Skip to main content
Erschienen in: Journal of Material Cycles and Waste Management 3/2017

18.12.2016 | SPECIAL FEATURE: ORIGINAL ARTICLE

Characterizations of biochar from hydrothermal carbonization of exhausted coffee residue

verfasst von: Daegi Kim, Kwanyong Lee, Daeun Bae, Ki Young Park

Erschienen in: Journal of Material Cycles and Waste Management | Ausgabe 3/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The aim of this study was to produce renewable energy from exhausted coffee residue, which is a form of biomass. As coffee preference continues to increase, the importation of coffee beans has been increasing sharply. However, the amount of coffee that is actually consumed is only about 0.2% of coffee beans, while the spent coffee beans are discarded in the form of exhausted coffee residue. Hydrothermal carbonization is a method of producing an improved fuel from renewable energy sources by changing the physical and chemical properties of biochars. Biochars were obtained from a variety of reaction temperatures during hydrothermal carbonization and analyzed using elemental analysis, ultimate analysis, and calorific value measurement. The atomic C/O and C/H ratios of all obtained biochars decreased and were found to be similar to those of lignite and sub-bituminous coal. The highest energy recovery efficiency of biochar indicates that the optimum reaction temperature for hydrothermal carbonization was between 210 and 240 °C, which produced biochars with calorific value of approximately 26–27 MJ/kg. The spectra of biochars obtained from Fourier transform infrared spectroscopy (FTIR) showed fewer C–O and aliphatic C–H functional groups, but more carbonyl C=O functional groups and aliphatic CH x groups. The results of this study indicate that hydrothermal carbonization can be used as an effective means to generate highly energy-efficient renewable fuel resources from coffee residue. The thermogravimetric analysis provided the changing combustion characteristics due to increased fixed carbon content.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bringezu S, Schutz H, Arnold K, Merten F, Kabasci S, Borelbach P, Michels C, Reinhardt GA, Rettenmaier N (2009) Global implications of biomass and biofuel use in Germany-Recent trends and future scenarios for domestic and foreign agricultural land use and resulting GHG emissions. J Clean Prod 17:S57–S68CrossRef Bringezu S, Schutz H, Arnold K, Merten F, Kabasci S, Borelbach P, Michels C, Reinhardt GA, Rettenmaier N (2009) Global implications of biomass and biofuel use in Germany-Recent trends and future scenarios for domestic and foreign agricultural land use and resulting GHG emissions. J Clean Prod 17:S57–S68CrossRef
2.
Zurück zum Zitat Bhat IK, Prakash R (2009) LCA of renewable energy for electricity generation systems—a review. Renew Sust Energ Rev 13(5):1067–1073CrossRef Bhat IK, Prakash R (2009) LCA of renewable energy for electricity generation systems—a review. Renew Sust Energ Rev 13(5):1067–1073CrossRef
3.
Zurück zum Zitat Gielen DJ, De Feber MAPC, Bos AJM, Gerlagh T (2001) Biomass for energy or materials? A Western European systems engineering perspective. Energy policy 29(4):291–302CrossRef Gielen DJ, De Feber MAPC, Bos AJM, Gerlagh T (2001) Biomass for energy or materials? A Western European systems engineering perspective. Energy policy 29(4):291–302CrossRef
4.
Zurück zum Zitat Bridgwater AV (2003) Renewable fuels and chemicals by thermal processing of biomass. Chem Eng J 91(2):87–102CrossRef Bridgwater AV (2003) Renewable fuels and chemicals by thermal processing of biomass. Chem Eng J 91(2):87–102CrossRef
5.
Zurück zum Zitat Sims RE, Hastings A, Schlamadinger B, Taylor G, Smith P (2006) Energy crops: current status and future prospects. Glob Change Biol 12(11):2054–2076CrossRef Sims RE, Hastings A, Schlamadinger B, Taylor G, Smith P (2006) Energy crops: current status and future prospects. Glob Change Biol 12(11):2054–2076CrossRef
6.
Zurück zum Zitat Zhou X, Xiao B, Ochieng RM, Yang J (2009) Utilization of carbon-negative biofuels from low-input high-diversity grassland biomass for energy in China. Renew Sust Energ Rev 13(2):479–485CrossRef Zhou X, Xiao B, Ochieng RM, Yang J (2009) Utilization of carbon-negative biofuels from low-input high-diversity grassland biomass for energy in China. Renew Sust Energ Rev 13(2):479–485CrossRef
8.
