Skip to main content
Erschienen in: Telecommunication Systems 4/2017

20.01.2017

Centralized dynamic frequency allocation for cell-edge demand satisfaction in fractional frequency reuse networks

verfasst von: Maryum Hina, Sarmad Sohaib

Erschienen in: Telecommunication Systems | Ausgabe 4/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Fractional frequency reuse (FFR) has emerged as a well-suited remedy for inter-cell interference reduction in the next-generation networks by allocating frequency reuse factor (FRF) of unity for the cell-center (CC) and higher FRF for the cell-edge (CE) users. However, this strict FFR comes at a cost of equal partitioning of frequency resources to the CE which most likely has varying demands in current networks. In order to mitigate this, we propose a centralized dynamic resource allocation scheme which allocates demand-dependent resources to CE users. The proposed scheme therefore outperforms the fixed allocation scheme of strict FFR for both CC and CE users. Complexity analysis provides a fair means of analyzing the suitability of proposed algorithm. We have also compared the proposed methodology with a reference dynamic fractional frequency reuse (DFFR) scheme. Results show maximum performance gain of up to 30% for 3 reference cells employing Rayleigh fading—through normalized area spectral efficiency (ASE) analysis for both fixed allocation and DFFR. Spectral efficiency analysis also indicates per-cell performance gain for both CC and CE users. Further, detailed three-dimensional ASE plots give insights into the affects to other cells. Due to dynamic nature of traffic loads, the proposed scheme is a candidate solution for satisfying the demands of individual cells.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Boudreau, G., Panicker, J., Guo, N., Chang, R., Wang, N., & Vrzic, S. (2009). Interference coordination and cancellation for 4 G networks. IEEE Communications Magazine, 47(4), 74–81.CrossRef Boudreau, G., Panicker, J., Guo, N., Chang, R., Wang, N., & Vrzic, S. (2009). Interference coordination and cancellation for 4 G networks. IEEE Communications Magazine, 47(4), 74–81.CrossRef
2.
Zurück zum Zitat Hamza, A. S., Khalifa, S. S., Hamza, H. S., & Elsayed, K. (2013). A survey on inter-cell interference coordination techniques in OFDMA-based cellular networks. IEEE Communications Surveys & Tutorials, 15(4), 1642–1670.CrossRef Hamza, A. S., Khalifa, S. S., Hamza, H. S., & Elsayed, K. (2013). A survey on inter-cell interference coordination techniques in OFDMA-based cellular networks. IEEE Communications Surveys & Tutorials, 15(4), 1642–1670.CrossRef
3.
Zurück zum Zitat Saquib, N., Hossain, E., & Kim, D. I. (2013). Fractional frequency reuse for interference management in LTE-advanced HetNets. IEEE Wireless Communications, 20(2), 113–122.CrossRef Saquib, N., Hossain, E., & Kim, D. I. (2013). Fractional frequency reuse for interference management in LTE-advanced HetNets. IEEE Wireless Communications, 20(2), 113–122.CrossRef
4.
Zurück zum Zitat Mahmud, A., Lin, Z., & Hamdi, K. A. (2014). On the energy efficiency of fractional frequency reuse techniques. In IEEE wireless communications and networking conference (pp. 2348–2353). Mahmud, A., Lin, Z., & Hamdi, K. A. (2014). On the energy efficiency of fractional frequency reuse techniques. In IEEE wireless communications and networking conference (pp. 2348–2353).
5.
Zurück zum Zitat Hamdi, K. A., & Mahmud, A. (2014). A unified framework for the analysis of fractional frequency reuse techniques. IEEE Transactions on Communications, 62(10), 3692–3705.CrossRef Hamdi, K. A., & Mahmud, A. (2014). A unified framework for the analysis of fractional frequency reuse techniques. IEEE Transactions on Communications, 62(10), 3692–3705.CrossRef
6.
Zurück zum Zitat Novlan, T., Andrews, J. G., Sohn, I., Ganti, R. K., & Ghosh, A. (2010). Comparison of fractional frequency reuse approaches in the OFDMA cellular downlink. In IEEE global telecommunications conference (pp. 1–5). Novlan, T., Andrews, J. G., Sohn, I., Ganti, R. K., & Ghosh, A. (2010). Comparison of fractional frequency reuse approaches in the OFDMA cellular downlink. In IEEE global telecommunications conference (pp. 1–5).
