical drying: a successful duo to producecore-shell polysaccharide aerogel beads for wound healing. Carbohydr Polym 147:482–489CrossRefPubMed
Zurück zum Zitat De France KJ, Hoare T, Cranston ED (2017) Review of hydrogels and aerogels containing nanocellulose. Chem Mater 29:4609–4631CrossRef De France KJ, Hoare T, Cranston ED (2017) Review of hydrogels and aerogels containing nanocellulose. Chem Mater 29:4609–4631CrossRef
Zurück zum Zitat De Oliveira W, Glasser WG (1996) Hydrogels from polysaccharides. 1. Cellulose beads for chromatographic support. J Appl Polym Sci 60:63–73CrossRef De Oliveira W, Glasser WG (1996) Hydrogels from polysaccharides. 1. Cellulose beads for chromatographic support. J Appl Polym Sci 60:63–73CrossRef
Zurück zum Zitat Demilecamps A (2015) Synthesis and characterization of polysaccharide-silica composite aerogels for thermal superinsulation. PhD thesis, Mines ParisTech, France Demilecamps A (2015) Synthesis and characterization of polysaccharide-silica composite aerogels for thermal superinsulation. PhD thesis, Mines ParisTech, France
Zurück zum Zitat Demilecamps A, Reichenauer G, Rigacci A, Budtova T (2014) Cellulose–silica composite aerogels from “one-pot” synthesis. Cellulose 21:2625–2636CrossRef Demilecamps A, Reichenauer G, Rigacci A, Budtova T (2014) Cellulose–silica composite aerogels from “one-pot” synthesis. Cellulose 21:2625–2636CrossRef
Zurück zum Zitat Demilecamps A, Beauger C, Hildenbrand C, Rigacci A, Budtova T (2015) Cellulose–silica aerogel. Carbohydr Polym 122:293–300CrossRefPubMed Demilecamps A, Beauger C, Hildenbrand C, Rigacci A, Budtova T (2015) Cellulose–silica aerogel. Carbohydr Polym 122:293–300CrossRefPubMed
Zurück zum Zitat Demilecamps A, Alves M, Rigacci A, Reichenauer G, Budtova T (2016) Nanostructured interpenetrated organic-inorganic aerogels with thermal superinsulating properties. J Non Cryst Solids 452:259–265CrossRef Demilecamps A, Alves M, Rigacci A, Reichenauer G, Budtova T (2016) Nanostructured interpenetrated organic-inorganic aerogels with thermal superinsulating properties. J Non Cryst Solids 452:259–265CrossRef
Zurück zum Zitat Diascorn N, Calas S, Sallée H, Achard P, Rigacci A (2015) Polyurethane aerogels synthesis for thermal insulation–textural, thermal and mechanical properties. J Supercrit Fluids 106:76–84CrossRef Diascorn N, Calas S, Sallée H, Achard P, Rigacci A (2015) Polyurethane aerogels synthesis for thermal insulation–textural, thermal and mechanical properties. J Supercrit Fluids 106:76–84CrossRef
Zurück zum Zitat Druel L, Bardl R, Vorwerg W, Budtova T (2017) Starch aerogels: a member of the family of thermal superinsulating materials. Biomacromolecules 18:4232–4239CrossRefPubMed Druel L, Bardl R, Vorwerg W, Budtova T (2017) Starch aerogels: a member of the family of thermal superinsulating materials. Biomacromolecules 18:4232–4239CrossRefPubMed
Zurück zum Zitat Druel L, Niemeyer P, Milow B, Budtova T (2018) Rheology of cellulose-[DBNH][CO2Et] solutions and shaping into aerogel beads. Green Chem 20:3993–4002CrossRef Druel L, Niemeyer P, Milow B, Budtova T (2018) Rheology of cellulose-[DBNH][CO2Et] solutions and shaping into aerogel beads. Green Chem 20:3993–4002CrossRef
Zurück zum Zitat Egal M, Budtova T, Navard P (2007) Structure of aqueous solutions of microcrystalline cellulose-sodium hydroxide below 0 °C and the limit of cellulose dissolution. Biomacromolecules 8:2282–2287CrossRefPubMed Egal M, Budtova T, Navard P (2007) Structure of aqueous solutions of microcrystalline cellulose-sodium hydroxide below 0 °C and the limit of cellulose dissolution. Biomacromolecules 8:2282–2287CrossRefPubMed
Zurück zum Zitat Escudero RR, Robitzer M, Di Renzo F, Quignard F (2009) Alginate aerogels as adsorbents of polar molecules from liquid hydrocarbons: hexanol as probe molecule. Carbohydr Polym 75:52–57CrossRef Escudero RR, Robitzer M, Di Renzo F, Quignard F (2009) Alginate aerogels as adsorbents of polar molecules from liquid hydrocarbons: hexanol as probe molecule. Carbohydr Polym 75:52–57CrossRef
Zurück zum Zitat Feng J, Nguyen ST, Fan Z, Duong HM (2015) Advanced fabrication and oil absorption properties of super-hydrophobic recycled cellulose aerogels. Chem Eng J 270:168–175CrossRef Feng J, Nguyen ST, Fan Z, Duong HM (2015) Advanced fabrication and oil absorption properties of super-hydrophobic recycled cellulose aerogels. Chem Eng J 270:168–175CrossRef
Zurück zum Zitat Fink HP, Weigel P, Purz HJ, Ganster J (2001) Structure formation of regenerated cellulose materials from NMMO solutions. Prog Polym Sci 26:1473–1524CrossRef Fink HP, Weigel P, Purz HJ, Ganster J (2001) Structure formation of regenerated cellulose materials from NMMO solutions. Prog Polym Sci 26:1473–1524CrossRef
Zurück zum Zitat Firgo H, Rüf H, Hainbucher KM, Weber H (2004) Method for the production of a porous cellulose body. WO/2004/065424 Firgo H, Rüf H, Hainbucher KM, Weber H (2004) Method for the production of a porous cellulose body. WO/2004/065424
Zurück zum Zitat Fischer F, Rigacci A, Pirard R, Berthon-Fabry S, Achard P (2006) Cellulose-based aerogels. Polymer 47:7636–7645CrossRef Fischer F, Rigacci A, Pirard R, Berthon-Fabry S, Achard P (2006) Cellulose-based aerogels. Polymer 47:7636–7645CrossRef
Zurück zum Zitat Fumagalli M, Ouhab D, Molina Boisseau S, Heux L (2013) Versatile gas-phase reactions for surface to bulk esterification of cellulose microfibrils aerogels. Biomacromolecules 14:3246–3255CrossRefPubMed Fumagalli M, Ouhab D, Molina Boisseau S, Heux L (2013) Versatile gas-phase reactions for surface to bulk esterification of cellulose microfibrils aerogels. Biomacromolecules 14:3246–3255CrossRefPubMed
Zurück zum Zitat Fumagalli M, Sanchez F, Molina-Boisseau S, Heux L (2015) Surface-restricted modification of nanocellulose aerogels in gas-phase esterification by di-functional fatty acid reagents. Cellulose 22:1451–1457CrossRef Fumagalli M, Sanchez F, Molina-Boisseau S, Heux L (2015) Surface-restricted modification of nanocellulose aerogels in gas-phase esterification by di-functional fatty acid reagents. Cellulose 22:1451–1457CrossRef
Zurück zum Zitat Ganesan K, Dennstedt A, Barowski A, Ratke L (2016) Design of aerogels, cryogels and xerogels of cellulose with hierarchical porous structures. Mater Des 92:345–355CrossRef Ganesan K, Dennstedt A, Barowski A, Ratke L (2016) Design of aerogels, cryogels and xerogels of cellulose with hierarchical porous structures. Mater Des 92:345–355CrossRef
Zurück zum Zitat Ganesan K, Budtova T, Ratke L, Gurikov P, Baudron V, Preibisch I, Niemeyer P, Smirnova I, Milow B (2018) Review on the production of polysaccharide aerogel particles. Materials 11:2144–2181CrossRefPubMedCentral Ganesan K, Budtova T, Ratke L, Gurikov P, Baudron V, Preibisch I, Niemeyer P, Smirnova I, Milow B (2018) Review on the production of polysaccharide aerogel particles. Materials 11:2144–2181CrossRefPubMedCentral
Zurück zum Zitat García-González CA, Alnaief M, Smirnova I (2011) Polysaccharide-based aerogels-promising biodegradable carriers for drug delivery systems. Carbohydr Polym 86:1425–1438CrossRef García-González CA, Alnaief M, Smirnova I (2011) Polysaccharide-based aerogels-promising biodegradable carriers for drug delivery systems. Carbohydr Polym 86:1425–1438CrossRef
Zurück zum Zitat García-González CA, Uy JJ, Alnaief M, Smirnova I (2012) Preparation of tailor-made starch-based aerogel microspheres by the emulsion-gelation method. Carbohydr Polym 88:1378–1386CrossRef García-González CA, Uy JJ, Alnaief M, Smirnova I (2012) Preparation of tailor-made starch-based aerogel microspheres by the emulsion-gelation method. Carbohydr Polym 88:1378–1386CrossRef
Zurück zum Zitat Gavillon R (2007) Preparation et caracterisation de materiaux cellulosiques ultra poreux. PhD Thesis. Mines ParisTech, France Gavillon R (2007) Preparation et caracterisation de materiaux cellulosiques ultra poreux. PhD Thesis. Mines ParisTech, France
