Skip to main content
Erschienen in: Quantum Information Processing 12/2019

01.12.2019

Classical and quantum geometric information flows and entanglement of relativistic mechanical systems

verfasst von: Sergiu I. Vacaru, Laurenţiu Bubuianu

Erschienen in: Quantum Information Processing | Ausgabe 12/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This article elaborates on entanglement entropy and quantum information theory of geometric flows of (relativistic) Lagrange–Hamilton mechanical systems. A set of basic geometric and quantum mechanics and probability concepts together with methods of computation are developed in general covariant form for curved phase spaces modelled as cotangent Lorentz bundles. The constructions are based on ideas relating the Grigori Perelman’s entropy for geometric flows and associated statistical thermodynamic systems to the quantum von Neumann entropy, classical and quantum relative and conditional entropy, mutual information, etc. We formulate the concept of the entanglement entropy of quantum geometric information flows and study properties and inequalities for quantum, thermodynamic and geometric entropies characterizing such systems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
We follow such conventions: the “horizontal” indices, h-indices, run values \( i,j,k,\ldots =1,2,3,4;\) the vertical indices, v-vertical, run values \( a,b,c\ldots =5,6,7,8\); respectively, the v-indices can be identified/ contracted with h-indices 1, 2, 3, 4 for lifts on total (co) bundles, when \(\alpha =(i,a),\beta =(j,b),\gamma =(k,c),\ldots =1,2,3,\ldots 8.\) There are used letters labeled by an abstract left up/low symbol “\(\ ^{\shortmid }\)” (for instance, \(\ ^{\shortmid }u^{\alpha }\) and \(\ ^{\shortmid }g_{\alpha \beta }) \) in order to emphasize that certain geometric/ physical objects are defined on \(T^{*}V.\) Similar formulas can be derived on TV for geometric objects labeled without “\(\ ^{\shortmid }\).” Boldface symbols are used for geometric objects on spaces endowed with nonlinear connection structure [see below formula (3)].
 
2
The coefficients of the canonical N-connection are computed following formulas \(\ ^{\shortmid }\widetilde{\mathbf {N}}=\left\{ \ ^{\shortmid }\widetilde{N} _{ij}:=\frac{1}{2}\left[ \{\ \ ^{\shortmid }\widetilde{g}_{ij},\widetilde{H} \}-\frac{\partial ^{2}\widetilde{H}}{\partial p_{k}\partial x^{i}}\ ^{\shortmid }\widetilde{g}_{jk}-\frac{\partial ^{2}\widetilde{H}}{\partial p_{k}\partial x^{j}}\ ^{\shortmid }\widetilde{g}_{ik}\right] \right\} \), where \(\ \ ^{\shortmid }\widetilde{g}_{ij}\) is inverse to \(\ \ ^{\shortmid } \widetilde{g}^{ab}\) (2). The canonical N-adapted (co) frames are
$$\begin{aligned} \ ^{\shortmid }\widetilde{\mathbf {e}}_{\alpha }=\left( \ ^{\shortmid }\widetilde{ \mathbf {e}}_{i}=\frac{\partial }{\partial x^{i}}-\ ^{\shortmid }\widetilde{N} _{ia}(x,p)\frac{\partial }{\partial p_{a}},\ ^{\shortmid }e^{b}=\frac{ \partial }{\partial p_{b}}\right) ;\ \ ^{\shortmid }\widetilde{\mathbf {e}}^{\alpha }=\left( \ ^{\shortmid }e^{i}=\mathrm{d}x^{i},\ ^{\shortmid }\mathbf {e}_{a}=\mathrm{d}p_{a}+\ ^{\shortmid }\widetilde{N}_{ia}(x,p)\mathrm{d}x^{i}\right) , \end{aligned}$$
being characterized by corresponding anholonomy relations \(\ [\ ^{\shortmid } \widetilde{\mathbf {e}}_{\alpha },\ ^{\shortmid }\widetilde{\mathbf {e}} _{\beta }]=\ ^{\shortmid }\widetilde{\mathbf {e}}_{\alpha }\ ^{\shortmid } \widetilde{\mathbf {e}}_{\beta }-\ ^{\shortmid }\widetilde{\mathbf {e}}_{\beta }\ ^{\shortmid }\widetilde{\mathbf {e}}_{\alpha }=\ ^{\shortmid }\widetilde{W} _{\alpha \beta }^{\gamma }\ ^{\shortmid }\widetilde{\mathbf {e}}_{\gamma },\) with anholonomy coefficients \(\widetilde{W}_{ia}^{b}=\partial _{a}\widetilde{ N}_{i}^{b},\) \(\widetilde{W}_{ji}^{a}=\widetilde{\Omega }_{ij}^{a},\) and \(\ ^{\shortmid }\widetilde{W}_{ib}^{a}=\partial \ ^{\shortmid }\widetilde{N} _{ib}/\partial p_{a}\) and \(\ ^{\shortmid }\widetilde{W}_{jia}= {\ ^{\shortmid }}\widetilde{\Omega }_{ija}.\) Such a frame is holonomic (integrable) if the respective anholonomy coefficients are zero.
 
