Skip to main content
Erschienen in: Biomass Conversion and Biorefinery 3/2021

04.03.2020 | Original Article

Characterization of magnetic nanoparticle–immobilized cellulases for enzymatic saccharification of rice straw

verfasst von: Prabhpreet Kaur, Monica Sachdeva Taggar, Anu Kalia

Erschienen in: Biomass Conversion and Biorefinery | Ausgabe 3/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Cellulases convert lignocellulosic biomass into fermentable sugars which further act as substrate for ethanol production. Our previous research was focused on enzymatic hydrolysis of rice straw by free cellulases for production of fermentable sugars. Immobilization is a powerful tool to increase the stability and reusability of cellulases besides improving the economy of ethanol production process from rice straw. In the present study, cellulase produced from Aspergillus fumigatus was immobilized on magnetic nanoparticles by using glutaraldehyde cross linker with a binding efficiency of 65.55%. The electron microscopy and spectroscopy tools confirmed the enzyme immobilization process on magnetic nanoparticles. The immobilized cellulase exhibited filter paper, carboxymethyl cellulase and cellobiase activities of 11.82, 21.36 and 10.81 IU, respectively. The free and immobilized cellulase exhibited identical pH optima (pH 5.0) while different temperature optima of 50 °C and 60 °C, respectively. The immobilized enzyme retained 56.87% of its maximal activity after 6 h of pre-incubation at 60 °C. Km (Michaelis constant) and Vmax (maximum velocity) of immobilized enzyme were 11.76 mM and 1.17 μmol min−1 ml−1, respectively. The immobilized cellulase hydrolysed pre-treated rice straw with saccharification efficiency of 52.67%. Further, it could be reutilized for up to four saccharification cycles with retention of 50.34% activity. Therefore, the improved properties of magnetic nanoparticle-immobilized cellulase and its reusability benefits offer a promising potential for industrial production of fermentable sugars and ethanol from rice straw.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Wyman CE, Cai CM, Kumar R (2019) Bioethanol from lignocellulosic biomass. In: Kaltschmitt M (ed) Energy from organic materials (biomass) a volume in the encyclopedia of sustainability science and technology, 2nd edn. Springer, New York, pp 997–1022 Wyman CE, Cai CM, Kumar R (2019) Bioethanol from lignocellulosic biomass. In: Kaltschmitt M (ed) Energy from organic materials (biomass) a volume in the encyclopedia of sustainability science and technology, 2nd edn. Springer, New York, pp 997–1022
2.
Zurück zum Zitat Zhang Z, Liu B, Zhao ZK (2012) Efficient acid catalyzed hydrolysis of cellulose in organic electrolyte solutions. Polym Degrad Stab 97:573–577CrossRef Zhang Z, Liu B, Zhao ZK (2012) Efficient acid catalyzed hydrolysis of cellulose in organic electrolyte solutions. Polym Degrad Stab 97:573–577CrossRef
3.
Zurück zum Zitat Kuila A, Sharma V, Garlapati VK, Singh A, Roy L, Banerjee R (2016) Present statu s on enzymatic hydrolysis of lignocellulosic biomass for bioethanol production. Adv Biofeedstocks Biofuels 1:85 Kuila A, Sharma V, Garlapati VK, Singh A, Roy L, Banerjee R (2016) Present statu s on enzymatic hydrolysis of lignocellulosic biomass for bioethanol production. Adv Biofeedstocks Biofuels 1:85
4.
Zurück zum Zitat Brummer V, Jurena T, Hlavacek V, Omelkova J, Bebar L, Gabriel P, Stehlik P (2014) Enzymatic hydrolysis of pretreated waste paper–source of raw material for production of liquid biofuels. Bioresour Technol 152:543–547CrossRef Brummer V, Jurena T, Hlavacek V, Omelkova J, Bebar L, Gabriel P, Stehlik P (2014) Enzymatic hydrolysis of pretreated waste paper–source of raw material for production of liquid biofuels. Bioresour Technol 152:543–547CrossRef
5.