Zurück zum Zitat Gavillon R, Budtova T (2007) Kinetics of cellulose regeneration from cellulose–NaOH–water gels and comparison with cellulose-N-methylmorpholine-N-oxide-water solutions. Biomacromolecules 8:424–432CrossRefPubMed Gavillon R, Budtova T (2007) Kinetics of cellulose regeneration from cellulose–NaOH–water gels and comparison with cellulose-N-methylmorpholine-N-oxide-water solutions. Biomacromolecules 8:424–432CrossRefPubMed
Zurück zum Zitat Gavillon R, Budtova T (2008) Aerocellulose: new highly porous cellulose prepared from cellulose–NaOH aqueous solutions. Biomacromolecules 9:269–277CrossRefPubMed Gavillon R, Budtova T (2008) Aerocellulose: new highly porous cellulose prepared from cellulose–NaOH aqueous solutions. Biomacromolecules 9:269–277CrossRefPubMed
Zurück zum Zitat Geng H (2018) Preparation and characterization of cellulose/N,N′-methylene bisacrylamide/graphene oxide hybrid hydrogels and aerogels. Carbohydr Polym 196:289–298CrossRefPubMed Geng H (2018) Preparation and characterization of cellulose/N,N′-methylene bisacrylamide/graphene oxide hybrid hydrogels and aerogels. Carbohydr Polym 196:289–298CrossRefPubMed
Zurück zum Zitat Gericke M, Trygg J, Fardim P (2013) Functional cellulose beads: preparation, characterization, and applications. Chem Rev 113:4812–4836CrossRefPubMed Gericke M, Trygg J, Fardim P (2013) Functional cellulose beads: preparation, characterization, and applications. Chem Rev 113:4812–4836CrossRefPubMed
Zurück zum Zitat Gibson LJ, Ashby MF (1997) Cellular solids. Structure and properties, 2nd edn. Cambridge University Press, CambridgeCrossRef Gibson LJ, Ashby MF (1997) Cellular solids. Structure and properties, 2nd edn. Cambridge University Press, CambridgeCrossRef
Zurück zum Zitat Glenn GM, Irving DW (1995) Starch-based microcellular foams. Cereal Chem 72:155–161 Glenn GM, Irving DW (1995) Starch-based microcellular foams. Cereal Chem 72:155–161
Zurück zum Zitat Goimil L, Braga MEM, Dias AMA, Gómez-Amoza JL, Concheiro A, Alvarez-Lorenzo C, de Sousa HC, García-González CA (2017) Supercritical processing of starch aerogels and aerogel-loaded poly(e-caprolactone) scaffolds for sustained release of ketoprofen for bone regeneration. J CO2 Util 18:237–249CrossRef Goimil L, Braga MEM, Dias AMA, Gómez-Amoza JL, Concheiro A, Alvarez-Lorenzo C, de Sousa HC, García-González CA (2017) Supercritical processing of starch aerogels and aerogel-loaded poly(e-caprolactone) scaffolds for sustained release of ketoprofen for bone regeneration. J CO2 Util 18:237–249CrossRef
Zurück zum Zitat Groult S, Budtova T (2018a) Thermal conductivity/structure correlations in thermal super-insulating pectin aerogels. Carbohydr Polym 196:73–81CrossRefPubMed Groult S, Budtova T (2018a) Thermal conductivity/structure correlations in thermal super-insulating pectin aerogels. Carbohydr Polym 196:73–81CrossRefPubMed
Zurück zum Zitat Groult S, Budtova T (2018b) Tuning structure and properties of pectin aerogels. Eur Polym J 108:250–261CrossRef Groult S, Budtova T (2018b) Tuning structure and properties of pectin aerogels. Eur Polym J 108:250–261CrossRef
Zurück zum Zitat Guilminot E, Gavillon R, Chatenet M, Berthon-Fabry S, Rigacci A, Budtova T (2008) New nanostructured carbons based on porous cellulose: elaboration, pyrolysis and use as platinum nanoparticles substrate for oxygen reduction electrocatalysis. J Power Sources 185:717–726CrossRef Guilminot E, Gavillon R, Chatenet M, Berthon-Fabry S, Rigacci A, Budtova T (2008) New nanostructured carbons based on porous cellulose: elaboration, pyrolysis and use as platinum nanoparticles substrate for oxygen reduction electrocatalysis. J Power Sources 185:717–726CrossRef
Zurück zum Zitat Guizard C, Leloup J, Deville S (2014) Crystal templating with mutually miscible solvents: a simple path to hierarchical porosity. J Am Ceram Soc 97:2020–2023CrossRef Guizard C, Leloup J, Deville S (2014) Crystal templating with mutually miscible solvents: a simple path to hierarchical porosity. J Am Ceram Soc 97:2020–2023CrossRef
Zurück zum Zitat Hall CA, Le KA, Rudaz C, Radhi A, Lovell CS, DamionRA Budtova T, Ries ME (2012) Macroscopic and microscopic study of 1-ethyl-3-methyl-imidazolium acetate–water mixtures. J Phys Chem B 116:12810–12818CrossRefPubMed Hall CA, Le KA, Rudaz C, Radhi A, Lovell CS, DamionRA Budtova T, Ries ME (2012) Macroscopic and microscopic study of 1-ethyl-3-methyl-imidazolium acetate–water mixtures. J Phys Chem B 116:12810–12818CrossRefPubMed
Zurück zum Zitat Hansen CM (2007) Hansen solubility parameters: a user’s handbook, 2nd edn. CRC Press, Boca RatonCrossRef Hansen CM (2007) Hansen solubility parameters: a user’s handbook, 2nd edn. CRC Press, Boca RatonCrossRef
Zurück zum Zitat Hedlund A, Kohnke T, Theliander H (2017) Diffusion in ionic liquid–cellulose solutions during coagulation in water: mass transport and coagulation rate measurements. Macromolecules 50:8707–8719CrossRef Hedlund A, Kohnke T, Theliander H (2017) Diffusion in ionic liquid–cellulose solutions during coagulation in water: mass transport and coagulation rate measurements. Macromolecules 50:8707–8719CrossRef
Zurück zum Zitat Hoepfner S, Ratke L, Milow B (2008) Synthesis and characterisation of nanofibrillar cellulose aerogels. Cellulose 15:121–129CrossRef Hoepfner S, Ratke L, Milow B (2008) Synthesis and characterisation of nanofibrillar cellulose aerogels. Cellulose 15:121–129CrossRef
Zurück zum Zitat Horvat G, Xhanari K, Finsgar M, Gradisnik L, Maver U, Knez Z, Novak Z (2017) Novel ethanol-induced pectin–xanthan aerogel coatings for orthopedic applications. Carbohydr Polym 166:365–376CrossRefPubMed Horvat G, Xhanari K, Finsgar M, Gradisnik L, Maver U, Knez Z, Novak Z (2017) Novel ethanol-induced pectin–xanthan aerogel coatings for orthopedic applications. Carbohydr Polym 166:365–376CrossRefPubMed
Zurück zum Zitat Hu Y, Tong X, Zhuo H, Zhong L, Peng W, Wang S, Sun R (2016) 3D hierarchical porous N-doped carbon aerogel from renewable cellulose: an attractive carbon for high-performance supercapacitor electrodes and CO2 adsorption. RSC Adv 6:15788–15795CrossRef Hu Y, Tong X, Zhuo H, Zhong L, Peng W, Wang S, Sun R (2016) 3D hierarchical porous N-doped carbon aerogel from renewable cellulose: an attractive carbon for high-performance supercapacitor electrodes and CO2 adsorption. RSC Adv 6:15788–15795CrossRef
Zurück zum Zitat Hwang K, Kwon G-J, Yang J, Kim M, Hwang WJ, Youe W, Kim D-Y (2018) Chlamydomonas angulosa (Green Alga) and Nostoc commune (Blue-Green Alga) microalgae-cellulose composite aerogel beads: manufacture, physicochemical characterization, and Cd (II) adsorption. Materials 11:562–581CrossRefPubMedCentral Hwang K, Kwon G-J, Yang J, Kim M, Hwang WJ, Youe W, Kim D-Y (2018) Chlamydomonas angulosa (Green Alga) and Nostoc commune (Blue-Green Alga) microalgae-cellulose composite aerogel beads: manufacture, physicochemical characterization, and Cd (II) adsorption. Materials 11:562–581CrossRefPubMedCentral
Zurück zum Zitat Innerlohinger J, Weber HK, Kraft G (2006a) Aerocellulose: aerogels and aerogel-like materials made from cellulose. Macromol Symp 244:126–135CrossRef Innerlohinger J, Weber HK, Kraft G (2006a) Aerocellulose: aerogels and aerogel-like materials made from cellulose. Macromol Symp 244:126–135CrossRef
Zurück zum Zitat Innerlohinger J, Weber HK, Kraft G (2006b) Aerocell Aerogels from cellulosic materials. Lenzing Ber 86:137–143 Innerlohinger J, Weber HK, Kraft G (2006b) Aerocell Aerogels from cellulosic materials. Lenzing Ber 86:137–143
Zurück zum Zitat Ishida O, Kim D-Y, Kuga S, Nishiyama Y, Brown RM (2004) Microfibrillar carbon from native cellulose. Cellulose 11:475–480CrossRef Ishida O, Kim D-Y, Kuga S, Nishiyama Y, Brown RM (2004) Microfibrillar carbon from native cellulose. Cellulose 11:475–480CrossRef
Zurück zum Zitat IUPAC (2014) Compendium of Chemical Terminology, 2nd ed. (the “Gold Book”). Compiled by McNaught AD, Wilkinson A. Blackwell Scientific Publications, Oxford (1997). XML on-line corrected version: http://goldbook.iupac.org (2006–) created by M. Nic, J. Jirat, B. Kosata; updates compiled by A. Jenkins. ISBN 0-9678550-9-8. https://doi.org/10.1351/goldbook. Last update 2014-02-24; version: 2.3.3 IUPAC (2014) Compendium of Chemical Terminology, 2nd ed. (the “Gold Book”). Compiled by McNaught AD, Wilkinson A. Blackwell Scientific Publications, Oxford (1997). XML on-line corrected version: http://​goldbook.​iupac.​org (2006–) created by M. Nic, J. Jirat, B. Kosata; updates compiled by A. Jenkins. ISBN 0-9678550-9-8. https://​doi.​org/​10.​1351/​goldbook. Last update 2014-02-24; version: 2.3.3