Zurück zum Zitat Choi Y, Chang Y, Ryu S, Cho J, Rampal S, Zhang Y, Ahn Y, Lima JAC, Shin H, Guallar E (2015) Coffee consumption and coronary artery calcium in young and middle-aged asymptomatic adults. Heart 101(9):686–691CrossRef Choi Y, Chang Y, Ryu S, Cho J, Rampal S, Zhang Y, Ahn Y, Lima JAC, Shin H, Guallar E (2015) Coffee consumption and coronary artery calcium in young and middle-aged asymptomatic adults. Heart 101(9):686–691CrossRef
9.
Zurück zum Zitat Tsai WT, Liu SC (2013) Effect of temperature on thermochemical property and true density of torrefied coffee residue. J Anal Appl Pyrolysis 102:47–52CrossRef Tsai WT, Liu SC (2013) Effect of temperature on thermochemical property and true density of torrefied coffee residue. J Anal Appl Pyrolysis 102:47–52CrossRef
10.
Zurück zum Zitat Limousy L, Jeguirim M, Dutournié P, Kraiem N, Lajili M, Said R (2013) Gaseous products and particulate matter emissions of biomass residential boiler fired with spent coffee grounds pellets. Fuel 107:323–329CrossRef Limousy L, Jeguirim M, Dutournié P, Kraiem N, Lajili M, Said R (2013) Gaseous products and particulate matter emissions of biomass residential boiler fired with spent coffee grounds pellets. Fuel 107:323–329CrossRef
11.
Zurück zum Zitat Tsai WT, Liu SC, Hsieh CH (2012) Preparation and fuel properties of biochars from the pyrolysis of exhausted coffee residue. J Anal Appl Pyrolysis 93:63–67CrossRef Tsai WT, Liu SC, Hsieh CH (2012) Preparation and fuel properties of biochars from the pyrolysis of exhausted coffee residue. J Anal Appl Pyrolysis 93:63–67CrossRef
12.
Zurück zum Zitat Kloss S, Zehetner F, Dellantonio A, Hamid R, Ottner F, Liedtke V, Schwanninger M, Gerzabek MH, Soja G (2012) Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties. J Environ Qual 41(4):990–1000CrossRef Kloss S, Zehetner F, Dellantonio A, Hamid R, Ottner F, Liedtke V, Schwanninger M, Gerzabek MH, Soja G (2012) Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties. J Environ Qual 41(4):990–1000CrossRef
13.
Zurück zum Zitat Kim D, Lee K, Park KY (2014) Hydrothermal carbonization of anaerobically digested sludge for solid fuel production and energy recovery. Fuel 130:120–125CrossRef Kim D, Lee K, Park KY (2014) Hydrothermal carbonization of anaerobically digested sludge for solid fuel production and energy recovery. Fuel 130:120–125CrossRef
14.
Zurück zum Zitat Kim D, Yoshikawa K, Park KY (2015) Characteristics of biochar obtained by hydrothermal carbonization of cellulose for renewable energy. Energies 8(12):14040–14048CrossRef Kim D, Yoshikawa K, Park KY (2015) Characteristics of biochar obtained by hydrothermal carbonization of cellulose for renewable energy. Energies 8(12):14040–14048CrossRef
15.
Zurück zum Zitat Mumme J, Eckervogt L, Pielert J, Diakité M, Rupp F, Kern J (2011) Hydrothermal carbonization of anaerobically digested maize silage. Bioresour Technol 102(19):9255–9260CrossRef Mumme J, Eckervogt L, Pielert J, Diakité M, Rupp F, Kern J (2011) Hydrothermal carbonization of anaerobically digested maize silage. Bioresour Technol 102(19):9255–9260CrossRef
16.
Zurück zum Zitat Parshetti GK, Hoekman SK, Balasubramanian R (2013) Chemical, structural and combustion characteristics of carbonaceous products obtained by hydrothermal carbonization of palm empty fruit bunches. Bioresour Technol 135:683–689CrossRef Parshetti GK, Hoekman SK, Balasubramanian R (2013) Chemical, structural and combustion characteristics of carbonaceous products obtained by hydrothermal carbonization of palm empty fruit bunches. Bioresour Technol 135:683–689CrossRef
17.