Zurück zum Zitat Madadi M, Tu Y, Abbas A (2017) Recent status on enzymatic saccharification of lignocellulosic biomass for bioethanol production. Electron J Biol 13:135–143 Madadi M, Tu Y, Abbas A (2017) Recent status on enzymatic saccharification of lignocellulosic biomass for bioethanol production. Electron J Biol 13:135–143
6.
Zurück zum Zitat Ahamed A, Vermette P (2008) Culture based strategies to enhance cellulase enzyme production from Trichoderma reesei RUT-30 in bioreactor culture conditions. Biochem Eng 140:399–407CrossRef Ahamed A, Vermette P (2008) Culture based strategies to enhance cellulase enzyme production from Trichoderma reesei RUT-30 in bioreactor culture conditions. Biochem Eng 140:399–407CrossRef
7.
Zurück zum Zitat Zhang Q, Han X, Tang B (2013) Preparation of a magnetically recoverable biocatalyst support on monodisperse Fe3O4 nanoparticles. RSC Adv 3:9924–9931CrossRef Zhang Q, Han X, Tang B (2013) Preparation of a magnetically recoverable biocatalyst support on monodisperse Fe3O4 nanoparticles. RSC Adv 3:9924–9931CrossRef
8.
Zurück zum Zitat Chundawat S, Sousa LDC, Cheh AM, Balan V, Dale B (2017) Methods for producing extracted and digested products from pretreated lignocellulosic biomass. U.S. patent, 9650657 Chundawat S, Sousa LDC, Cheh AM, Balan V, Dale B (2017) Methods for producing extracted and digested products from pretreated lignocellulosic biomass. U.S. patent, 9650657
9.
Zurück zum Zitat Mitchell DT, Lee SB, Trofin L, Li N, Nevanen TK, Soderlund H, Martin CR (2002) Smart nanotubes for bioseparations and biocatalysis. J Am Chem Soc 124:11864–11865CrossRef Mitchell DT, Lee SB, Trofin L, Li N, Nevanen TK, Soderlund H, Martin CR (2002) Smart nanotubes for bioseparations and biocatalysis. J Am Chem Soc 124:11864–11865CrossRef
10.
Zurück zum Zitat Eldin MSM (2016) Enzyme immobilization: nanopolymers for enzyme immobilization applications. Energy 16:18 Eldin MSM (2016) Enzyme immobilization: nanopolymers for enzyme immobilization applications. Energy 16:18
11.
Zurück zum Zitat Huang WC, Wang W, Xue C, Mao X (2018) Effective enzyme immobilization onto a magnetic chitin nanofiber composite. ACS Sustain Chem Eng 6:8118–8124CrossRef Huang WC, Wang W, Xue C, Mao X (2018) Effective enzyme immobilization onto a magnetic chitin nanofiber composite. ACS Sustain Chem Eng 6:8118–8124CrossRef
12.
Zurück zum Zitat Ahmad R, Khare SK (2018) Immobilization of Aspergillus niger cellulase on multiwall carbon nanotubes for cellulose hydrolysis. Bioresour Technol 252:72–75CrossRef Ahmad R, Khare SK (2018) Immobilization of Aspergillus niger cellulase on multiwall carbon nanotubes for cellulose hydrolysis. Bioresour Technol 252:72–75CrossRef
13.
Zurück zum Zitat Otari SV, Patel SK, Kim SY, Haw JR, Kalia VC, Kim IW, Lee JK (2019) Copper ferrite magnetic nanoparticles for the immobilization of enzyme. Indian J Microbiol 59:105–108CrossRef Otari SV, Patel SK, Kim SY, Haw JR, Kalia VC, Kim IW, Lee JK (2019) Copper ferrite magnetic nanoparticles for the immobilization of enzyme. Indian J Microbiol 59:105–108CrossRef
14.