Zurück zum Zitat Jiménez-Saelices C, Seantier B, Cathala B, Grohens Y (2017) Spray freeze-dried nanofibrillated cellulose aerogels with thermal superinsulating properties. Carbohydr Polym 157:105–113CrossRefPubMed Jiménez-Saelices C, Seantier B, Cathala B, Grohens Y (2017) Spray freeze-dried nanofibrillated cellulose aerogels with thermal superinsulating properties. Carbohydr Polym 157:105–113CrossRefPubMed
Zurück zum Zitat Jin H, Nishiyama T, Wada M, Kuga S (2004) Nanofibrillar cellulose aerogels. Colloids Surf A Physicochem Eng Asp 240:63–67CrossRef Jin H, Nishiyama T, Wada M, Kuga S (2004) Nanofibrillar cellulose aerogels. Colloids Surf A Physicochem Eng Asp 240:63–67CrossRef
Zurück zum Zitat Karadagli I, Schulz B, Schestakow M, Milow B, Gries T, Ratke L (2015) Production of porous cellulose aerogel fibers by an extrusion process. J Supercrit Fluids 106:105–114CrossRef Karadagli I, Schulz B, Schestakow M, Milow B, Gries T, Ratke L (2015) Production of porous cellulose aerogel fibers by an extrusion process. J Supercrit Fluids 106:105–114CrossRef
Zurück zum Zitat Katti A, Shimpi N, Roy S, Lu H, Fabrizio EF, Dass A, Capadona LA, Leventis N (2006) Chemical, Physical, and Mechanical Characterization of Isocyanate Cross-linked Amine-Modified Silica Aerogels. Chem Mater 18:85–296CrossRef Katti A, Shimpi N, Roy S, Lu H, Fabrizio EF, Dass A, Capadona LA, Leventis N (2006) Chemical, Physical, and Mechanical Characterization of Isocyanate Cross-linked Amine-Modified Silica Aerogels. Chem Mater 18:85–296CrossRef
Zurück zum Zitat Kaushik M, Moores A (2016) Review: nanocelluloses as versatile supports for metal nanoparticles and their applications in catalysis. Green Chem 18:622–637CrossRef Kaushik M, Moores A (2016) Review: nanocelluloses as versatile supports for metal nanoparticles and their applications in catalysis. Green Chem 18:622–637CrossRef
Zurück zum Zitat Kistler SS (1931) Coherent expanded aerogels and gellies. Nature 127(3211):741CrossRef Kistler SS (1931) Coherent expanded aerogels and gellies. Nature 127(3211):741CrossRef
Zurück zum Zitat Knez Z, Markocic E, Leitgeb M, Primozic M, Hrncic MK, Skerget M (2014) Industrial applications of supercritical fluids: a review. Energy 77:235–243CrossRef Knez Z, Markocic E, Leitgeb M, Primozic M, Hrncic MK, Skerget M (2014) Industrial applications of supercritical fluids: a review. Energy 77:235–243CrossRef
Zurück zum Zitat Kobayashi Y, Saito T, Isogai A (2014) Aerogels with 3D Ordered Nanofiber Skeletons of Liquid-Crystalline Nanocellulose Derivatives as Tough and Transparent Insulators. Angew Chem Int Ed 53:10394–10397CrossRef Kobayashi Y, Saito T, Isogai A (2014) Aerogels with 3D Ordered Nanofiber Skeletons of Liquid-Crystalline Nanocellulose Derivatives as Tough and Transparent Insulators. Angew Chem Int Ed 53:10394–10397CrossRef
Zurück zum Zitat Köhnke T, Lund K, Brelid H, Westman G (2010) Kraft pulp hornification: a closer look at the preventive effect gained by glucuronoxylan adsorption. Carbohydr Polym 81:226–233CrossRef Köhnke T, Lund K, Brelid H, Westman G (2010) Kraft pulp hornification: a closer look at the preventive effect gained by glucuronoxylan adsorption. Carbohydr Polym 81:226–233CrossRef
Zurück zum Zitat Korhonen JT, Kettunen M, Ras RHA, Ikkala O (2011) Hydrophobic Nanocellulose Aerogels as Floating, Sustainable, Reusable, and Recyclable Oil Absorbents. ACS Appl Mater Interfaces 3:1813–1816CrossRefPubMed Korhonen JT, Kettunen M, Ras RHA, Ikkala O (2011) Hydrophobic Nanocellulose Aerogels as Floating, Sustainable, Reusable, and Recyclable Oil Absorbents. ACS Appl Mater Interfaces 3:1813–1816CrossRefPubMed
Zurück zum Zitat Laity PR, Glover PM, Hay JN (2002) Composition and phase changes observed by magnetic resonance imaging during non-solvent induced coagulation of cellulose. Polymer 43:5827–5837CrossRef Laity PR, Glover PM, Hay JN (2002) Composition and phase changes observed by magnetic resonance imaging during non-solvent induced coagulation of cellulose. Polymer 43:5827–5837CrossRef
Zurück zum Zitat Laskowski J, Milow B, Ratke L (2015) The effect of embedding highly insulating granular aerogel incellulosic aerogel. J Supercrit Fluids 106:93–99CrossRef Laskowski J, Milow B, Ratke L (2015) The effect of embedding highly insulating granular aerogel incellulosic aerogel. J Supercrit Fluids 106:93–99CrossRef
Zurück zum Zitat Lavoine N, Bergstrom L (2017) Nanocellulose-based foams and aerogels: processing, properties, and applications. J. Mater. Chem. A 5:16105–16117CrossRef Lavoine N, Bergstrom L (2017) Nanocellulose-based foams and aerogels: processing, properties, and applications. J. Mater. Chem. A 5:16105–16117CrossRef
Zurück zum Zitat Lei E, Li W, Ma C, Liu S (2018) An ultra-lightweight recyclable carbon aerogel from bleached softwood kraft pulp for efficient oil and organic absorption. Mater Chem Phys 214:291–296CrossRef Lei E, Li W, Ma C, Liu S (2018) An ultra-lightweight recyclable carbon aerogel from bleached softwood kraft pulp for efficient oil and organic absorption. Mater Chem Phys 214:291–296CrossRef
Zurück zum Zitat Leventis N, Sotiriou-Leventis C, Zhang G, Rawashdeh A-MM (2002) Nanoengineering strong silica aerogels. Nano Lett 2:957–960CrossRef Leventis N, Sotiriou-Leventis C, Zhang G, Rawashdeh A-MM (2002) Nanoengineering strong silica aerogels. Nano Lett 2:957–960CrossRef
Zurück zum Zitat Li S, Lyons-Hart J, Banyasz J, Shafer K (2001) Real-time evolved gas analysis by FTIR method: an experimental study of cellulose pyrolysis. Fuel 80:1809–1817CrossRef Li S, Lyons-Hart J, Banyasz J, Shafer K (2001) Real-time evolved gas analysis by FTIR method: an experimental study of cellulose pyrolysis. Fuel 80:1809–1817CrossRef
Zurück zum Zitat Liang H-W, Wu Z-Y, Chen L-F, Li C, Yu S-H (2015) Bacterial cellulose derived nitrogen-doped carbon nanofiber aerogel: an efficient metal-free oxygen reduction electrocatalyst for zinc-air battery. Nano Energy 11:366–376CrossRef Liang H-W, Wu Z-Y, Chen L-F, Li C, Yu S-H (2015) Bacterial cellulose derived nitrogen-doped carbon nanofiber aerogel: an efficient metal-free oxygen reduction electrocatalyst for zinc-air battery. Nano Energy 11:366–376CrossRef
Zurück zum Zitat Liao Q, Su X, Zhu W, Hu W, Qian Z, Li L, Yao J (2016) Flexible and durable cellulose aerogels for highly effective oil/water separation. RSC Adv 6:63773–63781CrossRef Liao Q, Su X, Zhu W, Hu W, Qian Z, Li L, Yao J (2016) Flexible and durable cellulose aerogels for highly effective oil/water separation. RSC Adv 6:63773–63781CrossRef
Zurück zum Zitat Liebert T (2010) Cellulose solvents – remarkable history, bright future. In: Liebert et al (eds) Cellulose solvents: for analysis, shaping and chemical modification. ACS symposium series. American Chemical Society, Washington Liebert T (2010) Cellulose solvents – remarkable history, bright future. In: Liebert et al (eds) Cellulose solvents: for analysis, shaping and chemical modification. ACS symposium series. American Chemical Society, Washington
Zurück zum Zitat Liebner F, Potthast A, Rosenau T, Haimer E, Wendland M (2008) Cellulose aerogels: highly porous, ultra-lightweight materials. Holzforschung 62:129–135CrossRef Liebner F, Potthast A, Rosenau T, Haimer E, Wendland M (2008) Cellulose aerogels: highly porous, ultra-lightweight materials. Holzforschung 62:129–135CrossRef
Zurück zum Zitat Liebner F, Haimer E, Potthast A, Loidl D, Tschegg S, Neouze MA (2009) Cellulosic aerogels as ultra-lightweight materials. Part 2: synthesis and properties. Holzforschung 63:3–11CrossRef Liebner F, Haimer E, Potthast A, Loidl D, Tschegg S, Neouze MA (2009) Cellulosic aerogels as ultra-lightweight materials. Part 2: synthesis and properties. Holzforschung 63:3–11CrossRef
