Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 12/2020

02.05.2020

Fabrication and characterization of Ag-doped Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte with high ionic conductivity

verfasst von: Majid Soweizy, Mostafa Zahedifar, Merat Karimi

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 12/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Lithium superionic conductor (LISICON) Li1.3Al0.3Ti1.7(PO4)3 (LATP) is known as a high lithium-ion conductive solid electrolyte. The top-down approach was utilized in this work to synthesize LATP in which Ag with concentrations of 1, 2, 4, 6, 8 wt% was incorporated in the host material and the performance of the fabricated solid electrolyte was examined and compared with that of the pristine material. Substitution of Li+ by Ag+ in LATP structure resulted in bulk conductivity of 1.1 × 10–3 S cm−1 and grain boundary conductivity of 1.0 × 10–3 S cm−1 at 25 °C for the optimum Ag concentration of 4 wt%. The calcination process was performed in several temperature steps to prevent the release of volatile substances. To obtain a pure LATP structure, phase analyses were performed using X-ray diffraction (XRD) patterns to improve the synthesis conditions. High density, low unwanted and amorphous phases and increased ionic conductivity were achieved by applying sintering process and optimizing the amounts of additives. Effective surface area of about 16 g m−2 was measured using Brunauer–Emmett–Teller (BET) analysis. Negligible decomposition of the products was observed by employing thermal analyses (TGA/DSC). The bulk conductivity of the fabricated solid electrolyte is among the highest reported bulk conductivity for LATP and the grain boundary conductivity revealed by electrochemical impedance spectroscopy (EIS) test is higher than other reported values for LATP. So, the fabricated solid electrolyte is recommended for using in electrically charged solid-state lithium batteries.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat H. Aono, E. Sugimoto, Y. Sadaoka, N. Imanaka, G. Adachi, The electrical properties of ceramic electrolytes for LiMxTi2-x(PO4)3+yLi2O, M = Ge, Sn, Hf, and Zr systems. J. Electrochem. Soc. 140, 1827–1833 (1993)CrossRef H. Aono, E. Sugimoto, Y. Sadaoka, N. Imanaka, G. Adachi, The electrical properties of ceramic electrolytes for LiMxTi2-x(PO4)3+yLi2O, M = Ge, Sn, Hf, and Zr systems. J. Electrochem. Soc. 140, 1827–1833 (1993)CrossRef
2.
Zurück zum Zitat J.G. Kim, B. Son, S. Mukherjee, N. Schuppert, A. Bates, O. Kwon et al., A review of lithium and non-lithium based solid state batteries. J. Power Sources 282, 299–322 (2015)CrossRef J.G. Kim, B. Son, S. Mukherjee, N. Schuppert, A. Bates, O. Kwon et al., A review of lithium and non-lithium based solid state batteries. J. Power Sources 282, 299–322 (2015)CrossRef
3.
Zurück zum Zitat A. Kraytsberg, Ein-Eli Y Review on Li–air batteries—opportunities, limitations and perspective. J. Power Sources 196, 886–893 (2011)CrossRef A. Kraytsberg, Ein-Eli Y Review on Li–air batteries—opportunities, limitations and perspective. J. Power Sources 196, 886–893 (2011)CrossRef
4.
Zurück zum Zitat A.J. Moulson, Herbert JM Electroceramics: Materials, Properties, Applications (Wiley, New York, 2003)CrossRef A.J. Moulson, Herbert JM Electroceramics: Materials, Properties, Applications (Wiley, New York, 2003)CrossRef