7.
Zurück zum Zitat Xu, Z., Li, G. Y., Yang, C., & Zhu, X. (2012). Throughput and optimal threshold for FFR schemes in OFDMA cellular networks. IEEE Transactions on Wireless Communications, 11(8), 2776–2785. Xu, Z., Li, G. Y., Yang, C., & Zhu, X. (2012). Throughput and optimal threshold for FFR schemes in OFDMA cellular networks. IEEE Transactions on Wireless Communications, 11(8), 2776–2785.
8.
Zurück zum Zitat Tabassum, H., Dawy, Z., Alouini, M.-S., & Yilmaz, F. (2014). A generic interference model for uplink OFDMA networks with fractional frequency reuse. IEEE Transactions on Vehicular Technology, 63(3), 1491–1497.CrossRef Tabassum, H., Dawy, Z., Alouini, M.-S., & Yilmaz, F. (2014). A generic interference model for uplink OFDMA networks with fractional frequency reuse. IEEE Transactions on Vehicular Technology, 63(3), 1491–1497.CrossRef
9.
Zurück zum Zitat Novlan, T. D., Ganti, R. K., Ghosh, A., & Andrews, J. G. (2011). Analytical evaluation of fractional frequency reuse for OFDMA cellular networks. IEEE Transactions on Wireless Communications, 10(12), 4294–4305.CrossRef Novlan, T. D., Ganti, R. K., Ghosh, A., & Andrews, J. G. (2011). Analytical evaluation of fractional frequency reuse for OFDMA cellular networks. IEEE Transactions on Wireless Communications, 10(12), 4294–4305.CrossRef
10.
Zurück zum Zitat Chang, H.-B., & Rubin, I. (2016). Optimal downlink and uplink fractional frequency reuse in cellular wireless networks. IEEE Transactions on Vehicular Technology, 65(4), 2295–2308.CrossRef Chang, H.-B., & Rubin, I. (2016). Optimal downlink and uplink fractional frequency reuse in cellular wireless networks. IEEE Transactions on Vehicular Technology, 65(4), 2295–2308.CrossRef
11.
Zurück zum Zitat Sagkriotis, S. E., & Panagopoulos, A. D. (2016). Optimal FFR policies: maximization of traffic capacity and minimization of base station’s power consumption. IEEE Communications Letters, 5(1), 40–43.CrossRef Sagkriotis, S. E., & Panagopoulos, A. D. (2016). Optimal FFR policies: maximization of traffic capacity and minimization of base station’s power consumption. IEEE Communications Letters, 5(1), 40–43.CrossRef
12.
Zurück zum Zitat Liu, L., Peng, T., Zhu, P., Qi, Z., & Wang, W. (2016). Analytical evaluation of throughput and coverage for FFR in OFDMA cellular network. In IEEE vehicular technology conference (pp. 1–5). Liu, L., Peng, T., Zhu, P., Qi, Z., & Wang, W. (2016). Analytical evaluation of throughput and coverage for FFR in OFDMA cellular network. In IEEE vehicular technology conference (pp. 1–5).
13.
Zurück zum Zitat Lan, Y., Benjebbour, A., Li, A., & Harada, A. (2014). Efficient and dynamic fractional frequency reuse for downlink non-orthogonal multiple access. In IEEE vehicular technology conference (pp. 1–5). Lan, Y., Benjebbour, A., Li, A., & Harada, A. (2014). Efficient and dynamic fractional frequency reuse for downlink non-orthogonal multiple access. In IEEE vehicular technology conference (pp. 1–5).
14.
Zurück zum Zitat Hamouda, S., Yeh, C., Kim, J., Wooram, S., & Kwon, D. S. (2009). Dynamic hard fractional frequency reuse for mobile WiMAX. In IEEE international conference on pervasive computing and communications (pp. 1–6). Hamouda, S., Yeh, C., Kim, J., Wooram, S., & Kwon, D. S. (2009). Dynamic hard fractional frequency reuse for mobile WiMAX. In IEEE international conference on pervasive computing and communications (pp. 1–6).
15.
Zurück zum Zitat Ali, S. H., & Leung, V. C. (2009). Dynamic frequency allocation in fractional frequency reused OFDMA networks. IEEE Transactions on Wireless Communications, 8(8), 4286–4295.CrossRef Ali, S. H., & Leung, V. C. (2009). Dynamic frequency allocation in fractional frequency reused OFDMA networks. IEEE Transactions on Wireless Communications, 8(8), 4286–4295.CrossRef
16.