Zurück zum Zitat Liebner F, Dunareanu R, Opietnik M, Haimer E, Wendland M, Werner C, Maitz M, Seib P, Neouze M-A, Potthast A, Rosenau T (2012) Shaped hemocompatible aerogels from cellulose phosphates: preparation and properties. Holzforschung 66:317–321CrossRef Liebner F, Dunareanu R, Opietnik M, Haimer E, Wendland M, Werner C, Maitz M, Seib P, Neouze M-A, Potthast A, Rosenau T (2012) Shaped hemocompatible aerogels from cellulose phosphates: preparation and properties. Holzforschung 66:317–321CrossRef
Zurück zum Zitat Liebner F, Pircher N, Schimper C, Haimer E, Rosenau T (2016) Aerogels: cellulose-based. In: Encyclopedia of biomedical polymers and polymeric biomaterials. Taylor and Francis, New York, pp 37–75 Liebner F, Pircher N, Schimper C, Haimer E, Rosenau T (2016) Aerogels: cellulose-based. In: Encyclopedia of biomedical polymers and polymeric biomaterials. Taylor and Francis, New York, pp 37–75
Zurück zum Zitat Lin C, Zhan H, Liu M, Fu S, Lucia LA (2009a) Novel preparation and characterization of cellulose microparticles functionalized in ionic liquids. Langmuir 25:10116–10120CrossRefPubMed Lin C, Zhan H, Liu M, Fu S, Lucia LA (2009a) Novel preparation and characterization of cellulose microparticles functionalized in ionic liquids. Langmuir 25:10116–10120CrossRefPubMed
Zurück zum Zitat Lin Y-C, Cho J, Tompsett GA, Westmoreland PR, Huber GW (2009b) Kinetics and mechanism of cellulose pyrolysis. J Phys Chem C 113:20097–20107CrossRef Lin Y-C, Cho J, Tompsett GA, Westmoreland PR, Huber GW (2009b) Kinetics and mechanism of cellulose pyrolysis. J Phys Chem C 113:20097–20107CrossRef
Zurück zum Zitat Lin R, Li A, Zheng T, Lu L, Cao Y (2015) Hydrophobic and flexible cellulose aerogel as an efficient, green and reusable oil sorbent. RSC Adv 5:82027–82033CrossRef Lin R, Li A, Zheng T, Lu L, Cao Y (2015) Hydrophobic and flexible cellulose aerogel as an efficient, green and reusable oil sorbent. RSC Adv 5:82027–82033CrossRef
Zurück zum Zitat Litschauer M, Neouze M-A, Haimer E, Henniges U, Potthast A, Rosenau T, Liebner F (2011) Silica modified cellulosic aerogels. Cellulose 18:143–149CrossRef Litschauer M, Neouze M-A, Haimer E, Henniges U, Potthast A, Rosenau T, Liebner F (2011) Silica modified cellulosic aerogels. Cellulose 18:143–149CrossRef
Zurück zum Zitat Liu W, Budtova T, Navard P (2011) Influence of ZnO on the properties of dilute and semi-dilute cellulose–NaOH–water solutions. Cellulose 18:911–920CrossRef Liu W, Budtova T, Navard P (2011) Influence of ZnO on the properties of dilute and semi-dilute cellulose–NaOH–water solutions. Cellulose 18:911–920CrossRef
Zurück zum Zitat Liu S, Yu T, Hu N, Liu R, Liu X (2013) High strength cellulose aerogels prepared by spatially confined synthesis of silica in bioscaffolds. Colloids Surf A Physicochem Eng Asp 439:159–166CrossRef Liu S, Yu T, Hu N, Liu R, Liu X (2013) High strength cellulose aerogels prepared by spatially confined synthesis of silica in bioscaffolds. Colloids Surf A Physicochem Eng Asp 439:159–166CrossRef
Zurück zum Zitat Liu P, Borrell PF, Bozic M, Kokol V, Oksman K, Mathew AP (2015) Nanocelluloses and their phosphorylated derivatives for selective adsorption of Ag+, Cu2+ and Fe3+ from industrial effluents. J Hazard Mater 294:177–185CrossRefPubMed Liu P, Borrell PF, Bozic M, Kokol V, Oksman K, Mathew AP (2015) Nanocelluloses and their phosphorylated derivatives for selective adsorption of Ag+, Cu2+ and Fe3+ from industrial effluents. J Hazard Mater 294:177–185CrossRefPubMed
Zurück zum Zitat Lozinsky VI, Galaev IYu, PlievaFM Savina IN, Jungvid H, Mattiasson B (2003) Polymeric cryogels as promising materials of biotechnological interest. Trends Biotechnol 21:445–451CrossRefPubMed Lozinsky VI, Galaev IYu, PlievaFM Savina IN, Jungvid H, Mattiasson B (2003) Polymeric cryogels as promising materials of biotechnological interest. Trends Biotechnol 21:445–451CrossRefPubMed
Zurück zum Zitat Lozinsky VI, Damshkaln LG, Bloch KO, Vardi P, Grinberg NV, Burova TV, Grinberg VY (2008) Cryostructuring of polymer systems. XXIX. Preparation and characterization of supermacroporous (spongy) agarose-based cryogels used as three-dimensional scaffolds for culturing insulin-producing cell aggregates. J Appl Polym Sci 108:3046–3062CrossRef Lozinsky VI, Damshkaln LG, Bloch KO, Vardi P, Grinberg NV, Burova TV, Grinberg VY (2008) Cryostructuring of polymer systems. XXIX. Preparation and characterization of supermacroporous (spongy) agarose-based cryogels used as three-dimensional scaffolds for culturing insulin-producing cell aggregates. J Appl Polym Sci 108:3046–3062CrossRef
Zurück zum Zitat Lu X, Arduini-Schuster MC, Kuhn J, Njilsson O, Fricke J, Pekala RW (1992) Thermal conductivity of monolithic organic aerogels. Science 255:971–972CrossRefPubMed Lu X, Arduini-Schuster MC, Kuhn J, Njilsson O, Fricke J, Pekala RW (1992) Thermal conductivity of monolithic organic aerogels. Science 255:971–972CrossRefPubMed
Zurück zum Zitat Lu A, Liu Y, Zhang L, Potthast A (2011) Investigation on metastable solution of cellulose dissolved in NaOH/urea aqueous system at low temperature. J Phys Chem B 115:12801–12808CrossRefPubMed Lu A, Liu Y, Zhang L, Potthast A (2011) Investigation on metastable solution of cellulose dissolved in NaOH/urea aqueous system at low temperature. J Phys Chem B 115:12801–12808CrossRefPubMed
Zurück zum Zitat Luo X, Zhang L (2010) Creation of regenerated cellulose microspheres with diameter ranging from micron to millimeter for chromatography applications. J Chromatogr A 1217:5922–5929CrossRefPubMed Luo X, Zhang L (2010) Creation of regenerated cellulose microspheres with diameter ranging from micron to millimeter for chromatography applications. J Chromatogr A 1217:5922–5929CrossRefPubMed
Zurück zum Zitat Lv L, Fan Y, Chen Q, Zhao Y, Hu Y, Zhang Z, Chen N, Qu L (2014) Three-dimensional multichannel aerogel of carbon quantum dots for high-performance supercapacitors. Nanotechnology 25:235401CrossRefPubMed Lv L, Fan Y, Chen Q, Zhao Y, Hu Y, Zhang Z, Chen N, Qu L (2014) Three-dimensional multichannel aerogel of carbon quantum dots for high-performance supercapacitors. Nanotechnology 25:235401CrossRefPubMed
Zurück zum Zitat Maatar W, Boufi S (2015) Poly(methacylic acid-co-maleic acid) grafted nanofibrillated cellulose as a reusable novel heavy metal ions adsorbent. Carbohydr Polym 126:199–207CrossRefPubMed Maatar W, Boufi S (2015) Poly(methacylic acid-co-maleic acid) grafted nanofibrillated cellulose as a reusable novel heavy metal ions adsorbent. Carbohydr Polym 126:199–207CrossRefPubMed
Zurück zum Zitat Mäki-Arvelaa P, Anugwoma I, Virtanena P, Sjöholma R, Mikkola JP (2010) Dissolution of lignocellulosic materials and its constituents using ionic liquids—a review. Ind Crops Prod 32:175–201CrossRef Mäki-Arvelaa P, Anugwoma I, Virtanena P, Sjöholma R, Mikkola JP (2010) Dissolution of lignocellulosic materials and its constituents using ionic liquids—a review. Ind Crops Prod 32:175–201CrossRef
Zurück zum Zitat Maleki H (2016) Recent advances in aerogels for environmental remediation applications: a review. Chem Eng J 300:98–118CrossRef Maleki H (2016) Recent advances in aerogels for environmental remediation applications: a review. Chem Eng J 300:98–118CrossRef
Zurück zum Zitat Maleki H, Duraes L, Portugal A (2014) An overview on silica aerogels synthesis and different mechanical reinforcing strategies. J Non Cryst Solids 385:55–74CrossRef Maleki H, Duraes L, Portugal A (2014) An overview on silica aerogels synthesis and different mechanical reinforcing strategies. J Non Cryst Solids 385:55–74CrossRef
Zurück zum Zitat Markevicius G, Ladj R, Niemeyer P, Budtova T, Rigacci A (2017) Ambient-dried thermal superinsulating monolithic silica-based aerogels with short cellulosic fibers. J Mater Sci 52:2210–2221CrossRef Markevicius G, Ladj R, Niemeyer P, Budtova T, Rigacci A (2017) Ambient-dried thermal superinsulating monolithic silica-based aerogels with short cellulosic fibers. J Mater Sci 52:2210–2221CrossRef
Zurück zum Zitat Martins M, Barros AA, Quraishi S, Gurikov P, Raman SP, Smirnova I, Duarte ARC, Reis RL (2015) Preparation of macroporous alginate-based aerogels for biomedical applications. J Supercrit Fluids 106:152–159CrossRef Martins M, Barros AA, Quraishi S, Gurikov P, Raman SP, Smirnova I, Duarte ARC, Reis RL (2015) Preparation of macroporous alginate-based aerogels for biomedical applications. J Supercrit Fluids 106:152–159CrossRef
