Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 12/2020

13.05.2020

Cleverly embedded CoS2/NiS2 on two-dimensional graphene nanosheets as high-performance anode material for improved sodium ion batteries and sodium ion capacitors

verfasst von: Jian Liu, Ying-Ge Xu, Ling-Bin Kong

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 12/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The CoS2/NiS2-RGO composite with excellent electrochemical performance is first used as an anode material for sodium-ion capacitors (SICs) and sodium-ion batteries (SIBs). CoS2/NiS2-RGO is prepared by one-step hydrothermal process. In half-cell tests, CoS2/NiS2-RGO exhibits a remarkably high reversible capacity of 473.7 mA h g−1 after 50 cycles at the specific current of 100 mA g−1. SICs show an impressive energy density of 139.1 W h kg−1 at the power density of 14,000 W kg−1, which has great advantages compare to the commercial lithium ion batteries. SIBs also show a good capacity of 50 mA h g−1 at a rate of 5 °C. The excellent electrochemical performance of CoS2/NiS2-RGO is mainly attributed to the heterostructure formed by CoS2 and NiS2, which effectively improves the electrical conductivity. On the other hand, there is a good synergistic effect between RGO and CoS2/NiS2. The large specific surface area of RGO makes CoS2/NiS2 disperse uniformly on the surface of RGO, preventing agglomeration and reducing particle size of CoS2/NiS2. In turn, CoS2/NiS2 acting on the surface layer of RGO hinders the secondary overlap and increases the electrical conductivity of RGO. The mixed bimetallic sulfide/RGO system is expected to promote the rapid development of sodium storage devices.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat S.B. Aziz, M.H. Hamsan, M.A. Brza, M.F.Z. Kadir, R.T. Abdulwahid, H.O. Ghareeb, H.J. Woo, Fabrication of energy storage EDLC device based on CS: PEO polymer blend electrolytes with high Li+ ion transference number. Results Phys. 15, 102584 (2019) S.B. Aziz, M.H. Hamsan, M.A. Brza, M.F.Z. Kadir, R.T. Abdulwahid, H.O. Ghareeb, H.J. Woo, Fabrication of energy storage EDLC device based on CS: PEO polymer blend electrolytes with high Li+ ion transference number. Results Phys. 15, 102584 (2019)
2.
Zurück zum Zitat S.B. Aziz, M.A. Brza, P.A. Mohamed, M.F.Z. Kadir, M.H. Hamsan, R.T. Abdulwahid, H.J. Woo, Increase of metallic silver nanoparticles in Chitosan: AgNt based polymer electrolytes incorporated with alumina filler. Results Phys. 13, 102326 (2019) S.B. Aziz, M.A. Brza, P.A. Mohamed, M.F.Z. Kadir, M.H. Hamsan, R.T. Abdulwahid, H.J. Woo, Increase of metallic silver nanoparticles in Chitosan: AgNt based polymer electrolytes incorporated with alumina filler. Results Phys. 13, 102326 (2019)
3.
Zurück zum Zitat S.B. Aziz, R.T. Abdulwahid, M.H. Hamsan, M.A. Brza, R.M. Abdullah, M.F.Z. Kadir, S.K. Muzakir, structural, impedance, and EDLC characteristics of proton conducting chitosan-based polymer blend electrolytes with high electrochemical stability. Molecules 24, 3508 (2019) S.B. Aziz, R.T. Abdulwahid, M.H. Hamsan, M.A. Brza, R.M. Abdullah, M.F.Z. Kadir, S.K. Muzakir, structural, impedance, and EDLC characteristics of proton conducting chitosan-based polymer blend electrolytes with high electrochemical stability. Molecules 24, 3508 (2019)
4.
Zurück zum Zitat P.G. Bruce, B. Scrosati, J.M. Tarascon, Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 47, 2930–2946 (2010) P.G. Bruce, B. Scrosati, J.M. Tarascon, Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 47, 2930–2946 (2010)
5.