Zurück zum Zitat Abbaszadeh M, Hejazi P (2019) Metal affinity immobilization of cellulase on Fe3O4 nanoparticles with copper as ligand for biocatalytic applications. Food Chem 290:47–55CrossRef Abbaszadeh M, Hejazi P (2019) Metal affinity immobilization of cellulase on Fe3O4 nanoparticles with copper as ligand for biocatalytic applications. Food Chem 290:47–55CrossRef
15.
Zurück zum Zitat Verma ML, Barrow CJ, Puri M (2013) Nanobiotechnology as a novel paradigm for enzyme immobilisation and stabilisation with potential applications in biodiesel production. Appl Microbiol Biotechnol 97:23–39CrossRef Verma ML, Barrow CJ, Puri M (2013) Nanobiotechnology as a novel paradigm for enzyme immobilisation and stabilisation with potential applications in biodiesel production. Appl Microbiol Biotechnol 97:23–39CrossRef
16.
Zurück zum Zitat Kim K, Lee OK, Lee E (2018) Nano-immobilized biocatalysts for biodiesel production from renewable and sustainable resources. J Catal 8:68 Kim K, Lee OK, Lee E (2018) Nano-immobilized biocatalysts for biodiesel production from renewable and sustainable resources. J Catal 8:68
17.
Zurück zum Zitat García PF, Brammen M, Wolf M, Reinlein S, von Roman MF, Berensmeier S (2015) High-gradient magnetic separation for technical scale protein recovery using low cost magnetic nanoparticles. Sep Purif Technol 150:29–36CrossRef García PF, Brammen M, Wolf M, Reinlein S, von Roman MF, Berensmeier S (2015) High-gradient magnetic separation for technical scale protein recovery using low cost magnetic nanoparticles. Sep Purif Technol 150:29–36CrossRef
18.
Zurück zum Zitat Kumar A, Singh S, Nain L (2018) Magnetic nanoparticle immobilized cellulase enzyme for saccharification of paddy straw. Int J Curr Microbiol App Sci 7:881–893CrossRef Kumar A, Singh S, Nain L (2018) Magnetic nanoparticle immobilized cellulase enzyme for saccharification of paddy straw. Int J Curr Microbiol App Sci 7:881–893CrossRef
19.
Zurück zum Zitat Abraham RE, Verma ML, Barrow CJ, Puri M (2014) Suitability of magnetic nanoparticle immobilised cellulases in enhancing enzymatic saccharification of pretreated hemp biomass. Biotechnol Biofuels 7:90CrossRef Abraham RE, Verma ML, Barrow CJ, Puri M (2014) Suitability of magnetic nanoparticle immobilised cellulases in enhancing enzymatic saccharification of pretreated hemp biomass. Biotechnol Biofuels 7:90CrossRef
20.
Zurück zum Zitat Selvam K, Govarthanan M, Senbagam D, Kamala-Kannan S, Senthilkumar B, Selvankumar T (2016) Activity and stability of bacterial cellulase immobilized on magnetic nanoparticles. Chin J Catal 37:1891–1898CrossRef Selvam K, Govarthanan M, Senbagam D, Kamala-Kannan S, Senthilkumar B, Selvankumar T (2016) Activity and stability of bacterial cellulase immobilized on magnetic nanoparticles. Chin J Catal 37:1891–1898CrossRef
21.
Zurück zum Zitat Xiao A, Xu C, Lin Y, Ni H, Zhu Y, Cai H (2016) Preparation and characterization of κ-carrageenase immobilized onto magnetic iron oxide nanoparticles. Electron J Biotechnol 19:1–7CrossRef Xiao A, Xu C, Lin Y, Ni H, Zhu Y, Cai H (2016) Preparation and characterization of κ-carrageenase immobilized onto magnetic iron oxide nanoparticles. Electron J Biotechnol 19:1–7CrossRef
22.
Zurück zum Zitat Han J, Luo P, Wang Y, Wang L, Li C, Zhang W, Dong J, Ni L (2018) The development of nanobiocatalysis via the immobilization of cellulase on composite magnetic nanomaterial for enhanced loading capacity and catalytic activity. Int J Biol Macromol 119:692–700CrossRef Han J, Luo P, Wang Y, Wang L, Li C, Zhang W, Dong J, Ni L (2018) The development of nanobiocatalysis via the immobilization of cellulase on composite magnetic nanomaterial for enhanced loading capacity and catalytic activity. Int J Biol Macromol 119:692–700CrossRef
23.