Zurück zum Zitat Martoïa F, Cochereau T, Dumont PJJ, Orgéas L, Terrien M, Belgacem MN (2016) Cellulose nanofibril foams: links between ice-templating conditions, microstructures and mechanical properties. Mater Des 104:376–391CrossRef Martoïa F, Cochereau T, Dumont PJJ, Orgéas L, Terrien M, Belgacem MN (2016) Cellulose nanofibril foams: links between ice-templating conditions, microstructures and mechanical properties. Mater Des 104:376–391CrossRef
Zurück zum Zitat Meador MAB, Alemn CR, Hanson K, Ramirez N, Vivod SL, Wilmoth N, McCorkle L (2015) Polyimide aerogels with amide cross-links: a low cost alternative for mechanically strong polymer aerogels. ACS Appl Mater Interfaces 7:1240–1249CrossRefPubMed Meador MAB, Alemn CR, Hanson K, Ramirez N, Vivod SL, Wilmoth N, McCorkle L (2015) Polyimide aerogels with amide cross-links: a low cost alternative for mechanically strong polymer aerogels. ACS Appl Mater Interfaces 7:1240–1249CrossRefPubMed
Zurück zum Zitat Meador MAB, Agnello M, McCorkle L, Vivod SL, Wilmoth N (2016) Moisture-resistant polyimide aerogels containing propylene oxide links in the backbone. ACS Appl Mater Interfaces 8:29073–29079CrossRefPubMed Meador MAB, Agnello M, McCorkle L, Vivod SL, Wilmoth N (2016) Moisture-resistant polyimide aerogels containing propylene oxide links in the backbone. ACS Appl Mater Interfaces 8:29073–29079CrossRefPubMed
Zurück zum Zitat Meng Y, Young TM, LiuP ContescuCI, Huang B, Wang S (2015) Ultralight carbon aerogel from nanocellulose as a highly selective oil absorption material. Cellulose 22:435–447CrossRef Meng Y, Young TM, LiuP ContescuCI, Huang B, Wang S (2015) Ultralight carbon aerogel from nanocellulose as a highly selective oil absorption material. Cellulose 22:435–447CrossRef
Zurück zum Zitat Mi Q-Y, Ma S-R, Yu J, He J-S, Zhang J (2016) Flexible and transparent cellulose aerogels with uniform nanoporous structure by a controlled regeneration process. ACS Sustain Chem Eng 4:656–660CrossRef Mi Q-Y, Ma S-R, Yu J, He J-S, Zhang J (2016) Flexible and transparent cellulose aerogels with uniform nanoporous structure by a controlled regeneration process. ACS Sustain Chem Eng 4:656–660CrossRef
Zurück zum Zitat Mohamed SMK, Ganesan K, Milow B, Ratke L (2015) The effect of zinc oxide (ZnO) addition on the physical and morphological properties of cellulose aerogel beads. RSC Adv 5:90193–90201CrossRef Mohamed SMK, Ganesan K, Milow B, Ratke L (2015) The effect of zinc oxide (ZnO) addition on the physical and morphological properties of cellulose aerogel beads. RSC Adv 5:90193–90201CrossRef
Zurück zum Zitat Mulik S, Sotiriou-Leventis C, Leventis N (2007) Time-efficient acid-catalyzed synthesis of resorcinol-formaldehyde aerogels. Chem Mater 19:6138–6144CrossRef Mulik S, Sotiriou-Leventis C, Leventis N (2007) Time-efficient acid-catalyzed synthesis of resorcinol-formaldehyde aerogels. Chem Mater 19:6138–6144CrossRef
Zurück zum Zitat Mulyadi A, Zhang Z, Deng Y (2016) Fluorine-free oil absorbents made from cellulose nanofibril aerogels. ACS Appl Mater Interfaces 8:2732–2740CrossRefPubMed Mulyadi A, Zhang Z, Deng Y (2016) Fluorine-free oil absorbents made from cellulose nanofibril aerogels. ACS Appl Mater Interfaces 8:2732–2740CrossRefPubMed
Zurück zum Zitat Nguyen ST, Feng J, Ng SK, Wong JPW, Tan VBC, Duong HM (2014) Advanced thermal insulation and absorption properties of recycled cellulose aerogels. Colloids Surf A Physicochem Eng Asp 445:128–134CrossRef Nguyen ST, Feng J, Ng SK, Wong JPW, Tan VBC, Duong HM (2014) Advanced thermal insulation and absorption properties of recycled cellulose aerogels. Colloids Surf A Physicochem Eng Asp 445:128–134CrossRef
Zurück zum Zitat Nyström G, Fernández-Ronco MP, Bolisetty S, Mazzotti M, Mezzenga R (2016) Amyloid templated gold aerogels. Adv Mater 28:472–478CrossRefPubMed Nyström G, Fernández-Ronco MP, Bolisetty S, Mazzotti M, Mezzenga R (2016) Amyloid templated gold aerogels. Adv Mater 28:472–478CrossRefPubMed
Zurück zum Zitat O’Connell DW, Birkinshaw C, O’Dwyer TF (2008) Heavy metal adsorbents prepared from the modification of cellulose: a review. Biores Technol 99:6709–6724CrossRef O’Connell DW, Birkinshaw C, O’Dwyer TF (2008) Heavy metal adsorbents prepared from the modification of cellulose: a review. Biores Technol 99:6709–6724CrossRef
Zurück zum Zitat Olsson RT, Samir MASA, Salazar-Alvarez G, Belova L, LA StromV Berglund, Ikkala O, Nogues J, Gedde UW (2010) Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates. Nat Nanotechnol 5:584–588CrossRefPubMed Olsson RT, Samir MASA, Salazar-Alvarez G, Belova L, LA StromV Berglund, Ikkala O, Nogues J, Gedde UW (2010) Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates. Nat Nanotechnol 5:584–588CrossRefPubMed
Zurück zum Zitat Ookuna S, Igarashi K, Hara M, Aso K, Yoshidone H, Nakayama H, Suzuki K, Nakajima K (1993) Porous ion-exchanged fine cellulose particles, method for production thereof, and affinity carrier. USOO5196527A Ookuna S, Igarashi K, Hara M, Aso K, Yoshidone H, Nakayama H, Suzuki K, Nakajima K (1993) Porous ion-exchanged fine cellulose particles, method for production thereof, and affinity carrier. USOO5196527A
Zurück zum Zitat Pekala RW (1989) Organic aerogels from the polycondensation of resorcinol with formaldehyde. J Mater Sci 24:3221–3227CrossRef Pekala RW (1989) Organic aerogels from the polycondensation of resorcinol with formaldehyde. J Mater Sci 24:3221–3227CrossRef
Zurück zum Zitat Pekala RW, Alviso CT, LeMay JD (1990) Organic aerogels: microstructural dependence of mechanical properties in compression. J Non Cryst Solids 125:67–75CrossRef Pekala RW, Alviso CT, LeMay JD (1990) Organic aerogels: microstructural dependence of mechanical properties in compression. J Non Cryst Solids 125:67–75CrossRef
Zurück zum Zitat Pekala RW, Alviso CT, Lu X, Gross J, Fricke J (1995) New organic aerogels based upon a phenolic-furfural reaction. J Non Cryst Solids 188:34–40CrossRef Pekala RW, Alviso CT, Lu X, Gross J, Fricke J (1995) New organic aerogels based upon a phenolic-furfural reaction. J Non Cryst Solids 188:34–40CrossRef
Zurück zum Zitat Pekala RW, Farmer JC, Alviso CT, Tran TD, Mayer CT, Miller JM, Dunn B (1998) Carbon aerogels for electrochemical applications. J Non Cryst Solids 225:74–80CrossRef Pekala RW, Farmer JC, Alviso CT, Tran TD, Mayer CT, Miller JM, Dunn B (1998) Carbon aerogels for electrochemical applications. J Non Cryst Solids 225:74–80CrossRef
Zurück zum Zitat Pierre AC (2011) History of aerogels. In: Aegerter MA et al (eds) Aerogels handbook, advances in sol–gel derived materials and technologies. Springer, New York, pp 813–831 Pierre AC (2011) History of aerogels. In: Aegerter MA et al (eds) Aerogels handbook, advances in sol–gel derived materials and technologies. Springer, New York, pp 813–831
Zurück zum Zitat Pinkert A, Marsh KN, Pang S, Staiger MP (2009) Ionic liquids and their interaction with cellulose. Chem Rev 109:6712–6728CrossRefPubMed Pinkert A, Marsh KN, Pang S, Staiger MP (2009) Ionic liquids and their interaction with cellulose. Chem Rev 109:6712–6728CrossRefPubMed
Zurück zum Zitat Pinnow M, Fink HP, Fanter C, Kunze J (2008) Characterization of highly porous materials from cellulose carbamate. Macromol Symp 262:129–139CrossRef Pinnow M, Fink HP, Fanter C, Kunze J (2008) Characterization of highly porous materials from cellulose carbamate. Macromol Symp 262:129–139CrossRef
Zurück zum Zitat Pircher N, Fischhuber D, Carbajal L, Strau C, Nedelec J-M, Kasper C, Rosenau T, Liebner F (2015) Preparation and reinforcement of dual-porous biocompatible cellulose scaffolds for tissue engineering. Macromol Mater Eng 300:911–924CrossRefPubMedPubMedCentral Pircher N, Fischhuber D, Carbajal L, Strau C, Nedelec J-M, Kasper C, Rosenau T, Liebner F (2015) Preparation and reinforcement of dual-porous biocompatible cellulose scaffolds for tissue engineering. Macromol Mater Eng 300:911–924CrossRefPubMedPubMedCentral