Zurück zum Zitat A. Manthiram, Materials challenges and opportunities of lithium-ion batteries for electrical energy storage. J. Phys. Chem.Lett. 2, 176–184 (2011) A. Manthiram, Materials challenges and opportunities of lithium-ion batteries for electrical energy storage. J. Phys. Chem.Lett. 2, 176–184 (2011)
6.
Zurück zum Zitat X. Kang, Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 114, 11503 (2014) X. Kang, Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 114, 11503 (2014)
7.
Zurück zum Zitat J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001) J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001)
8.
Zurück zum Zitat X.J. Xu, J. Liu, Z.B. Liu, J.D. Shen, R.Z. Hu, J.W. Liu, L.Z. Ouyang, L. Zhang, M. Zhu, Robust pitaya-structured pyrite as high energy density cathode for high-rate lithium batteries. ACS Nano 11, 9033–9040 (2017) X.J. Xu, J. Liu, Z.B. Liu, J.D. Shen, R.Z. Hu, J.W. Liu, L.Z. Ouyang, L. Zhang, M. Zhu, Robust pitaya-structured pyrite as high energy density cathode for high-rate lithium batteries. ACS Nano 11, 9033–9040 (2017)
9.
Zurück zum Zitat X.J. Xu, Z.B. Liu, S.M. Ji, Z.S. Wang, Z.Y. Ni, Y.Q. Lv, J.W. Liu, J. Liu, Rational synthesis of ternary FeS@TiO2@C nanotubes as anode for superior Na-ion batteries. Chem. Eng. J. 359, 765–774 (2019) X.J. Xu, Z.B. Liu, S.M. Ji, Z.S. Wang, Z.Y. Ni, Y.Q. Lv, J.W. Liu, J. Liu, Rational synthesis of ternary FeS@TiO2@C nanotubes as anode for superior Na-ion batteries. Chem. Eng. J. 359, 765–774 (2019)
10.
Zurück zum Zitat X.J. Xu, S.M. Ji, M.Z. Gu, J. Liu, In situ synthesis of MnS hollow microspheres on reduced graphene oxide sheets as high-capacity and long-life anodes for Li- and Na- ion batteries. ACS Appl. Mater. Interfaces 7, 20957 (2015) X.J. Xu, S.M. Ji, M.Z. Gu, J. Liu, In situ synthesis of MnS hollow microspheres on reduced graphene oxide sheets as high-capacity and long-life anodes for Li- and Na- ion batteries. ACS Appl. Mater. Interfaces 7, 20957 (2015)
11.
Zurück zum Zitat L. Shen, H. Lv, S. Chen, P. Kopold, P.A.V. Aken, X. Wu, J. Maier, Y. Yan, Carbon nanowires: peapod-like Li3VO4/N-doped carbon nanowires with pseudocapacitive properties as advanced materials for high-energy lithium-ion capacitors. Adv. Mater. 29, 1700142 (2017) L. Shen, H. Lv, S. Chen, P. Kopold, P.A.V. Aken, X. Wu, J. Maier, Y. Yan, Carbon nanowires: peapod-like Li3VO4/N-doped carbon nanowires with pseudocapacitive properties as advanced materials for high-energy lithium-ion capacitors. Adv. Mater. 29, 1700142 (2017)
12.
Zurück zum Zitat D. Xu, D. Chao, H. Wang, Y. Gong, J.F. Hong, Flexible quasi-solid-state sodium-ion capacitors developed using 2D metal-organic-framework array as reactor. Adv. Energy Mater. 8, 1702769 (2018) D. Xu, D. Chao, H. Wang, Y. Gong, J.F. Hong, Flexible quasi-solid-state sodium-ion capacitors developed using 2D metal-organic-framework array as reactor. Adv. Energy Mater. 8, 1702769 (2018)
13.
Zurück zum Zitat H. Che, S. Chen, Y. Xie, W. Hong, Z.F. Ma, Electrolyte design strategies and research progress for room-temperature sodium-ion batteries. Energy Environ. Sci. 10, 1075–1101 (2017) H. Che, S. Chen, Y. Xie, W. Hong, Z.F. Ma, Electrolyte design strategies and research progress for room-temperature sodium-ion batteries. Energy Environ. Sci. 10, 1075–1101 (2017)
14.