3
For simplicity, we shall write, for instance, \(\ ^{\shortmid }\widetilde{ \mathbf {N}}(\tau )\) instead of \(\ ^{\shortmid }\widetilde{\mathbf {N}}(\tau ,\ ^{\shortmid }u)\) if that will not result in ambiguities. Relativistic nonholonomic phase spacetimes can be enabled with necessary types double nonholonomic \((2+2)+(2+2)\) and \((3+1)+(3+1)\) splitting [17, 28, 3537]. Local \((3+1)+(3+1)\) coordinates are labeled in the form \(\ ^{\shortmid }u=\{\ ^{\shortmid }u^{\alpha }=\ ^{\shortmid }u^{\alpha _{s}}=(x^{i_{1}},y^{a_{2}};p_{a_{3}},p_{a_{4}})=(x^{\grave{\imath } },u^{4}=y^{4}=t;p_{\grave{a}},p_{8}=E)\}\) for \(i_{1},j_{1},k_{1},\ldots =1,2;\) \( a_{1},b_{1},c_{1},\ldots =3,4;\) \(a_{2},b_{2},c_{2},\ldots =5,6;\) \( a_{3},b_{3},c_{3},\ldots =7,8.\) The indices \(\grave{\imath },\grave{j},\grave{k} ,\ldots =1,2,3,\) respectively, \(\grave{a},\grave{b},\grave{c},\ldots =5,6,7\) can be used for corresponding spacelike hyper surfaces on a base manifold and typical cofiber.
 
4
Hereafter, we shall not write such dependencies in explicit form if that will not result in ambiguities.
 
5
We use the symbol r for the replica parameter (and not n as in the typical works in information theory) because the symbol n is used in our works for the dimension of base manifolds.
 