Zurück zum Zitat Pircher N, Carbajal L, Schimper C, Bacher M, Rennhofer H, Nedelec J-M, Lichtenegger HC, Rosenau T, Liebner F (2016) Impact of selected solvent systems on the pore and solid structure of cellulose aerogels. Cellulose 23:1949–1966CrossRefPubMedPubMedCentral Pircher N, Carbajal L, Schimper C, Bacher M, Rennhofer H, Nedelec J-M, Lichtenegger HC, Rosenau T, Liebner F (2016) Impact of selected solvent systems on the pore and solid structure of cellulose aerogels. Cellulose 23:1949–1966CrossRefPubMedPubMedCentral
Zurück zum Zitat Plappert SF, Nedelec J-M, Rennhofer H, Lichtenegger HC, Liebner FW (2017) Strain hardening and pore size harmonization by uniaxial densification: a facile approach toward superinsulating aerogels from nematic nanofibrillated 2,3-dicarboxyl cellulose. Chem Mater 29:6630–6641CrossRef Plappert SF, Nedelec J-M, Rennhofer H, Lichtenegger HC, Liebner FW (2017) Strain hardening and pore size harmonization by uniaxial densification: a facile approach toward superinsulating aerogels from nematic nanofibrillated 2,3-dicarboxyl cellulose. Chem Mater 29:6630–6641CrossRef
Zurück zum Zitat Pour G, Beauger C, Rigacci A, Budtova T (2015) Xerocellulose: lightweight, porous and hydrophobic cellulose prepared via ambient drying. J Mater Sci 50:4526–4535CrossRef Pour G, Beauger C, Rigacci A, Budtova T (2015) Xerocellulose: lightweight, porous and hydrophobic cellulose prepared via ambient drying. J Mater Sci 50:4526–4535CrossRef
Zurück zum Zitat Quignard F, Valentin R, Di Renzo F (2008) Aerogel materials from marine polysaccharides. New J Chem 32:1300–1310CrossRef Quignard F, Valentin R, Di Renzo F (2008) Aerogel materials from marine polysaccharides. New J Chem 32:1300–1310CrossRef
Zurück zum Zitat Quraishi S, Martins M, Barros AA, Gurikov P, Raman SP, Smirnova I, Duarte ARC, Reis RL (2015) Novel non-cytotoxic alginate–lignin hybrid aerogels as scaffolds fortissue engineering. J Supercrit Fluids 105:1–8CrossRef Quraishi S, Martins M, Barros AA, Gurikov P, Raman SP, Smirnova I, Duarte ARC, Reis RL (2015) Novel non-cytotoxic alginate–lignin hybrid aerogels as scaffolds fortissue engineering. J Supercrit Fluids 105:1–8CrossRef
Zurück zum Zitat Raman SP, Gurikov P, Smirnova I (2015) Hybrid alginate based aerogels by carbon dioxide induced gelation: novel technique for multiple applications. J Supercrit Fluids 106:23–33CrossRef Raman SP, Gurikov P, Smirnova I (2015) Hybrid alginate based aerogels by carbon dioxide induced gelation: novel technique for multiple applications. J Supercrit Fluids 106:23–33CrossRef
Zurück zum Zitat Rege A, Schestakow M, Karadagli I, Ratke L, Itskov M (2016) Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. Soft Matter 12:7079–7088CrossRefPubMed Rege A, Schestakow M, Karadagli I, Ratke L, Itskov M (2016) Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. Soft Matter 12:7079–7088CrossRefPubMed
Zurück zum Zitat Rein DM, Cohen Y (2011) Aeropolysaccharides, composites and preparation thereof. EP 2 354 165 A1 Rein DM, Cohen Y (2011) Aeropolysaccharides, composites and preparation thereof. EP 2 354 165 A1
Zurück zum Zitat Robitzer M, Di Renzo F, Quignard F (2011) Natural materials with high surface area. Physisorption methods for the characterization of the texture and surface of polysaccharide aerogels. Microporous Mesoporous Mater 140:9–16CrossRef Robitzer M, Di Renzo F, Quignard F (2011) Natural materials with high surface area. Physisorption methods for the characterization of the texture and surface of polysaccharide aerogels. Microporous Mesoporous Mater 140:9–16CrossRef
Zurück zum Zitat Rooke J, de Matos Passos C, Chatenet M, Sescousse R, Budtova T, Berthon-Fabry S, Mosdale R, Maillard F (2011) Synthesis and properties of platinum nanocatalyst supported on cellulose-based carbon aerogel for applications in PEMFCs. J Electrochem Soc 158:B779–B789CrossRef Rooke J, de Matos Passos C, Chatenet M, Sescousse R, Budtova T, Berthon-Fabry S, Mosdale R, Maillard F (2011) Synthesis and properties of platinum nanocatalyst supported on cellulose-based carbon aerogel for applications in PEMFCs. J Electrochem Soc 158:B779–B789CrossRef
Zurück zum Zitat Rooke J, Sescousse R, Budtova T, Berthon-fabry S, Simon B, Chatenet M (2012) Cellulose-based nanostructured carbons for energy conversion and storage devices. In: Rufford T, Hulicova-Jurcakova D, Zhu J (eds) Green carbon materials: advances and applications. Pan Stanford Publishing Pte Ltd, Singapore, pp 89–111 Rooke J, Sescousse R, Budtova T, Berthon-fabry S, Simon B, Chatenet M (2012) Cellulose-based nanostructured carbons for energy conversion and storage devices. In: Rufford T, Hulicova-Jurcakova D, Zhu J (eds) Green carbon materials: advances and applications. Pan Stanford Publishing Pte Ltd, Singapore, pp 89–111
Zurück zum Zitat Rosenberg P, Suominen I, Rom M, Janicki J, Fardim P (2007) Tailored cellulose beads for novel applications. Cellul Chem Technol 41:243–254 Rosenberg P, Suominen I, Rom M, Janicki J, Fardim P (2007) Tailored cellulose beads for novel applications. Cellul Chem Technol 41:243–254
Zurück zum Zitat Roy C, Budtova T, Navard P (2003) Rheological properties and gelation of aqueous cellulose–NaOH solutions. Biomacromolecules 4:259–264CrossRefPubMed Roy C, Budtova T, Navard P (2003) Rheological properties and gelation of aqueous cellulose–NaOH solutions. Biomacromolecules 4:259–264CrossRefPubMed
Zurück zum Zitat Rudaz C (2013) Cellulose and pectin aerogels: towards their nano-structuration. PhD thesis, MINES ParisTech Rudaz C (2013) Cellulose and pectin aerogels: towards their nano-structuration. PhD thesis, MINES ParisTech
Zurück zum Zitat Rudaz C, Courson R, Bonnet L, Calas-Etienne S, Sallée H, Budtova T (2014) Aeropectin: fully biomass-based mechanically strong and thermal superinsulating aerogel. Biomacromolecules 15:2188–2195CrossRefPubMed Rudaz C, Courson R, Bonnet L, Calas-Etienne S, Sallée H, Budtova T (2014) Aeropectin: fully biomass-based mechanically strong and thermal superinsulating aerogel. Biomacromolecules 15:2188–2195CrossRefPubMed
Zurück zum Zitat Sai H, Fu R, Xing L, Xiang J, Li Z, Li F, Zhang T (2015) Surface modification of bacterial cellulose aerogels’ web-like skeleton for oil/water separation. ACS Appl Mater Interfaces 7:7373–7381CrossRefPubMed Sai H, Fu R, Xing L, Xiang J, Li Z, Li F, Zhang T (2015) Surface modification of bacterial cellulose aerogels’ web-like skeleton for oil/water separation. ACS Appl Mater Interfaces 7:7373–7381CrossRefPubMed
Zurück zum Zitat Schestakow M, Karadagli I, Ratke L (2016a) Cellulose aerogels prepared from an aqueous zinc chloride salt hydrate melt. Carbohydr Polym 137:642–649CrossRefPubMed Schestakow M, Karadagli I, Ratke L (2016a) Cellulose aerogels prepared from an aqueous zinc chloride salt hydrate melt. Carbohydr Polym 137:642–649CrossRefPubMed
Zurück zum Zitat Schestakow M, Muench F, Reimuth C, Ratke L, Ensinger W (2016b) Electroless synthesis of cellulose–metal aerogel composites. Appl Phys Lett 108:213108CrossRef Schestakow M, Muench F, Reimuth C, Ratke L, Ensinger W (2016b) Electroless synthesis of cellulose–metal aerogel composites. Appl Phys Lett 108:213108CrossRef
Zurück zum Zitat Seantier B, Bendahou D, Bendahou A, Grohens Y, Kaddami H (2016) Multi-scale cellulose based new bio-aerogel composites with thermalsuper-insulating and tunable mechanical properties. Carbohydr Polym 138:335–348CrossRefPubMed Seantier B, Bendahou D, Bendahou A, Grohens Y, Kaddami H (2016) Multi-scale cellulose based new bio-aerogel composites with thermalsuper-insulating and tunable mechanical properties. Carbohydr Polym 138:335–348CrossRefPubMed
Zurück zum Zitat Sehaqui H, Zhou Q, Ikkala O, Berglund LA (2011) Strong and tough cellulose nanopaper with high specific surface area and porosity. Biomacromolecules 12:3638–3644CrossRefPubMed Sehaqui H, Zhou Q, Ikkala O, Berglund LA (2011) Strong and tough cellulose nanopaper with high specific surface area and porosity. Biomacromolecules 12:3638–3644CrossRefPubMed