Zurück zum Zitat R.R. Gaddam, D. Yang, R. Narayan, K. Raju, N.A. Kumar, X.S. Zhao, Biomass derived carbon nanoparticle as anodes for high performance sodium and lithium ion batteries. Nano Energy 26, 346–352 (2016) R.R. Gaddam, D. Yang, R. Narayan, K. Raju, N.A. Kumar, X.S. Zhao, Biomass derived carbon nanoparticle as anodes for high performance sodium and lithium ion batteries. Nano Energy 26, 346–352 (2016)
15.
Zurück zum Zitat H. Zhe, W. Lixiu, Z. Kai, W. Jianbin, C. Fangyi, T. Zhanliang, C. Jun, MoS2 nanoflowers with expanded interlayers as high-performance anodes for sodium-ion batteries. Angew. Chem. 126, 13008–13012 (2014) H. Zhe, W. Lixiu, Z. Kai, W. Jianbin, C. Fangyi, T. Zhanliang, C. Jun, MoS2 nanoflowers with expanded interlayers as high-performance anodes for sodium-ion batteries. Angew. Chem. 126, 13008–13012 (2014)
16.
Zurück zum Zitat Z. Changbao, M. Xiaoke, P.A. Aken, Y. Van, M.J. Yan, Single-layered ultrasmall nanoplates of MoS2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage. Angew. Chem. Int. Ed. 53, 2152–2156 (2014) Z. Changbao, M. Xiaoke, P.A. Aken, Y. Van, M.J. Yan, Single-layered ultrasmall nanoplates of MoS2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage. Angew. Chem. Int. Ed. 53, 2152–2156 (2014)
17.
Zurück zum Zitat R. Xianhong, T. Huiteng, Y. Qingyu, Nanostructured metal sulfides for energy storage. Nanoscale 6, 9889–9924 (2014) R. Xianhong, T. Huiteng, Y. Qingyu, Nanostructured metal sulfides for energy storage. Nanoscale 6, 9889–9924 (2014)
18.
Zurück zum Zitat H. Kang, Y. Liu, K. Cao, Z. Yan, L.F. Jiao, Y. Wang, H. Yuan, Update on anode materials for Na-ion batteries. J. Mater. Chem. A 3, 17899–17913 (2015) H. Kang, Y. Liu, K. Cao, Z. Yan, L.F. Jiao, Y. Wang, H. Yuan, Update on anode materials for Na-ion batteries. J. Mater. Chem. A 3, 17899–17913 (2015)
19.
Zurück zum Zitat Z. Li, W. Feng, Y. Lin, X. Liu, H. Fei, Flaky CoS2 and graphene nanocomposite anode materials for sodium-ion batteries with improved performance. RSC Adv. 6, 70632–70637 (2016) Z. Li, W. Feng, Y. Lin, X. Liu, H. Fei, Flaky CoS2 and graphene nanocomposite anode materials for sodium-ion batteries with improved performance. RSC Adv. 6, 70632–70637 (2016)
20.
Zurück zum Zitat X. Xu, R. Zhao, W. Ai, B. Chen, T. Yu, Controllable design of MoS2 nanosheets anchored on nitrogen-doped graphene: toward fast sodium storage by tunable pseudocapacitance. Adv. Mater. 30, 1800658 (2018) X. Xu, R. Zhao, W. Ai, B. Chen, T. Yu, Controllable design of MoS2 nanosheets anchored on nitrogen-doped graphene: toward fast sodium storage by tunable pseudocapacitance. Adv. Mater. 30, 1800658 (2018)
21.
Zurück zum Zitat Q. Wei, T. Chen, T. Lu, D.H.C. Chua, L. Pan, Layered nickel sulfide-reduced graphene oxide composites synthesized via microwave-assisted method as high performance anode materials of sodium-ion batteries. J. Power Sources 302, 202–209 (2016) Q. Wei, T. Chen, T. Lu, D.H.C. Chua, L. Pan, Layered nickel sulfide-reduced graphene oxide composites synthesized via microwave-assisted method as high performance anode materials of sodium-ion batteries. J. Power Sources 302, 202–209 (2016)
22.