Zurück zum Zitat Berge ND, Ro KS, Mao J, Flora JR, Chappell MA, Bae S (2011) Hydrothermal carbonization of municipal waste streams. Environ Sci Technol 45(13):5696–5703CrossRef Berge ND, Ro KS, Mao J, Flora JR, Chappell MA, Bae S (2011) Hydrothermal carbonization of municipal waste streams. Environ Sci Technol 45(13):5696–5703CrossRef
18.
Zurück zum Zitat Zhang JH, Lin QM, Zhao X (2014) The hydrochar characters of municipal sewage sludge under different hydrothermal temperatures and durations. J Integr Agric 13(3):471–482CrossRef Zhang JH, Lin QM, Zhao X (2014) The hydrochar characters of municipal sewage sludge under different hydrothermal temperatures and durations. J Integr Agric 13(3):471–482CrossRef
19.
Zurück zum Zitat Parshetti GK, Liu Z, Jain A, Srinivasan MP, Balasubramanian R (2013) Hydrothermal carbonization of sewage sludge for energy production with coal. Fuel 111:201–210CrossRef Parshetti GK, Liu Z, Jain A, Srinivasan MP, Balasubramanian R (2013) Hydrothermal carbonization of sewage sludge for energy production with coal. Fuel 111:201–210CrossRef
20.
Zurück zum Zitat Mursito AT, Hirajima T, Sasaki K (2010) Upgrading and dewatering of raw tropical peat by hydrothermal treatment. Fuel 89(3):635–641CrossRef Mursito AT, Hirajima T, Sasaki K (2010) Upgrading and dewatering of raw tropical peat by hydrothermal treatment. Fuel 89(3):635–641CrossRef
21.
Zurück zum Zitat Funke A, Ziegler F (2010) Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering. Biofuels Bioprod 4(2):160–177CrossRef Funke A, Ziegler F (2010) Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering. Biofuels Bioprod 4(2):160–177CrossRef
22.
Zurück zum Zitat Akkaya AV (2013) Predicting coal heating values using proximate analysis via a neural network approach. Energy Sour Part A 35:253–260CrossRef Akkaya AV (2013) Predicting coal heating values using proximate analysis via a neural network approach. Energy Sour Part A 35:253–260CrossRef
23.
Zurück zum Zitat Chen WH, Lu KM, Tsai CM (2012) An experimental analysis on property and structure variations of agricultural wastes undergoing torrefaction. Appl Energy 100:318–325CrossRef Chen WH, Lu KM, Tsai CM (2012) An experimental analysis on property and structure variations of agricultural wastes undergoing torrefaction. Appl Energy 100:318–325CrossRef
24.
Zurück zum Zitat Fu P, Hu S, Xiang J, Sun L, Su S, An S (2012) Study on the gas evolution and char structural change during pyrolysis of cotton stalk. J Anal Appl Pyrolysis 97:130–136CrossRef Fu P, Hu S, Xiang J, Sun L, Su S, An S (2012) Study on the gas evolution and char structural change during pyrolysis of cotton stalk. J Anal Appl Pyrolysis 97:130–136CrossRef
25.
Zurück zum Zitat Hoekman SK, Broch A, Robbins C (2011) Hydrothermal carbonization (HTC) of lignocellulosic biomass. Energy Fuels 25(4):1802–1810CrossRef Hoekman SK, Broch A, Robbins C (2011) Hydrothermal carbonization (HTC) of lignocellulosic biomass. Energy Fuels 25(4):1802–1810CrossRef
26.
Zurück zum Zitat Jones JM, Kubacki M, Kubica K, Ross AB, Williams A (2005) Devolatilisation characteristics of coal and biomass blends. J Anal Appl Pyrol 74(1):502–511CrossRef Jones JM, Kubacki M, Kubica K, Ross AB, Williams A (2005) Devolatilisation characteristics of coal and biomass blends. J Anal Appl Pyrol 74(1):502–511CrossRef
27.