Zurück zum Zitat Dong RJ, Zheng DF, Yang DJ, Qiu XQ (2019) pH-responsive lignin-based magnetic nanoparticles for recovery of cellulase. Bioresour Technol 294:122133CrossRef Dong RJ, Zheng DF, Yang DJ, Qiu XQ (2019) pH-responsive lignin-based magnetic nanoparticles for recovery of cellulase. Bioresour Technol 294:122133CrossRef
24.
Zurück zum Zitat Kumar A, Singh S, Tiwari R, Goel R, Nain L (2017) Immobilization of indigenous holocellulase on iron oxide (Fe2O3) nanoparticles enhanced hydrolysis of alkali pretreated paddy straw. Int J Biol Macromol 96:538–549CrossRef Kumar A, Singh S, Tiwari R, Goel R, Nain L (2017) Immobilization of indigenous holocellulase on iron oxide (Fe2O3) nanoparticles enhanced hydrolysis of alkali pretreated paddy straw. Int J Biol Macromol 96:538–549CrossRef
25.
Zurück zum Zitat Zhang Q, Kang J, Yang B, Zhao L, Hou Z, Tang B (2016) Immobilized cellulase on Fe3O4 nanoparticles as a magnetically recoverable biocatalyst for the decomposition of corncob. Chin J Catal 37:389–397CrossRef Zhang Q, Kang J, Yang B, Zhao L, Hou Z, Tang B (2016) Immobilized cellulase on Fe3O4 nanoparticles as a magnetically recoverable biocatalyst for the decomposition of corncob. Chin J Catal 37:389–397CrossRef
26.
Zurück zum Zitat Manasa P, Saroj P, Korrapati N (2017) Immobilization of cellulase enzyme on zinc ferrite nanoparticles in increasing enzymatic hydrolysis on ultrasound assisted alkaline pretreated Crotalaria juncea biomass. Indian J Sci Technol 10:1–7CrossRef Manasa P, Saroj P, Korrapati N (2017) Immobilization of cellulase enzyme on zinc ferrite nanoparticles in increasing enzymatic hydrolysis on ultrasound assisted alkaline pretreated Crotalaria juncea biomass. Indian J Sci Technol 10:1–7CrossRef
27.
Zurück zum Zitat Poorakbar E, Shafiee A, Saboury AA, Rad BL, Khoshnevisan K, Ma'mani L, Derakhshankhah H, Ganjali MR, Hosseini M (2018) Synthesis of magnetic gold mesoporous silica nanoparticles core shell for cellulase enzyme immobilization: improvement of enzymatic activity and thermal stability. Process Biochem 71:92–100CrossRef Poorakbar E, Shafiee A, Saboury AA, Rad BL, Khoshnevisan K, Ma'mani L, Derakhshankhah H, Ganjali MR, Hosseini M (2018) Synthesis of magnetic gold mesoporous silica nanoparticles core shell for cellulase enzyme immobilization: improvement of enzymatic activity and thermal stability. Process Biochem 71:92–100CrossRef
28.
Zurück zum Zitat Binod P, Sindhu R, Singhania RR, Vikram S, Devi L, Nagalakshmi S, Kurien N, Sukumaran RK, Pandey A (2010) Bioethanol production from rice straw: an overview. Bioresour Technol 101:4767–4774CrossRef Binod P, Sindhu R, Singhania RR, Vikram S, Devi L, Nagalakshmi S, Kurien N, Sukumaran RK, Pandey A (2010) Bioethanol production from rice straw: an overview. Bioresour Technol 101:4767–4774CrossRef
29.