Literatur
5.
Zurück zum Zitat Stoica, O.C.: Revisiting the black hole entropy and information paradox. Adv. High. Energy Phys., art. ID 4130417 (2018). arXiv:1807.05864 Stoica, O.C.: Revisiting the black hole entropy and information paradox. Adv. High. Energy Phys., art. ID 4130417 (2018). arXiv:​1807.​05864
7.
10.
Zurück zum Zitat Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, 10th Anniversary edn. Cambridge University Press, Cambridge (2010) Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, 10th Anniversary edn. Cambridge University Press, Cambridge (2010)
15.
Zurück zum Zitat Van Raamsdonk, M.: Building up spacetime with quantum entanglement. Gen. Relat. Gravity 42, 2323 (2010) [Int. J. Mod. Phys. D 19, 2429 (2010) ]; arXiv:1005.3035 Van Raamsdonk, M.: Building up spacetime with quantum entanglement. Gen. Relat. Gravity 42, 2323 (2010) [Int. J. Mod. Phys. D 19, 2429 (2010) ]; arXiv:​1005.​3035
17.
Zurück zum Zitat Vacaru, S.: Entropy functionals for nonholonomic geometric flows, quasiperiodic Ricci solitons, and emergent gravity. arXiv:1903.04920 Vacaru, S.: Entropy functionals for nonholonomic geometric flows, quasiperiodic Ricci solitons, and emergent gravity. arXiv:​1903.​04920
18.
Zurück zum Zitat Vacaru, S., Bubuianu, L.: Exact solutions for E. Verlinde emergent gravity and generalized G. Perelman entropy for geometric flows. arXiv:1904.05149 Vacaru, S., Bubuianu, L.: Exact solutions for E. Verlinde emergent gravity and generalized G. Perelman entropy for geometric flows. arXiv:​1904.​05149
24.
Zurück zum Zitat Hamilton, R.S.: In: Surveys in Differential Geometry, vol. 2, pp. 7–136. International Press, Vienna (1995) Hamilton, R.S.: In: Surveys in Differential Geometry, vol. 2, pp. 7–136. International Press, Vienna (1995)
25.
Zurück zum Zitat Friedan, D.: Nonlinear Models in \(2+\varepsilon \) Dimensions, Ph.D. Thesis (Berkely) LBL-11517, UMI-81-13038 (1980) Friedan, D.: Nonlinear Models in \(2+\varepsilon \) Dimensions, Ph.D. Thesis (Berkely) LBL-11517, UMI-81-13038 (1980)
29.
Zurück zum Zitat Vacaru, S.: Geometric information flows and G. Perelman entropy for relativistic classical and quantum mechanical systems [under elaboration] Vacaru, S.: Geometric information flows and G. Perelman entropy for relativistic classical and quantum mechanical systems [under elaboration]
30.
Zurück zum Zitat Cao, H.-D., Zhu, H.-P.: A complete proof of the Poincaré and geometrization conjectures–application of the Hamilton-Perelman theory of the Ricci flow. Asian J. Math. 10, 165–495 (2006)MathSciNetMATHCrossRef Cao, H.-D., Zhu, H.-P.: A complete proof of the Poincaré and geometrization conjectures–application of the Hamilton-Perelman theory of the Ricci flow. Asian J. Math. 10, 165–495 (2006)MathSciNetMATHCrossRef
31.
Zurück zum Zitat Morgan, J.W., Tian, G.: Ricci Flow and the Poincaré Conjecture. Clay Mathematics Monographs, vol. 3. AMS, Providence (2007) Morgan, J.W., Tian, G.: Ricci Flow and the Poincaré Conjecture. Clay Mathematics Monographs, vol. 3. AMS, Providence (2007)
36.
Zurück zum Zitat Ruchin, V., Vacaru, O., Vacaru, S.: Perelman’s W-entropy and statistical and relativistic thermodynamic description of gravitational fields. Eur. Phys. J. C 77, 184 (2017). arXiv:1312.2580 ADSCrossRef Ruchin, V., Vacaru, O., Vacaru, S.: Perelman’s W-entropy and statistical and relativistic thermodynamic description of gravitational fields. Eur. Phys. J. C 77, 184 (2017). arXiv:​1312.​2580 ADSCrossRef
37.
Zurück zum Zitat Gheorghiu, T., Ruchin, V., Vacaru, O., Vacaru, S.: Geometric flows and Perelman’s thermodynamics for black ellipsoids in R2 and Einstein gravity theories. Ann. Phys. N. Y. 369, 1–35 (2016). arXiv:1602.08512 ADSMATHCrossRef Gheorghiu, T., Ruchin, V., Vacaru, O., Vacaru, S.: Geometric flows and Perelman’s thermodynamics for black ellipsoids in R2 and Einstein gravity theories. Ann. Phys. N. Y. 369, 1–35 (2016). arXiv:​1602.​08512 ADSMATHCrossRef
38.
Zurück zum Zitat Vacaru, S.: On axiomatic formulation of gravity and matter field theories with MDRs and Finsler–Lagrange–Hamilton geometry on (co) tangent Lorentz bundles. arXiv:1801.06444 Vacaru, S.: On axiomatic formulation of gravity and matter field theories with MDRs and Finsler–Lagrange–Hamilton geometry on (co) tangent Lorentz bundles. arXiv:​1801.​06444
39.
Zurück zum Zitat Bubuianu, L., Vacaru, S.: Axiomatic formulations of modified gravity theories with nonlinear dispersion relations and Finsler–Lagrange–Hamilton geometry. Eur. Phys. J. C 78, 969 (2018)ADSCrossRef Bubuianu, L., Vacaru, S.: Axiomatic formulations of modified gravity theories with nonlinear dispersion relations and Finsler–Lagrange–Hamilton geometry. Eur. Phys. J. C 78, 969 (2018)ADSCrossRef