Zurück zum Zitat Sehaqui H, Zimmermann T, Tingaut P (2014) Hydrophobic cellulose nanopaper through a mild esterification procedure. Cellulose 21:367–382CrossRef Sehaqui H, Zimmermann T, Tingaut P (2014) Hydrophobic cellulose nanopaper through a mild esterification procedure. Cellulose 21:367–382CrossRef
Zurück zum Zitat Sescousse R (2010) Nouveaux matériaux cellulosiques ultra-poreux et leurs carbones à partir de solvants verts. PhD thesis, Mines ParisTech, France Sescousse R (2010) Nouveaux matériaux cellulosiques ultra-poreux et leurs carbones à partir de solvants verts. PhD thesis, Mines ParisTech, France
Zurück zum Zitat Sescousse R, Budtova T (2009) Influence of processing parameters on regeneration kinetics and morphology of porous cellulose from cellulose–NaOH–water solutions. Cellulose 16:417–426CrossRef Sescousse R, Budtova T (2009) Influence of processing parameters on regeneration kinetics and morphology of porous cellulose from cellulose–NaOH–water solutions. Cellulose 16:417–426CrossRef
Zurück zum Zitat Sescousse R, Smacchia A, Budtova T (2010) Influence of lignin on cellulose-NaOH-water mixtures properties and on Aerocellulose morphology. Cellulose 17:1137–1146CrossRef Sescousse R, Smacchia A, Budtova T (2010) Influence of lignin on cellulose-NaOH-water mixtures properties and on Aerocellulose morphology. Cellulose 17:1137–1146CrossRef
Zurück zum Zitat Sescousse R, Gavillon R, Budtova T (2011a) Aerocellulose from cellulose–ionic liquid solutions: preparation, properties and comparison with cellulose–NaOH and cellulose–NMMO routes. Carbohydr Polym 83:1766–1774CrossRef Sescousse R, Gavillon R, Budtova T (2011a) Aerocellulose from cellulose–ionic liquid solutions: preparation, properties and comparison with cellulose–NaOH and cellulose–NMMO routes. Carbohydr Polym 83:1766–1774CrossRef
Zurück zum Zitat Sescousse R, Gavillon R, Budtova T (2011b) Wet and dry highly porous cellulose beads from cellulose–NaOH–water solutions: influence of the preparation conditions on beads shape and encapsulation of inorganic particles. J Mater Sci 46:759–765CrossRef Sescousse R, Gavillon R, Budtova T (2011b) Wet and dry highly porous cellulose beads from cellulose–NaOH–water solutions: influence of the preparation conditions on beads shape and encapsulation of inorganic particles. J Mater Sci 46:759–765CrossRef
Zurück zum Zitat Shen J, Guan DY (2011) Preparation and application of carbon aerogels. In: Aegerter MA et al (eds) Aerogels handbook, advances in sol–gel derived materials and technologies. Springer, New York, pp 813–831 Shen J, Guan DY (2011) Preparation and application of carbon aerogels. In: Aegerter MA et al (eds) Aerogels handbook, advances in sol–gel derived materials and technologies. Springer, New York, pp 813–831
Zurück zum Zitat Shi J, Lu L, Guo W, Sun Y, Cao Y (2013a) An environment-friendly thermal insulation material from cellulose and plasma modification. J Appl Polym Sci 130:3652–3658CrossRef Shi J, Lu L, Guo W, Sun Y, Cao Y (2013a) An environment-friendly thermal insulation material from cellulose and plasma modification. J Appl Polym Sci 130:3652–3658CrossRef
Zurück zum Zitat Shi J, Lu L, Guo W, Zhang J, Cao Y (2013b) Heat insulation performance, mechanics and hydrophobic modification of cellulose–SiO2 composite aerogels. Carbohydr Polym 98:282–289CrossRefPubMed Shi J, Lu L, Guo W, Zhang J, Cao Y (2013b) Heat insulation performance, mechanics and hydrophobic modification of cellulose–SiO2 composite aerogels. Carbohydr Polym 98:282–289CrossRefPubMed
Zurück zum Zitat Shi Z, Huang J, Liu C, Ding B, Kuga S, Cai J, Zhang L (2015) Three-dimensional nanoporous cellulose gels as a flexible reinforcement matrix for polymer nanocomposites. ACS Appl Mater Interfaces 7:22990–22998CrossRefPubMed Shi Z, Huang J, Liu C, Ding B, Kuga S, Cai J, Zhang L (2015) Three-dimensional nanoporous cellulose gels as a flexible reinforcement matrix for polymer nanocomposites. ACS Appl Mater Interfaces 7:22990–22998CrossRefPubMed
Zurück zum Zitat Sorensen L, Strouse GF, Stiegman AE (2006) Fabrication of stable low-density silica aerogels containing luminescent ZnS capped CdSe quantum dots. Adv Mater 18:1965–1967CrossRef Sorensen L, Strouse GF, Stiegman AE (2006) Fabrication of stable low-density silica aerogels containing luminescent ZnS capped CdSe quantum dots. Adv Mater 18:1965–1967CrossRef
Zurück zum Zitat Svensson A, Larsson PT, Salazar-Alvarez G, Wågberg L (2013) Preparation of dry ultra-porous cellulosic fibres: characterization and possible initial uses. Carbohydr Polym 92:775–783CrossRefPubMed Svensson A, Larsson PT, Salazar-Alvarez G, Wågberg L (2013) Preparation of dry ultra-porous cellulosic fibres: characterization and possible initial uses. Carbohydr Polym 92:775–783CrossRefPubMed
Zurück zum Zitat Tan C, Fung B, Newman JK, Vu C (2001) Organic aerogels with very high impact strength. Adv Mater 13:644–646CrossRef Tan C, Fung B, Newman JK, Vu C (2001) Organic aerogels with very high impact strength. Adv Mater 13:644–646CrossRef
Zurück zum Zitat Teichner SJ (1986) Aerogels of inorganic oxides. In: Frick J (ed) Aerogels, Springer proceedings in physics 6, proceedings of the first international symposium, Worzburg, Fed. Republic of Germany, September 23–25. 1985 Springer, Heidelberg, pp 22–30 Teichner SJ (1986) Aerogels of inorganic oxides. In: Frick J (ed) Aerogels, Springer proceedings in physics 6, proceedings of the first international symposium, Worzburg, Fed. Republic of Germany, September 23–25. 1985 Springer, Heidelberg, pp 22–30
Zurück zum Zitat Tejado A, Chen WC, Alam MN, van de Ven TGM (2014) Superhydrophobic foam-like cellulose made of hydrophobized cellulose fibres. Cellulose 21:1735–1743 Tejado A, Chen WC, Alam MN, van de Ven TGM (2014) Superhydrophobic foam-like cellulose made of hydrophobized cellulose fibres. Cellulose 21:1735–1743
Zurück zum Zitat Trygg J, Fardim P, Gericke M, Mäkilä E, Salonen J (2013) Physicochemical design of the morphology and ultrastructure of cellulose beads. Carbohydr Polym 93:291–299CrossRefPubMed Trygg J, Fardim P, Gericke M, Mäkilä E, Salonen J (2013) Physicochemical design of the morphology and ultrastructure of cellulose beads. Carbohydr Polym 93:291–299CrossRefPubMed
Zurück zum Zitat Trygg J, Yildir E, Kolakovic R, Sandler N, Fardim P (2014) Anionic cellulose beads for drug encapsulation and release. Cellulose 21:1945–1955CrossRef Trygg J, Yildir E, Kolakovic R, Sandler N, Fardim P (2014) Anionic cellulose beads for drug encapsulation and release. Cellulose 21:1945–1955CrossRef
Zurück zum Zitat Tsioptsias C, Stefopoulos A, Kokkinomalis I, Papadopoulou L, Panayiotou C (2008) Development of micro- and nano-porous composite materials by processing cellulose with ionic liquids and supercritical CO2. Green Chem 10:965–971CrossRef Tsioptsias C, Stefopoulos A, Kokkinomalis I, Papadopoulou L, Panayiotou C (2008) Development of micro- and nano-porous composite materials by processing cellulose with ionic liquids and supercritical CO2. Green Chem 10:965–971CrossRef
Zurück zum Zitat Veronovski A, Tkalec G, Knez Z, Novak Z (2014) Characterisation of biodegradable pectin aerogels and their potential use as drug carriers. Carbohydr Polym 113:272–278CrossRefPubMed Veronovski A, Tkalec G, Knez Z, Novak Z (2014) Characterisation of biodegradable pectin aerogels and their potential use as drug carriers. Carbohydr Polym 113:272–278CrossRefPubMed
Zurück zum Zitat Voon LK, Pang SC, Chin SF (2016) Highly porous cellulose beads of controllable sizes derived from regenerated cellulose of printed paper wastes. Mater Lett 164:264–266CrossRef Voon LK, Pang SC, Chin SF (2016) Highly porous cellulose beads of controllable sizes derived from regenerated cellulose of printed paper wastes. Mater Lett 164:264–266CrossRef
Zurück zum Zitat Voon LK, Pang SC, Chin SF (2017) Porous cellulose beads fabricated from regenerated cellulose as potential drug delivery carriers. J Chem 2017:1–11CrossRef Voon LK, Pang SC, Chin SF (2017) Porous cellulose beads fabricated from regenerated cellulose as potential drug delivery carriers. J Chem 2017:1–11CrossRef