Zurück zum Zitat Raj T, Kapoor M, Gaur R, Christopher J, Lamba BY, Tuli DK, Kumar R (2015) Physical and chemical characterization of various Indian agriculture residues for biofuels production. Energ Fuels 29:3111–3118CrossRef Raj T, Kapoor M, Gaur R, Christopher J, Lamba BY, Tuli DK, Kumar R (2015) Physical and chemical characterization of various Indian agriculture residues for biofuels production. Energ Fuels 29:3111–3118CrossRef
30.
Zurück zum Zitat Colonia BSO, Junior AFC (2014) Screening and detection of extracellular cellulases (endo-and exo-glucanases) secreted by filamentous fungi isolated from soils using rapid tests with chromogenic dyes. Afr J Biotechnol 13:4694–4701CrossRef Colonia BSO, Junior AFC (2014) Screening and detection of extracellular cellulases (endo-and exo-glucanases) secreted by filamentous fungi isolated from soils using rapid tests with chromogenic dyes. Afr J Biotechnol 13:4694–4701CrossRef
31.
Zurück zum Zitat Meyyappan A, Shakila BA, Kurian GA (2015) One step synthesis of iron oxide nanoparticles via chemical and green route- an effective comparison. Int J Pharm Pharm Sci 7:70–74 Meyyappan A, Shakila BA, Kurian GA (2015) One step synthesis of iron oxide nanoparticles via chemical and green route- an effective comparison. Int J Pharm Pharm Sci 7:70–74
32.
Zurück zum Zitat Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275CrossRef Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275CrossRef
33.
Zurück zum Zitat Mandels M, Andreotti R, Roche C (1976) Measurement of saccharifying cellulase. Biotechnol Bioeng Symp. Pp 21-33. US Army Natick development center, Nauck, MA Mandels M, Andreotti R, Roche C (1976) Measurement of saccharifying cellulase. Biotechnol Bioeng Symp. Pp 21-33. US Army Natick development center, Nauck, MA
34.
Zurück zum Zitat Nelson N (1944) A photometric adaptation of the Somogyi method for the determination of glucose. J Biol Chem 153:375–380CrossRef Nelson N (1944) A photometric adaptation of the Somogyi method for the determination of glucose. J Biol Chem 153:375–380CrossRef
35.
Zurück zum Zitat Wood TM, Bhat KM (1988) Methods for measuring cellulase activities. Methods Enzymol 160:87–112CrossRef Wood TM, Bhat KM (1988) Methods for measuring cellulase activities. Methods Enzymol 160:87–112CrossRef
36.
Zurück zum Zitat Toyama M, Ogawa K (1977) Cellulase production of Trichoderma viride in solid and submerged culture methods. In: Ghose TK (ed) Proc bioconversion of cellulosic substances into energy, chemicals and microbial protein, vol 1. IIT, New Delhi, pp 305–327 Toyama M, Ogawa K (1977) Cellulase production of Trichoderma viride in solid and submerged culture methods. In: Ghose TK (ed) Proc bioconversion of cellulosic substances into energy, chemicals and microbial protein, vol 1. IIT, New Delhi, pp 305–327
37.
Zurück zum Zitat Xu J, Huo S, Yuan Z, Zhang Y, Xu H, Guo Y, Liang C, Zhuang X (2011) Characterization of direct cellulase immobilization with superparamagnetic nanoparticles. Biocatal Biotransform 29:71–76CrossRef Xu J, Huo S, Yuan Z, Zhang Y, Xu H, Guo Y, Liang C, Zhuang X (2011) Characterization of direct cellulase immobilization with superparamagnetic nanoparticles. Biocatal Biotransform 29:71–76CrossRef
38.
Zurück zum Zitat Lu PJ, Fu WE, Huang SC, Lin CY, Ho ML, Chen YP, Cheng HF (2018) Methodology for sample preparation and size measurement of commercial ZnO nanoparticles. J Food Drug Anal 26:628–636CrossRef Lu PJ, Fu WE, Huang SC, Lin CY, Ho ML, Chen YP, Cheng HF (2018) Methodology for sample preparation and size measurement of commercial ZnO nanoparticles. J Food Drug Anal 26:628–636CrossRef
39.