Zurück zum Zitat Assaad, M. (2008). Optimal fractional frequency reuse (FFR) in multicellular OFDMA system. In IEEE vehicular technology conference (pp. 1–5). Assaad, M. (2008). Optimal fractional frequency reuse (FFR) in multicellular OFDMA system. In IEEE vehicular technology conference (pp. 1–5).
17.
Zurück zum Zitat Bilios, D., Bouras, C., Kokkinos, V., Papazois, A., & Tseliou, G. (2012). Optimization of fractional frequency reuse in long term evolution networks, In IEEE wireless communications and networking conference (pp. 1853–1857). Bilios, D., Bouras, C., Kokkinos, V., Papazois, A., & Tseliou, G. (2012). Optimization of fractional frequency reuse in long term evolution networks, In IEEE wireless communications and networking conference (pp. 1853–1857).
18.
Zurück zum Zitat Boddu, S. R., Mukhopadhyay, A., Philip, B. V. & Das, S. S. (2013). Bandwidth partitioning and SINR threshold design analysis of fractional frequency reuse, In IEEE national conference on communications (pp. 1–5). Boddu, S. R., Mukhopadhyay, A., Philip, B. V. & Das, S. S. (2013). Bandwidth partitioning and SINR threshold design analysis of fractional frequency reuse, In IEEE national conference on communications (pp. 1–5).
19.
Zurück zum Zitat Mei, H., Bigham, J., Jiang, P., & Bodanese, E. (2013). Distributed dynamic frequency allocation in fractional frequency reused relay based cellular networks. IEEE Transactions on Communications, 61(4), 1327–1336.CrossRef Mei, H., Bigham, J., Jiang, P., & Bodanese, E. (2013). Distributed dynamic frequency allocation in fractional frequency reused relay based cellular networks. IEEE Transactions on Communications, 61(4), 1327–1336.CrossRef
20.
Zurück zum Zitat Zhuang, H., Shmelkin, D., Luo, Z., Pikhletsky, M., & Khafizov, F. (2013). Dynamic spectrum management for intercell interference coordination in LTE networks based on traffic patterns. IEEE Transactions on Vehicular Technology, 62(5), 1924–1934.CrossRef Zhuang, H., Shmelkin, D., Luo, Z., Pikhletsky, M., & Khafizov, F. (2013). Dynamic spectrum management for intercell interference coordination in LTE networks based on traffic patterns. IEEE Transactions on Vehicular Technology, 62(5), 1924–1934.CrossRef
21.
Zurück zum Zitat Dinc E., & Koca, M. (2013). On dynamic fractional frequency reuse for OFDMA cellular networks. In IEEE international symposium on personal, indoor and mobile radio communications (pp. 2388–2392). Dinc E., &  Koca, M. (2013). On dynamic fractional frequency reuse for OFDMA cellular networks. In IEEE international symposium on personal, indoor and mobile radio communications (pp. 2388–2392).
22.
Zurück zum Zitat Sohaib, S., So, D. K., & Ahmed, J. (2009). Power allocation for efficient cooperative communication. In IEEE international symposium on personal, indoor and mobile radio communications (pp. 647–651). Sohaib, S., So, D. K., &  Ahmed, J. (2009). Power allocation for efficient cooperative communication. In IEEE international symposium on personal, indoor and mobile radio communications (pp. 647–651).
23.
Zurück zum Zitat Yu, Y., Dutkiewicz, E., Huang, X., & Mueck, M. (2013). Downlink resource allocation for next generation wireless networks with inter-cell interference. IEEE Transactions on Wireless Communications, 12(4), 1783–1793.CrossRef Yu, Y., Dutkiewicz, E., Huang, X., & Mueck, M. (2013). Downlink resource allocation for next generation wireless networks with inter-cell interference. IEEE Transactions on Wireless Communications, 12(4), 1783–1793.CrossRef
24.
Zurück zum Zitat Sohaib, S., & So, D. K. (2013). Asynchronous cooperative relaying for vehicle-to-vehicle communications. IEEE Transactions on Communications, 61(5), 1732–1738.CrossRef Sohaib, S., & So, D. K. (2013). Asynchronous cooperative relaying for vehicle-to-vehicle communications. IEEE Transactions on Communications, 61(5), 1732–1738.CrossRef
25.