Zurück zum Zitat L.L. Tian, S.B. Li, M.J. Zhang, S.K. Li, L.P. Lin, J.X. Zheng, Q.C. Zhuang, K. Amine, F. Pan, Cascading boost effect on the capacity of nitrogen-doped graphene sheets for Li- and Na-ion batteries. ACS Appl. Mater. Interfaces 8, 26722–26729 (2016) L.L. Tian, S.B. Li, M.J. Zhang, S.K. Li, L.P. Lin, J.X. Zheng, Q.C. Zhuang, K. Amine, F. Pan, Cascading boost effect on the capacity of nitrogen-doped graphene sheets for Li- and Na-ion batteries. ACS Appl. Mater. Interfaces 8, 26722–26729 (2016)
23.
Zurück zum Zitat A.-L.H. Markus Krengel, M. Kaus, S. Indris, N. Wolff, L. Kienle, D. Westfal, W. Bensch, CuV2S4: a high rate-capacity and stable anode material for sodium-ion batteries. ACS Appl. Mater. Interfaces 9, 21283–21291 (2017) A.-L.H. Markus Krengel, M. Kaus, S. Indris, N. Wolff, L. Kienle, D. Westfal, W. Bensch, CuV2S4: a high rate-capacity and stable anode material for sodium-ion batteries. ACS Appl. Mater. Interfaces 9, 21283–21291 (2017)
24.
Zurück zum Zitat X. Wang, X. Li, Q. Li, H. Li, J. Xu, H. Wang, G. Zhao, L. Lu, X. Lin, H. Li, S. Li, Improved electrochemical performance based on nanostructured SnS2@CoS2-rGO composite anode for sodium-ion batteries. Nano-Micro Lett. 10, 91–102 (2018) X. Wang, X. Li, Q. Li, H. Li, J. Xu, H. Wang, G. Zhao, L. Lu, X. Lin, H. Li, S. Li, Improved electrochemical performance based on nanostructured SnS2@CoS2-rGO composite anode for sodium-ion batteries. Nano-Micro Lett. 10, 91–102 (2018)
25.
Zurück zum Zitat T. Wang, P. Hu, C. Zhang, H. Du, Z. Zhang, X. Wang, S. Chen, J. Xiong, G. Cui, Nickel disulfide-graphene nanosheets composites with improved electrochemical performance for sodium ion battery. ACS Appl. Mater. Interfaces 8, 7811–7817 (2016) T. Wang, P. Hu, C. Zhang, H. Du, Z. Zhang, X. Wang, S. Chen, J. Xiong, G. Cui, Nickel disulfide-graphene nanosheets composites with improved electrochemical performance for sodium ion battery. ACS Appl. Mater. Interfaces 8, 7811–7817 (2016)
26.
Zurück zum Zitat H. Xu, J. Liu, Y. Chen, C.L. Li, J. Tang, Q. Li, Synthesis of three-dimensional nitrogen-doped graphene/polyaniline hydrogels for high performance supercapacitor applications. J. Mater. Sci. Mater. Electron. 28, 10674–10683 (2017) H. Xu, J. Liu, Y. Chen, C.L. Li, J. Tang, Q. Li, Synthesis of three-dimensional nitrogen-doped graphene/polyaniline hydrogels for high performance supercapacitor applications. J. Mater. Sci. Mater. Electron. 28, 10674–10683 (2017)
27.
Zurück zum Zitat W. Ren, Z. Zheng, X. Chang, C. Niu, Q. Wei, Q. An, K. Zhao, M. Yan, M. Qin, L. Mai, Self-sacrificed synthesis of three-dimensional Na3V2(PO4)3 nanofiber network for high-rate sodium–ion full batteries. Nano Energy 25, 145–153 (2016) W. Ren, Z. Zheng, X. Chang, C. Niu, Q. Wei, Q. An, K. Zhao, M. Yan, M. Qin, L. Mai, Self-sacrificed synthesis of three-dimensional Na3V2(PO4)3 nanofiber network for high-rate sodium–ion full batteries. Nano Energy 25, 145–153 (2016)
28.