42.
Zurück zum Zitat Ruppeiner, G.: Riemannian geometry in thermodynamic fluctuation theory, Rev. Mod. Phys. 67, 605–659 (1995), Erratum: 68 (1996) 313 Ruppeiner, G.: Riemannian geometry in thermodynamic fluctuation theory, Rev. Mod. Phys. 67, 605–659 (1995), Erratum: 68 (1996) 313
44.
Zurück zum Zitat Vacaru, S.: Nonholonomic relativistic diffusion and exact solutions for stochastic Einstein spaces. Eur. Phys. J. P. 127, 32 (2012)CrossRef Vacaru, S.: Nonholonomic relativistic diffusion and exact solutions for stochastic Einstein spaces. Eur. Phys. J. P. 127, 32 (2012)CrossRef
46.
Zurück zum Zitat Greenberger, D.M., Horne, M.A., Zeilinger, A.: Going beyond Bells theorem. Kafatos, M. (ed.) Bells Theorem, Quantum Theory and Conceptions of the Universe, pp. 69–72. Springer, Berlin (1989) Greenberger, D.M., Horne, M.A., Zeilinger, A.: Going beyond Bells theorem. Kafatos, M. (ed.) Bells Theorem, Quantum Theory and Conceptions of the Universe, pp. 69–72. Springer, Berlin (1989)
47.
48.
50.
Zurück zum Zitat Lieb, E.H., Urskai, M.B.: Proof of the strong subadditivity of quantum-mechanical entropy. J. Math. Phys. 14, 1938–1941 (1973)ADSMathSciNetCrossRef Lieb, E.H., Urskai, M.B.: Proof of the strong subadditivity of quantum-mechanical entropy. J. Math. Phys. 14, 1938–1941 (1973)ADSMathSciNetCrossRef
51.
Zurück zum Zitat Narnhofer, H., Thirring, W.E.: From relative entropy to entropy. Fizika 17, 257–265 (1985) Narnhofer, H., Thirring, W.E.: From relative entropy to entropy. Fizika 17, 257–265 (1985)
52.
Zurück zum Zitat Umegaki, H.: Conditional expectation in an operator algebra. IV. Entropy and information. Kodai Math. Semin. Rep. 14, 59–85 (1962)MathSciNetMATHCrossRef Umegaki, H.: Conditional expectation in an operator algebra. IV. Entropy and information. Kodai Math. Semin. Rep. 14, 59–85 (1962)MathSciNetMATHCrossRef
54.
Zurück zum Zitat Ohya, M., Pertz, D.: Quantum Entropy and Its Use [corrected second printing]. Springer, Berlin (2004) Ohya, M., Pertz, D.: Quantum Entropy and Its Use [corrected second printing]. Springer, Berlin (2004)
55.
Zurück zum Zitat Wolf, M.M., Verstraete, F., Hasings, M.B., Cirac, J.I.: Area laws in quantum systems: mutual information and correlations. Phys. Rev. Lett. 100, 070502 (2008)ADSMathSciNetMATHCrossRef Wolf, M.M., Verstraete, F., Hasings, M.B., Cirac, J.I.: Area laws in quantum systems: mutual information and correlations. Phys. Rev. Lett. 100, 070502 (2008)ADSMathSciNetMATHCrossRef
56.
Zurück zum Zitat Rényi, A.: On measures of entropy in information. In: Fourth Berkeley Symposium on Mathematical Statistics and Probability, pp. 547–561 (1961) Rényi, A.: On measures of entropy in information. In: Fourth Berkeley Symposium on Mathematical Statistics and Probability, pp. 547–561 (1961)
58.
Zurück zum Zitat Müller-Lennert, M., Dupius, F., Szehr, O., Fehr, S., Tomamichel, M.: On quantum Rényi entropies: a new generalization and some properties. J. Math. Phys. 54, 122203 (2013)ADSMathSciNetMATHCrossRef Müller-Lennert, M., Dupius, F., Szehr, O., Fehr, S., Tomamichel, M.: On quantum Rényi entropies: a new generalization and some properties. J. Math. Phys. 54, 122203 (2013)ADSMathSciNetMATHCrossRef
59.
Zurück zum Zitat Wilde, M.M., Winter, A., Yang, D.: Strong converse for the classical capacity of entanglement-breaking channels. arXiv:1306.1586 Wilde, M.M., Winter, A., Yang, D.: Strong converse for the classical capacity of entanglement-breaking channels. arXiv:​1306.​1586
60.
Zurück zum Zitat Adesso, G., Girolami, D., Serafini, A.: Measuring Gaussian quantum information and correlation using the Rényi entropy of order 2. Phys. Rev. Lett. 109, 190502 (2012)ADSCrossRef Adesso, G., Girolami, D., Serafini, A.: Measuring Gaussian quantum information and correlation using the Rényi entropy of order 2. Phys. Rev. Lett. 109, 190502 (2012)ADSCrossRef
62.
Zurück zum Zitat Bekenstein, J.D.: Black holes and the second law. Nuovo Cim. Lett. 4, 737–740 (1972)ADSCrossRef Bekenstein, J.D.: Black holes and the second law. Nuovo Cim. Lett. 4, 737–740 (1972)ADSCrossRef
Metadaten
Titel
Classical and quantum geometric information flows and entanglement of relativistic mechanical systems
verfasst von
Sergiu I. Vacaru
Laurenţiu Bubuianu
Publikationsdatum
01.12.2019
Verlag
Springer US
Erschienen in
Quantum Information Processing / Ausgabe 12/2019
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-019-2487-z

Weitere Artikel der Ausgabe 12/2019

Quantum Information Processing 12/2019 Zur Ausgabe