Zurück zum Zitat Ashraf, M., & Sohaib, S. (2014). Energy-efficient delay tolerant space time codes for asynchronous cooperative communications. Transactions on Emerging Telecommunications Technologies, 25(12), 1231–1237.CrossRef Ashraf, M., & Sohaib, S. (2014). Energy-efficient delay tolerant space time codes for asynchronous cooperative communications. Transactions on Emerging Telecommunications Technologies, 25(12), 1231–1237.CrossRef
26.
Zurück zum Zitat Mohamed, A. S., Abd-Elnaby, M., & El-Dolil, S. (2016). Self-organised dynamic resource allocation scheme using enhanced fractional frequency reuse in LTE-advanced relay-based networks. IET communications. Mohamed, A. S., Abd-Elnaby, M., &  El-Dolil, S. (2016). Self-organised dynamic resource allocation scheme using enhanced fractional frequency reuse in LTE-advanced relay-based networks. IET communications.
27.
Zurück zum Zitat Glenn Aliu, O., Mehta, M., Imran, M . A., Karandhikar, A., & Evans, B. (2014). A new cellular-automata-based fractional frequency reuse scheme. IEEE Transactions on Vehicular Technology, 64(4), 1535–1547. Glenn Aliu, O., Mehta, M., Imran, M . A., Karandhikar, A., & Evans, B. (2014). A new cellular-automata-based fractional frequency reuse scheme. IEEE Transactions on Vehicular Technology, 64(4), 1535–1547.
28.
Zurück zum Zitat Rahman, M., & Yanikomeroglu, H. (2010). Enhancing cell-edge performance: a downlink dynamic interference avoidance scheme with inter-cell coordination. IEEE Transactions on Wireless Communications, 9(4), 1414–1425.CrossRef Rahman, M., & Yanikomeroglu, H. (2010). Enhancing cell-edge performance: a downlink dynamic interference avoidance scheme with inter-cell coordination. IEEE Transactions on Wireless Communications, 9(4), 1414–1425.CrossRef
29.
Zurück zum Zitat Mahmud, A., Hamdi, K. A., & Ramli, N. (2014). Performance of fractional frequency reuse with CoMP at the cell-edge. In IEEE region 10 symposium (pp. 93–98). Mahmud, A., Hamdi, K. A., &  Ramli, N. (2014). Performance of fractional frequency reuse with CoMP at the cell-edge. In IEEE region 10 symposium (pp. 93–98).
30.
Zurück zum Zitat Wang, L.-C., & Yeh, C.-J. (2011). 3-cell network MIMO architectures with sectorization and fractional frequency reuse. IEEE Journal on Selected Areas in Communications, 29(6), 1185–1199.CrossRef Wang, L.-C., & Yeh, C.-J. (2011). 3-cell network MIMO architectures with sectorization and fractional frequency reuse. IEEE Journal on Selected Areas in Communications, 29(6), 1185–1199.CrossRef
31.
Zurück zum Zitat Ullah, R., Fisal, N., Safdar, H., Maqbool, W., Khalid, Z., & Khan, A. (2013). Voronoi cell geometry based dynamic fractional frequency reuse for OFDMA cellular networks. In IEEE international conference on signal and image processing applications (pp. 435–440). Ullah, R., Fisal, N., Safdar, H., Maqbool, W., Khalid, Z., &  Khan, A. (2013). Voronoi cell geometry based dynamic fractional frequency reuse for OFDMA cellular networks. In IEEE international conference on signal and image processing applications (pp. 435–440).
32.
Zurück zum Zitat Yassin, M., Dirani, Y., Ibrahim, M., Lahoud, S., Mezher, D., & Cousin, B. (2015). A novel dynamic inter-cell interference coordination technique for LTE networks. In IEEE international symposium on personal, indoor and mobile radio communications. Yassin, M., Dirani, Y., Ibrahim, M., Lahoud, S., Mezher, D., &  Cousin, B. (2015). A novel dynamic inter-cell interference coordination technique for LTE networks. In IEEE international symposium on personal, indoor and mobile radio communications.
33.