Zurück zum Zitat Predoi D (2007) A study on iron oxide nanoparticles coated with dextrin obtained by coprecipitation. Dig J Nanomater Bios 2:169–173 Predoi D (2007) A study on iron oxide nanoparticles coated with dextrin obtained by coprecipitation. Dig J Nanomater Bios 2:169–173
40.
Zurück zum Zitat Burgula Y, Khali D, Kim S, Krishnan SS, Cousin MA, Gore JP, Reuhs BL, Mauer LJ (2006) Detection of Escherichia coli O157:H7 and Salmonella typhimurium using filtration followed by Fourier-transform infrared spectroscopy. J Food Prot 69:1777–1784CrossRef Burgula Y, Khali D, Kim S, Krishnan SS, Cousin MA, Gore JP, Reuhs BL, Mauer LJ (2006) Detection of Escherichia coli O157:H7 and Salmonella typhimurium using filtration followed by Fourier-transform infrared spectroscopy. J Food Prot 69:1777–1784CrossRef
41.
Zurück zum Zitat Kaur P, Kocher GS, Taggar MS, Sooch SS, Kumar V (2017) Assessment of thermophilic fungal strains for cellulase production using chemical pretreated rice straw. Chem Sci Rev Lett 6:629–634 Kaur P, Kocher GS, Taggar MS, Sooch SS, Kumar V (2017) Assessment of thermophilic fungal strains for cellulase production using chemical pretreated rice straw. Chem Sci Rev Lett 6:629–634
42.
Zurück zum Zitat Crompton EW, Maynard LA (1938) The relation of cellulose and lignin content to the nutritive value of animal feeds. J Anim Nut 15:391–392 Crompton EW, Maynard LA (1938) The relation of cellulose and lignin content to the nutritive value of animal feeds. J Anim Nut 15:391–392
43.
Zurück zum Zitat Goering HK, Van Soest PJ (1970) Forage fibre analysis. Pp. 1-20. Agricultural research services, Washington DC, U.S. Goering HK, Van Soest PJ (1970) Forage fibre analysis. Pp. 1-20. Agricultural research services, Washington DC, U.S.
44.
Zurück zum Zitat AOAC (2000) Official methods of analysis, 17th edn. Association of Official Analytical Chemists, Washington, D.C. AOAC (2000) Official methods of analysis, 17th edn. Association of Official Analytical Chemists, Washington, D.C.
45.
Zurück zum Zitat Singh A, Tuteja S, Singh N, Bishnoi NR (2011) Enhanced saccharification of rice straw and hull by microwave-alkali pre-treatment and lignocellulolytic enzyme production. Bioresour Technol 102:1773–1782CrossRef Singh A, Tuteja S, Singh N, Bishnoi NR (2011) Enhanced saccharification of rice straw and hull by microwave-alkali pre-treatment and lignocellulolytic enzyme production. Bioresour Technol 102:1773–1782CrossRef
46.
Zurück zum Zitat Jia J, Zhang W, Yang Z, Yang X, Wang N, Yu X (2017) Novel magnetic cross-linked cellulase aggregates with a potential application in lignocellulosic biomass bioconversion. Molecules 22:269CrossRef Jia J, Zhang W, Yang Z, Yang X, Wang N, Yu X (2017) Novel magnetic cross-linked cellulase aggregates with a potential application in lignocellulosic biomass bioconversion. Molecules 22:269CrossRef
47.
Zurück zum Zitat Mohamed SA, Al-Harbi MH, Almulaiky YQ, Ibrahim IH, El-Shishtawy RM (2017) Immobilization of horseradish peroxidase on Fe3O4 magnetic nanoparticles. Electron J Biotechnol 27:84–90CrossRef Mohamed SA, Al-Harbi MH, Almulaiky YQ, Ibrahim IH, El-Shishtawy RM (2017) Immobilization of horseradish peroxidase on Fe3O4 magnetic nanoparticles. Electron J Biotechnol 27:84–90CrossRef
48.