Zurück zum Zitat D.S. Mhamane, V. Aravindan, M.S. Kim, H.K. Kim, K.C. Roh, D. Ruan, S.H. Lee, M. Srinivasan, K.B. Kim, Silica assisted bottom-up synthesis of graphene like high surface area carbon for highly efficient ultracapacitor and Li-ion hybrid capacitor applications. J. Mater. Chem. A 4, 5578–5591 (2016) D.S. Mhamane, V. Aravindan, M.S. Kim, H.K. Kim, K.C. Roh, D. Ruan, S.H. Lee, M. Srinivasan, K.B. Kim, Silica assisted bottom-up synthesis of graphene like high surface area carbon for highly efficient ultracapacitor and Li-ion hybrid capacitor applications. J. Mater. Chem. A 4, 5578–5591 (2016)
29.
Zurück zum Zitat L. Yan, G. Chen, S. Sarker, S. Richins, H. Wang, W. Xu, X. Rui, H. Luo, Ultrafine Nb2O5 nanocrystal coating on reduced graphene oxide as anode material for high performance sodium ion battery. ACS Appl. Mater. Interfaces 8, 22213–22219 (2016) L. Yan, G. Chen, S. Sarker, S. Richins, H. Wang, W. Xu, X. Rui, H. Luo, Ultrafine Nb2O5 nanocrystal coating on reduced graphene oxide as anode material for high performance sodium ion battery. ACS Appl. Mater. Interfaces 8, 22213–22219 (2016)
30.
Zurück zum Zitat Y. Li, H.X. Zhang, F.T. Liu, X.F. Dong, X. Li, C.W. Wang, New design of oriented NiS nanoflower arrays as platinum-free counter electrode for high-efficient dye-sensitized solar cells. Superlattices Microstruct. 125, 66–71 (2019) Y. Li, H.X. Zhang, F.T. Liu, X.F. Dong, X. Li, C.W. Wang, New design of oriented NiS nanoflower arrays as platinum-free counter electrode for high-efficient dye-sensitized solar cells. Superlattices Microstruct. 125, 66–71 (2019)
31.
Zurück zum Zitat R.M. Sun, S.J. Liu, Q.L. Wei, J.Z. Sheng, S.H. Zhu, Q.Y. An, L.Q. Mai, Mesoporous NiS2 nanospheres anode with pseudocapacitance for high-rate and long-life sodium-ion battery. Small 13, 1701744 (2017) R.M. Sun, S.J. Liu, Q.L. Wei, J.Z. Sheng, S.H. Zhu, Q.Y. An, L.Q. Mai, Mesoporous NiS2 nanospheres anode with pseudocapacitance for high-rate and long-life sodium-ion battery. Small 13, 1701744 (2017)
32.
Zurück zum Zitat Z. Liu, Q. Liu, Y. Huang, Y. Ma, S. Yin, X. Zhang, W. Sun, Y. Chen, Organic photovoltaic devices based on a novel acceptor material: graphene. Adv. Mater. 20, 3924–3930 (2010) Z. Liu, Q. Liu, Y. Huang, Y. Ma, S. Yin, X. Zhang, W. Sun, Y. Chen, Organic photovoltaic devices based on a novel acceptor material: graphene. Adv. Mater. 20, 3924–3930 (2010)
33.
Zurück zum Zitat H.W. Jia Ding, Z.L.A. Kohandehghan, K. Cui, Z. Xu, B. Zahiri, X. Tan, E.M. Lotfabad, B.C. Olsen, D. Mitlin, Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes. ACS Nano 12, 11004–11015 (2013) H.W. Jia Ding, Z.L.A. Kohandehghan, K. Cui, Z. Xu, B. Zahiri, X. Tan, E.M. Lotfabad, B.C. Olsen, D. Mitlin, Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes. ACS Nano 12, 11004–11015 (2013)
34.