Zurück zum Zitat Wan Ngah WS, Teong LC, Hanafiah MAKM (2011) Adsorption of dyes and heavy metal ions by chitosan composites: a review. Carbohydr Polym 83:1446–1456CrossRef Wan Ngah WS, Teong LC, Hanafiah MAKM (2011) Adsorption of dyes and heavy metal ions by chitosan composites: a review. Carbohydr Polym 83:1446–1456CrossRef
Zurück zum Zitat Wang Z, Liu S, Matsumoto Y, Kuga S (2012) Cellulose gel and aerogel from LiCl/DMSO solution. Cellulose 19:393–399CrossRef Wang Z, Liu S, Matsumoto Y, Kuga S (2012) Cellulose gel and aerogel from LiCl/DMSO solution. Cellulose 19:393–399CrossRef
Zurück zum Zitat Wang H, Shao Z, Bacher M, Liebner F, Rosenau T (2013a) Fluorescent cellulose aerogels containing covalently immobilized (ZnS)x(CuInS2)12x/ZnS (core/shell) quantum dots. Cellulose 20:3007–3024CrossRefPubMedPubMedCentral Wang H, Shao Z, Bacher M, Liebner F, Rosenau T (2013a) Fluorescent cellulose aerogels containing covalently immobilized (ZnS)x(CuInS2)12x/ZnS (core/shell) quantum dots. Cellulose 20:3007–3024CrossRefPubMedPubMedCentral
Zurück zum Zitat Wang R, Li G, Dong Y, Chi Y, Chen G (2013b) Carbon quantum dot-functionalized aerogels for NO2 gas sensing. Anal Chem 85:8065–8069CrossRefPubMed Wang R, Li G, Dong Y, Chi Y, Chen G (2013b) Carbon quantum dot-functionalized aerogels for NO2 gas sensing. Anal Chem 85:8065–8069CrossRefPubMed
Zurück zum Zitat Wang H, Gong Y, Wang Y (2014a) Cellulose-based hydrophobic carbon aerogels as versatile and superior adsorbents for sewage treatment. RSC Adv 4:45753–45759CrossRef Wang H, Gong Y, Wang Y (2014a) Cellulose-based hydrophobic carbon aerogels as versatile and superior adsorbents for sewage treatment. RSC Adv 4:45753–45759CrossRef
Zurück zum Zitat Wang L, Schutz C, Salazar-Alvarez G, Titirici M-M (2014b) Carbon aerogels from bacterial nanocellulose as anodes for lithium ion batteries. RSC Adv 4:17549–17554CrossRef Wang L, Schutz C, Salazar-Alvarez G, Titirici M-M (2014b) Carbon aerogels from bacterial nanocellulose as anodes for lithium ion batteries. RSC Adv 4:17549–17554CrossRef
Zurück zum Zitat Weigold L, Reichenauer G (2014) Correlation between mechanical stiffness and thermal transport along the solid framework of a uniaxially compressed polyurea aerogel. J Non Cryst Solids 406:73–78CrossRef Weigold L, Reichenauer G (2014) Correlation between mechanical stiffness and thermal transport along the solid framework of a uniaxially compressed polyurea aerogel. J Non Cryst Solids 406:73–78CrossRef
Zurück zum Zitat White RJ, Budarin V, Luque R, Clark JH, Macquarrie DJ (2009) Tuneable porous carbonaceous materials from renewable resources. Chem Soc Rev 38:3401–3418CrossRefPubMed White RJ, Budarin V, Luque R, Clark JH, Macquarrie DJ (2009) Tuneable porous carbonaceous materials from renewable resources. Chem Soc Rev 38:3401–3418CrossRefPubMed
Zurück zum Zitat White RJ, Antonio C, Budarin VL, Bergstrom E, Thomas-Oates J, Clark JH (2010a) Polysaccharide-derived carbons for polar analyte separations. Adv Funct Mater 20:1834–1841CrossRef White RJ, Antonio C, Budarin VL, Bergstrom E, Thomas-Oates J, Clark JH (2010a) Polysaccharide-derived carbons for polar analyte separations. Adv Funct Mater 20:1834–1841CrossRef
Zurück zum Zitat White RJ, Budarin VL, Clark JH (2010b) Pectin-derived porous materials. Chem Eur J 16:1326–1335CrossRefPubMed White RJ, Budarin VL, Clark JH (2010b) Pectin-derived porous materials. Chem Eur J 16:1326–1335CrossRefPubMed
Zurück zum Zitat Wong JCH, Kaymak H, Brunner S, Koebel MM (2014) Mechanical properties of monolithic silica aerogels made from polyethoxydisiloxanes. Microporous Mesoporous Mater 183:23–29CrossRef Wong JCH, Kaymak H, Brunner S, Koebel MM (2014) Mechanical properties of monolithic silica aerogels made from polyethoxydisiloxanes. Microporous Mesoporous Mater 183:23–29CrossRef
Zurück zum Zitat Wu Z-S, Yang S, Sun Y, Parvez K, Feng X, Müllen K (2012) 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. J Am Chem Soc 134:9082–9085CrossRefPubMed Wu Z-S, Yang S, Sun Y, Parvez K, Feng X, Müllen K (2012) 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. J Am Chem Soc 134:9082–9085CrossRefPubMed
Zurück zum Zitat Wu Z-Y, Li C, Liang H-W, Chen J-F, Yu S-H (2013) Ultralight, flexible, and fire-resistant carbon nanofiber aerogels from bacterial cellulose. Angew Chem 125:2997–3001CrossRef Wu Z-Y, Li C, Liang H-W, Chen J-F, Yu S-H (2013) Ultralight, flexible, and fire-resistant carbon nanofiber aerogels from bacterial cellulose. Angew Chem 125:2997–3001CrossRef
Zurück zum Zitat Yang X, Fei B, Ma J, Liu X, Yang S, Tian G, Jiang Z (2018) Porous nanoplatelets wrapped carbon aerogels by pyrolysis of regenerated bamboo cellulose aerogels as supercapacitor electrodes. Carbohydr Polym 180:385–392CrossRefPubMed Yang X, Fei B, Ma J, Liu X, Yang S, Tian G, Jiang Z (2018) Porous nanoplatelets wrapped carbon aerogels by pyrolysis of regenerated bamboo cellulose aerogels as supercapacitor electrodes. Carbohydr Polym 180:385–392CrossRefPubMed
Zurück zum Zitat Zhang Z, Sèbe G, Rentsch D, Zimmermann T, Tingaut P (2014) Ultralightweight and Flexible silylated nanocellulose sponges for the selective removal of oil from water. Chem Mater 26:2659–2668CrossRef Zhang Z, Sèbe G, Rentsch D, Zimmermann T, Tingaut P (2014) Ultralightweight and Flexible silylated nanocellulose sponges for the selective removal of oil from water. Chem Mater 26:2659–2668CrossRef
Zurück zum Zitat Zhang H, Li Y, Xu Y, Lu Z, Chen L, Huang L, Fan M (2016) Versatile fabrication of a superhydrophobic and ultralight cellulose-based aerogel for oil spillage clean-up. Phys Chem Chem Phys 18:28297–28306CrossRefPubMed Zhang H, Li Y, Xu Y, Lu Z, Chen L, Huang L, Fan M (2016) Versatile fabrication of a superhydrophobic and ultralight cellulose-based aerogel for oil spillage clean-up. Phys Chem Chem Phys 18:28297–28306CrossRefPubMed
Zurück zum Zitat Zhang M, Dou M, Wang M, Yu Y (2017) Study on the solubility parameter of supercritical carbon dioxide system by molecular dynamics simulation. J Mol Liq 248:322–329CrossRef Zhang M, Dou M, Wang M, Yu Y (2017) Study on the solubility parameter of supercritical carbon dioxide system by molecular dynamics simulation. J Mol Liq 248:322–329CrossRef
Zurück zum Zitat Zhang DY, Zhang N, Song P, Hao JY, Wan Y, Yao XH, Chen T, Li L (2018) Functionalized cellulose beads with three dimensional porous structure for rapid adsorption of active constituents from Pyrola incarnate. Carbohydr Polym 181:560–569CrossRefPubMed Zhang DY, Zhang N, Song P, Hao JY, Wan Y, Yao XH, Chen T, Li L (2018) Functionalized cellulose beads with three dimensional porous structure for rapid adsorption of active constituents from Pyrola incarnate. Carbohydr Polym 181:560–569CrossRefPubMed
Zurück zum Zitat Zhou S, Chen G, Feng X, Wang M, Song T, Liu D, Lu F, Qi H (2018) In situ MnOx/N-doped carbon aerogels from cellulose as monolithic and highly efficient catalysts for the upgrading of bioderived aldehydes. Green Chem 20:3593–3603CrossRef Zhou S, Chen G, Feng X, Wang M, Song T, Liu D, Lu F, Qi H (2018) In situ MnOx/N-doped carbon aerogels from cellulose as monolithic and highly efficient catalysts for the upgrading of bioderived aldehydes. Green Chem 20:3593–3603CrossRef
Zurück zum Zitat Zhuo H, Hu Y, Tong X, Zhong L, Peng W, Sun R (2016) Sustainable hierarchical porous carbon aerogel from cellulose forhigh-performance supercapacitor and CO2 capture. Ind Crops Prod 87:229–235CrossRef Zhuo H, Hu Y, Tong X, Zhong L, Peng W, Sun R (2016) Sustainable hierarchical porous carbon aerogel from cellulose forhigh-performance supercapacitor and CO2 capture. Ind Crops Prod 87:229–235CrossRef
Zurück zum Zitat Zu G, Shen J, Zou L, Wang F, Wang X, Zhang Y, Yao X (2016) Nanocellulose-derived highly porous carbon aerogels for supercapacitors. Carbon 99:203–211CrossRef Zu G, Shen J, Zou L, Wang F, Wang X, Zhang Y, Yao X (2016) Nanocellulose-derived highly porous carbon aerogels for supercapacitors. Carbon 99:203–211CrossRef
Metadaten
Titel
Cellulose II aerogels: a review
verfasst von
Tatiana Budtova
Publikationsdatum
03.01.2019
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 1/2019
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-018-2189-1

Weitere Artikel der Ausgabe 1/2019

Cellulose 1/2019 Zur Ausgabe