Zurück zum Zitat Kouassi GK, Irudayaraj J, McCarty G (2005) Examination of cholesterol oxidase attachment to magnetic nanoparticles. J Nanobiotechnol 3:1CrossRef Kouassi GK, Irudayaraj J, McCarty G (2005) Examination of cholesterol oxidase attachment to magnetic nanoparticles. J Nanobiotechnol 3:1CrossRef
49.
Zurück zum Zitat Can HK, Kavlak S, Parvizi Khosroshahi S, Güner A (2018) Preparation, characterization and dynamical mechanical properties of dextran-coated iron oxide nanoparticles (DIONPs). Artif Cells Nanomed Biotechnol 46:421–431CrossRef Can HK, Kavlak S, Parvizi Khosroshahi S, Güner A (2018) Preparation, characterization and dynamical mechanical properties of dextran-coated iron oxide nanoparticles (DIONPs). Artif Cells Nanomed Biotechnol 46:421–431CrossRef
50.
Zurück zum Zitat Chittur KK (1998) FTIR/ATR for protein adsorption to biomaterial surfaces. Biomater 19:357–369CrossRef Chittur KK (1998) FTIR/ATR for protein adsorption to biomaterial surfaces. Biomater 19:357–369CrossRef
51.
Zurück zum Zitat Herzberg G, Crawford BL Jr (1946) Infrared and Raman spectra of polyatomic molecules. J Phys Chem 50:288CrossRef Herzberg G, Crawford BL Jr (1946) Infrared and Raman spectra of polyatomic molecules. J Phys Chem 50:288CrossRef
52.
Zurück zum Zitat Jordan J, Kumar CS, Theegala C (2011) Preparation and characterization of cellulase-bound magnetite nanoparticles. J Mol Catal B Enzym 68:139–146CrossRef Jordan J, Kumar CS, Theegala C (2011) Preparation and characterization of cellulase-bound magnetite nanoparticles. J Mol Catal B Enzym 68:139–146CrossRef
53.
Zurück zum Zitat Khoshnevisan K, Bordbar AK, Zare D, Davoodi D, Noruzi M, Barkhi M, Tabatabaei M (2011) Immobilization of cellulase enzyme on superparamagnetic nanoparticles and determination of its activity and stability. Chem Eng J 171:669–673CrossRef Khoshnevisan K, Bordbar AK, Zare D, Davoodi D, Noruzi M, Barkhi M, Tabatabaei M (2011) Immobilization of cellulase enzyme on superparamagnetic nanoparticles and determination of its activity and stability. Chem Eng J 171:669–673CrossRef
54.
Zurück zum Zitat Tao QL, Li Y, Shi Y, Liu RJ, Zhang YW, Guo J (2016) Application of molecular imprinted magnetic Fe3O4@SiO2 nanoparticles for selective immobilization of cellulase. J Nanosci Nanotechnol 16:6055–6060CrossRef Tao QL, Li Y, Shi Y, Liu RJ, Zhang YW, Guo J (2016) Application of molecular imprinted magnetic Fe3O4@SiO2 nanoparticles for selective immobilization of cellulase. J Nanosci Nanotechnol 16:6055–6060CrossRef
55.
Zurück zum Zitat Tu M, Zhang X, Kurabi A, Gilkes N, Mabee W, Saddler J (2006) Immobilization of β-glucosidase on Eupergit C for lignocellulose hydrolysis. Biotechnol Lett 28:151–156CrossRef Tu M, Zhang X, Kurabi A, Gilkes N, Mabee W, Saddler J (2006) Immobilization of β-glucosidase on Eupergit C for lignocellulose hydrolysis. Biotechnol Lett 28:151–156CrossRef
56.
Zurück zum Zitat Weetall HH (1993) Preparation of immobilized proteins covalently coupled through silane coupling agents to inorganic supports. Appl Biochem Biotechnol 41:157–188CrossRef Weetall HH (1993) Preparation of immobilized proteins covalently coupled through silane coupling agents to inorganic supports. Appl Biochem Biotechnol 41:157–188CrossRef
57.