Zurück zum Zitat R.R. Gaddam, A.H.F. Niaei, M. Hankel, D.J. Bernhardt, A.K. Nanjundan, X.S. Zhao, Capacitance-enhanced sodium-ion storage in nitrogen-rich hard carbon. J. Mater. Chem. A 5, 22186 (2017) R.R. Gaddam, A.H.F. Niaei, M. Hankel, D.J. Bernhardt, A.K. Nanjundan, X.S. Zhao, Capacitance-enhanced sodium-ion storage in nitrogen-rich hard carbon. J. Mater. Chem. A 5, 22186 (2017)
35.
Zurück zum Zitat L.S. Price, I.P. Parkin, A.M.E. Hardy, R.J.H. Clark, T.G. Hibbert, K.C. Molloy, Atmospheric pressure chemical vapor deposition of tin sulfides (SnS, Sn2S3, and SnS2) on glass. Cheminform 11, 1792–1799 (1999) L.S. Price, I.P. Parkin, A.M.E. Hardy, R.J.H. Clark, T.G. Hibbert, K.C. Molloy, Atmospheric pressure chemical vapor deposition of tin sulfides (SnS, Sn2S3, and SnS2) on glass. Cheminform 11, 1792–1799 (1999)
36.
Zurück zum Zitat P. Sun, L. Tian, Z. Zuo, Z. Chen, N. Huang, Y. Sun, X. Sun, Low-crystalline NiS hybridized with BiOCl nanosheet as highly efficient electrocatalyst for dye-sensitized solar cells. ChemistrySelect 3, 11716–11723 (2018) P. Sun, L. Tian, Z. Zuo, Z. Chen, N. Huang, Y. Sun, X. Sun, Low-crystalline NiS hybridized with BiOCl nanosheet as highly efficient electrocatalyst for dye-sensitized solar cells. ChemistrySelect 3, 11716–11723 (2018)
37.
Zurück zum Zitat S.D. Seo, D. Park, S. Park, D.W. Kim, “Brain-coral-like” mesoporous hollow CoS2@N-doped graphitic carbon nanoshells as efficient sulfur reservoirs for lithium–sulfur batteries. Adv. Funct. Mater. 29, 1903712 (2019) S.D. Seo, D. Park, S. Park, D.W. Kim, “Brain-coral-like” mesoporous hollow CoS2@N-doped graphitic carbon nanoshells as efficient sulfur reservoirs for lithium–sulfur batteries. Adv. Funct. Mater. 29, 1903712 (2019)
38.
Zurück zum Zitat L. Fang, Y. Zhang, Y. Guan, H. Zhang, S. Wang, Y. Wang, Specific synthesis of CoS2 nanoparticles embedded in porous Al2O3 nanosheets for efficient hydrogen evolution and enhanced lithium storage. J. Mater. Chem. A 5, 2861–2869 (2017) L. Fang, Y. Zhang, Y. Guan, H. Zhang, S. Wang, Y. Wang, Specific synthesis of CoS2 nanoparticles embedded in porous Al2O3 nanosheets for efficient hydrogen evolution and enhanced lithium storage. J. Mater. Chem. A 5, 2861–2869 (2017)
39.
Zurück zum Zitat Y. Zhang, C. Lv, X. Wang, S. Chen, D. Li, Z. Peng, D. Yang, Boosting sodium-ion storage by encapsulating NiS (CoS) hollow nanoparticles into carbonaceous fibers. ACS Appl. Mater. Interfaces 10, 40531–40539 (2018) Y. Zhang, C. Lv, X. Wang, S. Chen, D. Li, Z. Peng, D. Yang, Boosting sodium-ion storage by encapsulating NiS (CoS) hollow nanoparticles into carbonaceous fibers. ACS Appl. Mater. Interfaces 10, 40531–40539 (2018)
40.
Zurück zum Zitat X. Liu, K. Zhang, K. Lei, F. Li, Z. Tao, J. Chen, Facile synthesis and electrochemical sodium storage of CoS2 micro/nano-structures. Nano Res. 9, 198–206 (2016) X. Liu, K. Zhang, K. Lei, F. Li, Z. Tao, J. Chen, Facile synthesis and electrochemical sodium storage of CoS2 micro/nano-structures. Nano Res. 9, 198–206 (2016)
41.