Zurück zum Zitat Skousen J, Ziemkiewicz P, Yang JE (2012) Use of coal combustion by-products in mine reclamation: review of case studies in the USA. Geosystem Engineering 15(1):71–83CrossRef Skousen J, Ziemkiewicz P, Yang JE (2012) Use of coal combustion by-products in mine reclamation: review of case studies in the USA. Geosystem Engineering 15(1):71–83CrossRef
28.
Zurück zum Zitat Yadav V, Baruah BP, Khare P (2013) Comparative study of thermal properties of bio-coal from aromatic spent with low rank sub-bituminous coals. Bioresour Technol 137:376–385CrossRef Yadav V, Baruah BP, Khare P (2013) Comparative study of thermal properties of bio-coal from aromatic spent with low rank sub-bituminous coals. Bioresour Technol 137:376–385CrossRef
29.
Zurück zum Zitat Cao J, Xiao G, Xu X, Shen D, Jin B (2013) Study on carbonization of lignin by TG-FTIR and high-temperature carbonization reactor. Fuel Process Technol 106:41–47CrossRef Cao J, Xiao G, Xu X, Shen D, Jin B (2013) Study on carbonization of lignin by TG-FTIR and high-temperature carbonization reactor. Fuel Process Technol 106:41–47CrossRef
30.
Zurück zum Zitat Román S, Nabais JMV, Laginhas C, Ledesma B, González JF (2012) Hydrothermal carbonization as an effective way of densifying the energy content of biomass. Fuel Process Technol 103:78–83CrossRef Román S, Nabais JMV, Laginhas C, Ledesma B, González JF (2012) Hydrothermal carbonization as an effective way of densifying the energy content of biomass. Fuel Process Technol 103:78–83CrossRef
31.
Zurück zum Zitat Ibarra J, Munoz E, Moliner R (1996) FTIR study of the evolution of coal structure during the coalification process. Org Geochem 24(6):725–735CrossRef Ibarra J, Munoz E, Moliner R (1996) FTIR study of the evolution of coal structure during the coalification process. Org Geochem 24(6):725–735CrossRef
32.
Zurück zum Zitat Várhegyi G, Szabó P, Till F, Zelei B, Antal MJ, Dai X (1998) TG, TG-MS, and FTIR characterization of high-yield biomass charcoals. Energy Fuels 12(5):969–974CrossRef Várhegyi G, Szabó P, Till F, Zelei B, Antal MJ, Dai X (1998) TG, TG-MS, and FTIR characterization of high-yield biomass charcoals. Energy Fuels 12(5):969–974CrossRef
33.
Zurück zum Zitat Li XG, Ma BG, Xu L, Hu ZW, Wang XG (2006) Thermogravimetric analysis of the co-combustion of the blends with high ash coal and waste tyres. Thermochim Acta 441(1):79–83CrossRef Li XG, Ma BG, Xu L, Hu ZW, Wang XG (2006) Thermogravimetric analysis of the co-combustion of the blends with high ash coal and waste tyres. Thermochim Acta 441(1):79–83CrossRef
34.
Zurück zum Zitat Haykırı-Açma H (2003) Combustion characteristics of different biomass materials. Energy Convers Manag 44(1):155–162CrossRef Haykırı-Açma H (2003) Combustion characteristics of different biomass materials. Energy Convers Manag 44(1):155–162CrossRef
35.
Zurück zum Zitat Chen Y, Mori S, Pan WP (1995) Estimating the combustibility of various coals by TG-DTA. Energy Fuels 9(1):71–74CrossRef Chen Y, Mori S, Pan WP (1995) Estimating the combustibility of various coals by TG-DTA. Energy Fuels 9(1):71–74CrossRef
Metadaten
Titel
Characterizations of biochar from hydrothermal carbonization of exhausted coffee residue
verfasst von
Daegi Kim
Kwanyong Lee
Daeun Bae
Ki Young Park
Publikationsdatum
18.12.2016
Verlag
Springer Japan
Erschienen in
Journal of Material Cycles and Waste Management / Ausgabe 3/2017
Print ISSN: 1438-4957
Elektronische ISSN: 1611-8227
DOI
https://doi.org/10.1007/s10163-016-0572-2

Weitere Artikel der Ausgabe 3/2017

Journal of Material Cycles and Waste Management 3/2017 Zur Ausgabe