Zurück zum Zitat Brodeur G, Yau E, Badal K, Collier J, Ramachandran KB, Ramakrishnan S (2011) Chemical and physiochemical pretreatment of lignocellulosic biomass: a review. Enzym Res 2011:782532CrossRef Brodeur G, Yau E, Badal K, Collier J, Ramachandran KB, Ramakrishnan S (2011) Chemical and physiochemical pretreatment of lignocellulosic biomass: a review. Enzym Res 2011:782532CrossRef
58.
Zurück zum Zitat Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18CrossRef Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18CrossRef
59.
Zurück zum Zitat Weerasai K, Suriyachai N, Poonsrisawat A, Arnthong J, Unrean P, Laosiripojana N, Champreda V (2014) Sequential acid and alkaline pretreatment of rice straw for bioethanol fermentation. BioResources 9:5988–6001CrossRef Weerasai K, Suriyachai N, Poonsrisawat A, Arnthong J, Unrean P, Laosiripojana N, Champreda V (2014) Sequential acid and alkaline pretreatment of rice straw for bioethanol fermentation. BioResources 9:5988–6001CrossRef
60.
Zurück zum Zitat Syazwanee MGMF, Shaziera AN, Izzati MZNA, Azwady AN, Muskhazli A (2018) Improvement of delignification, desilication and cellulosic content availability in paddy straw via physico-chemical pretreatments. Annu Res Rev Biol 6:1–11CrossRef Syazwanee MGMF, Shaziera AN, Izzati MZNA, Azwady AN, Muskhazli A (2018) Improvement of delignification, desilication and cellulosic content availability in paddy straw via physico-chemical pretreatments. Annu Res Rev Biol 6:1–11CrossRef
61.
Zurück zum Zitat Huang PJ, Chang KL, Hsieh JF, Chen ST (2015) Catalysis of rice straw hydrolysis by the combination of immobilized cellulase from Aspergillus niger on β-cyclodextrin-Fe3O4 nanoparticles and ionic liquid. Biomed Res Int 2015:409103 Huang PJ, Chang KL, Hsieh JF, Chen ST (2015) Catalysis of rice straw hydrolysis by the combination of immobilized cellulase from Aspergillus niger on β-cyclodextrin-Fe3O4 nanoparticles and ionic liquid. Biomed Res Int 2015:409103
62.
Zurück zum Zitat Baskar G, Kumar RN, Melvin XH, Aiswarya R, Soumya S (2016) Sesbania aculeate biomass hydrolysis using magnetic nanobiocomposite of cellulase for bioethanol production. Renew Energy 98:23–28CrossRef Baskar G, Kumar RN, Melvin XH, Aiswarya R, Soumya S (2016) Sesbania aculeate biomass hydrolysis using magnetic nanobiocomposite of cellulase for bioethanol production. Renew Energy 98:23–28CrossRef
63.
Zurück zum Zitat Periyasamy K, Santhalembi L, Mortha G, Aurousseau M, Boyer A, Subramanian S (2018) Bioconversion of lignocellulosic biomass to fermentable sugars by immobilized magnetic cellulolytic enzyme cocktails. Langmuir 34:6546–6555CrossRef Periyasamy K, Santhalembi L, Mortha G, Aurousseau M, Boyer A, Subramanian S (2018) Bioconversion of lignocellulosic biomass to fermentable sugars by immobilized magnetic cellulolytic enzyme cocktails. Langmuir 34:6546–6555CrossRef
Metadaten
Titel
Characterization of magnetic nanoparticle–immobilized cellulases for enzymatic saccharification of rice straw
verfasst von
Prabhpreet Kaur
Monica Sachdeva Taggar
Anu Kalia
Publikationsdatum
04.03.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Biomass Conversion and Biorefinery / Ausgabe 3/2021
Print ISSN: 2190-6815
Elektronische ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-020-00628-x

Weitere Artikel der Ausgabe 3/2021

Biomass Conversion and Biorefinery 3/2021 Zur Ausgabe