Zurück zum Zitat Z. Wang, X. Li, Y. Yang, Y. Cui, H. Pan, Z. Wang, B. Chen, G. Qian, Highly dispersed β-NiS nanoparticles in porous carbon matrices by a template metal–organic framework method for lithium-ion cathode. J. Mater. Chem. A 2, 7912–7916 (2014) Z. Wang, X. Li, Y. Yang, Y. Cui, H. Pan, Z. Wang, B. Chen, G. Qian, Highly dispersed β-NiS nanoparticles in porous carbon matrices by a template metal–organic framework method for lithium-ion cathode. J. Mater. Chem. A 2, 7912–7916 (2014)
42.
Zurück zum Zitat S. Peng, X. Han, L. Li, Z. Zhu, F. Cheng, M. Srinivansan, S. Adams, S. Ramakrishna, Unique cobalt sulfide/reduced graphene oxide composite as an anode for sodium-ion batteries with superior rate capability and long cycling stability. Small 12, 1359–1368 (2016) S. Peng, X. Han, L. Li, Z. Zhu, F. Cheng, M. Srinivansan, S. Adams, S. Ramakrishna, Unique cobalt sulfide/reduced graphene oxide composite as an anode for sodium-ion batteries with superior rate capability and long cycling stability. Small 12, 1359–1368 (2016)
43.
Zurück zum Zitat L. Shi, D. Li, P. Yao, J. Yu, C. Li, B. Yang, C. Zhu, J. Xu, SnS2 Nanosheets coating on nanohollow cubic CoS2/C for ultralong life and high rate capability half/full sodium-ion batteries. Small 14, e1802716 (2018) L. Shi, D. Li, P. Yao, J. Yu, C. Li, B. Yang, C. Zhu, J. Xu, SnS2 Nanosheets coating on nanohollow cubic CoS2/C for ultralong life and high rate capability half/full sodium-ion batteries. Small 14, e1802716 (2018)
44.
Zurück zum Zitat J.B. Cook, H.S. Kim, Y. Yan, J.S. Ko, S. Robbennolt, B. Dunn, S.H. Tolbert, Mesoporous MoS2 as a transition metal dichalcogenide exhibiting pseudocapacitive Li and Na-ion charge storage. Adv. Energy Mater. 6, 1–12 (2016) J.B. Cook, H.S. Kim, Y. Yan, J.S. Ko, S. Robbennolt, B. Dunn, S.H. Tolbert, Mesoporous MoS2 as a transition metal dichalcogenide exhibiting pseudocapacitive Li and Na-ion charge storage. Adv. Energy Mater. 6, 1–12 (2016)
45.
Zurück zum Zitat X. Xia, D. Chao, Y. Zhang, J. Zhan, Y. Zhong, X. Wang, Y. Wang, Z.X. Shen, J. Tu, H.J. Fan, Generic synthesis of carbon nanotube branches on metal oxide arrays exhibiting stable high-rate and long-cycle sodium-ion storage. Small 12, 3048–3058 (2016) X. Xia, D. Chao, Y. Zhang, J. Zhan, Y. Zhong, X. Wang, Y. Wang, Z.X. Shen, J. Tu, H.J. Fan, Generic synthesis of carbon nanotube branches on metal oxide arrays exhibiting stable high-rate and long-cycle sodium-ion storage. Small 12, 3048–3058 (2016)
46.
Zurück zum Zitat Y. Lin, Z. Qiu, D. Li, S. Ullah, Y. Hai, H. Xin, W. Liao, Y. Bo, H. Fan, X. Jian, NiS2@CoS2 nanocrystals encapsulated in N-doped carbon nanocubes for high performance lithium/sodium ion batteries. Energy Storage Mater. 11, 67–74 (2017) Y. Lin, Z. Qiu, D. Li, S. Ullah, Y. Hai, H. Xin, W. Liao, Y. Bo, H. Fan, X. Jian, NiS2@CoS2 nanocrystals encapsulated in N-doped carbon nanocubes for high performance lithium/sodium ion batteries. Energy Storage Mater. 11, 67–74 (2017)
48.