Zurück zum Zitat A Gebremariam, A., Bao, T., Siracusa, D., Rasheed, T., Granelli, F., & Goratti, L. (2016). Dynamic strict fractional frequency reuse for software-defined 5g networks. In IEEE international conference on communications. A Gebremariam, A., Bao, T., Siracusa, D., Rasheed, T., Granelli, F., &  Goratti, L. (2016). Dynamic strict fractional frequency reuse for software-defined 5g networks. In IEEE international conference on communications.
34.
Zurück zum Zitat Andrews, J. G., Baccelli, F., & Ganti, R. K. (2010). A new tractable model for cellular coverage. In Annual Allerton conference on communication, control, and computing (pp. 1204–1211). Andrews, J. G., Baccelli, F., & Ganti, R. K. (2010). A new tractable model for cellular coverage. In Annual Allerton conference on communication, control, and computing (pp. 1204–1211).
35.
Zurück zum Zitat Rappaport, T. S., et al. (1996). Wireless communications: principles and practice. New Jersey: Prentice Hall PTR. Rappaport, T. S., et al. (1996). Wireless communications: principles and practice. New Jersey: Prentice Hall PTR.
36.
Zurück zum Zitat Simon, M. K., & Alouini, M.-S. (2005). Digital communication over fading channels. Hoboken: Wiley. Simon, M. K., & Alouini, M.-S. (2005). Digital communication over fading channels. Hoboken: Wiley.
37.
Zurück zum Zitat Aldosari, M. M., & Hamdi, K. A. (2014). Trade-off between energy and area spectral efficiencies of cell zooming and BSs cooperation. In IEEE international conference on intelligent and advanced systems (pp. 1–6). Aldosari, M. M., & Hamdi, K. A. (2014). Trade-off between energy and area spectral efficiencies of cell zooming and BSs cooperation. In IEEE international conference on intelligent and advanced systems (pp. 1–6).
38.
Zurück zum Zitat Alouini, M.-S., & Goldsmith, A. J. (1999). Area spectral efficiency of cellular mobile radio systems. IEEE Transactions on Vehicular Technology, 48(4), 1047–1066.CrossRef Alouini, M.-S., & Goldsmith, A. J. (1999). Area spectral efficiency of cellular mobile radio systems. IEEE Transactions on Vehicular Technology, 48(4), 1047–1066.CrossRef
39.
Zurück zum Zitat Cover, T. M., & Thomas, J. A. (2012). Elements of information theory. Hoboken: Wiley. Cover, T. M., & Thomas, J. A. (2012). Elements of information theory. Hoboken: Wiley.
40.
Zurück zum Zitat Hamdi, K. A. (2010). A useful lemma for capacity analysis of fading interference channels. IEEE Transactions on Communications, 58(2), 411–416.CrossRef Hamdi, K. A. (2010). A useful lemma for capacity analysis of fading interference channels. IEEE Transactions on Communications, 58(2), 411–416.CrossRef
41.
Zurück zum Zitat Chandhar, P., & Das, S. S. (2014). Area spectral efficiency of co-channel deployed OFDMA femtocell networks. IEEE Transactions on Wireless Communications, 13(7), 3524–3538.CrossRef Chandhar, P., & Das, S. S. (2014). Area spectral efficiency of co-channel deployed OFDMA femtocell networks. IEEE Transactions on Wireless Communications, 13(7), 3524–3538.CrossRef
42.
Zurück zum Zitat Mahmud, A., & Hamdi, K. (2012). Uplink analysis for FFR and SFR in composite fading. In IEEE international symposium on personal, indoor and mobile radio communications (pp. 1285–1289). Mahmud, A., & Hamdi, K. (2012). Uplink analysis for FFR and SFR in composite fading. In IEEE international symposium on personal, indoor and mobile radio communications (pp. 1285–1289).
Metadaten
Titel
Centralized dynamic frequency allocation for cell-edge demand satisfaction in fractional frequency reuse networks
verfasst von
Maryum Hina
Sarmad Sohaib
Publikationsdatum
20.01.2017
Verlag
Springer US
Erschienen in
Telecommunication Systems / Ausgabe 4/2017
Print ISSN: 1018-4864
Elektronische ISSN: 1572-9451
DOI
https://doi.org/10.1007/s11235-016-0266-z

Weitere Artikel der Ausgabe 4/2017

Telecommunication Systems 4/2017 Zur Ausgabe

Neuer Inhalt