Zurück zum Zitat Z. Tong, S. Liu, Y. Zhou, J. Zhao, Y. Wu, Y. Wang, Y. Li, Rapid redox kinetics in uniform sandwich-structured mesoporous Nb2O5/graphene/mesoporous Nb2O5 nanosheets for high-performance sodium-ion supercapacitors. Energy Storage Mater. 13, 223–232 (2018) Z. Tong, S. Liu, Y. Zhou, J. Zhao, Y. Wu, Y. Wang, Y. Li, Rapid redox kinetics in uniform sandwich-structured mesoporous Nb2O5/graphene/mesoporous Nb2O5 nanosheets for high-performance sodium-ion supercapacitors. Energy Storage Mater. 13, 223–232 (2018)
49.
Zurück zum Zitat S. Dong, Y. Xu, L. Wu, H. Dou, X. Zhang, Surface-functionalized graphene-based quasi-solid-state Na-ion hybrid capacitors with excellent performance. Energy Storage Mater. 11, 8–15 (2018) S. Dong, Y. Xu, L. Wu, H. Dou, X. Zhang, Surface-functionalized graphene-based quasi-solid-state Na-ion hybrid capacitors with excellent performance. Energy Storage Mater. 11, 8–15 (2018)
50.
Zurück zum Zitat L. Gao, S. Chen, L. Zhang, X. Yang, High performance sodium ion hybrid supercapacitors based on Na2Ti3O7 nanosheet arrays. J. Alloy. Compd. 766, 284–290 (2018) L. Gao, S. Chen, L. Zhang, X. Yang, High performance sodium ion hybrid supercapacitors based on Na2Ti3O7 nanosheet arrays. J. Alloy. Compd. 766, 284–290 (2018)
51.
Zurück zum Zitat Y. Li, Y. Yang, J. Zhou, S. Lin, Z. Xu, Y. Xing, Y. Zhang, J. Feng, Z. Mu, P. Li, Y. Chao, S. Guo, Coupled and decoupled hierarchical carbon nanomaterials toward high-energy-density quasi-solid-state Na-Ion hybrid energy storage devices. Energy Storage Mater. 23, 530–538 (2019) Y. Li, Y. Yang, J. Zhou, S. Lin, Z. Xu, Y. Xing, Y. Zhang, J. Feng, Z. Mu, P. Li, Y. Chao, S. Guo, Coupled and decoupled hierarchical carbon nanomaterials toward high-energy-density quasi-solid-state Na-Ion hybrid energy storage devices. Energy Storage Mater. 23, 530–538 (2019)
52.
Zurück zum Zitat F.M. Auxilia, J. Jang, K. Jang, H. Song, M.-H. Ham, Au@TiO2/reduced graphene oxide nanocomposites for lithium-ion capacitors. Chem. Eng. J. 362, 136–143 (2019) F.M. Auxilia, J. Jang, K. Jang, H. Song, M.-H. Ham, Au@TiO2/reduced graphene oxide nanocomposites for lithium-ion capacitors. Chem. Eng. J. 362, 136–143 (2019)
53.
Zurück zum Zitat C. Li, X. Zhang, K. Wang, X. Sun, Y. Ma, A 293 Wh kg-1 and 6 kW kg-1 pouch-type lithium-ion capacitor based on SiOx/graphite composite anode. J. Power Sources 414, 293–301 (2019) C. Li, X. Zhang, K. Wang, X. Sun, Y. Ma, A 293 Wh kg-1 and 6 kW kg-1 pouch-type lithium-ion capacitor based on SiOx/graphite composite anode. J. Power Sources 414, 293–301 (2019)
Metadaten
Titel
Cleverly embedded CoS2/NiS2 on two-dimensional graphene nanosheets as high-performance anode material for improved sodium ion batteries and sodium ion capacitors
verfasst von
Jian Liu
Ying-Ge Xu
Ling-Bin Kong
Publikationsdatum
13.05.2020
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 12/2020
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-020-03541-1

Weitere Artikel der Ausgabe 12/2020

Journal of Materials Science: Materials in Electronics 12/2020 Zur Ausgabe

Neuer Inhalt