5.
Zurück zum Zitat H. Tuller, Handbook of Electronic and Photonic Materials (Springer, New York, 2017) H. Tuller, Handbook of Electronic and Photonic Materials (Springer, New York, 2017)
6.
Zurück zum Zitat E. Barsoukov, Macdonald JR Impedance Spectroscopy: Theory, Experiment, and Applications (Wiley, New York, 2018)CrossRef E. Barsoukov, Macdonald JR Impedance Spectroscopy: Theory, Experiment, and Applications (Wiley, New York, 2018)CrossRef
7.
Zurück zum Zitat A.R. West, Solid State Chemistry and Its Applications (Wiley, New York, 2014) A.R. West, Solid State Chemistry and Its Applications (Wiley, New York, 2014)
8.
Zurück zum Zitat E.D. Zanotto, A bright future for glass-ceramics. Am. Ceram. Soc. Bull. 89, 19–27 (2010) E.D. Zanotto, A bright future for glass-ceramics. Am. Ceram. Soc. Bull. 89, 19–27 (2010)
9.
Zurück zum Zitat P. Knauth, Inorganic solid Li ion conductors: an overview. Solid State Ionics 180, 911–916 (2009)CrossRef P. Knauth, Inorganic solid Li ion conductors: an overview. Solid State Ionics 180, 911–916 (2009)CrossRef
10.
Zurück zum Zitat M. Chen, W. Hua, J. Xiao, D. Cortie, W. Chen, E. Wang, Z. Hu, Q. Gu, X. Wang, S. Indris, S.L. Chou, Dou SX NASICON-type air-stable and all-climate cathode for sodium-ion batteries with low cost and high-power density. Nat. Commun. 10, 1480 (2019)CrossRef M. Chen, W. Hua, J. Xiao, D. Cortie, W. Chen, E. Wang, Z. Hu, Q. Gu, X. Wang, S. Indris, S.L. Chou, Dou SX NASICON-type air-stable and all-climate cathode for sodium-ion batteries with low cost and high-power density. Nat. Commun. 10, 1480 (2019)CrossRef
11.
Zurück zum Zitat Y. Sun, Lithium ion conducting membranes for lithium-air batteries. Nano Energy 2(5), 801–816 (2013)CrossRef Y. Sun, Lithium ion conducting membranes for lithium-air batteries. Nano Energy 2(5), 801–816 (2013)CrossRef
12.
Zurück zum Zitat P. Maldonado-Manso, E.R. Losilla, M. Martínez-Lara, M.A. Aranda, S. Bruque, F.E. Mouahid et al., High lithium ionic conductivity in the Li1+ x Al x Ge y Ti2-x-y(PO4)3 NASICON series. Chem. Mater. 15, 1879–1885 (2003)CrossRef P. Maldonado-Manso, E.R. Losilla, M. Martínez-Lara, M.A. Aranda, S. Bruque, F.E. Mouahid et al., High lithium ionic conductivity in the Li1+ x Al x Ge y Ti2-x-y(PO4)3 NASICON series. Chem. Mater. 15, 1879–1885 (2003)CrossRef
13.
Zurück zum Zitat A. Svitan’Ko, S. Novikova, D. Safronov, A. Yaroslavtsev, Cation mobility in Li1+x Ti2–x Crx (PO4)3 NASICON-type phosphates. Inorg. Mater. 47, 1391–1395 (2011)CrossRef A. Svitan’Ko, S. Novikova, D. Safronov, A. Yaroslavtsev, Cation mobility in Li1+x Ti2–x Crx (PO4)3 NASICON-type phosphates. Inorg. Mater. 47, 1391–1395 (2011)CrossRef
14.
Zurück zum Zitat E. Jeong, K.Y. Yoon, H.A. Jung, T. Nakayma, M.J. Ji, H. Hwang, Fabrication and electrochemical properties of Li1.3Al0.3Ti1.7(PO4)3 solid electrolytes by sol-gel method. Appl. Surf. Sci. 473, 622–626 (2019)CrossRef E. Jeong, K.Y. Yoon, H.A. Jung, T. Nakayma, M.J. Ji, H. Hwang, Fabrication and electrochemical properties of Li1.3Al0.3Ti1.7(PO4)3 solid electrolytes by sol-gel method. Appl. Surf. Sci. 473, 622–626 (2019)CrossRef
15.
Zurück zum Zitat J. Liu, T. Liu, Y. Pu, M. Guan, Z. Tang, F. Ding, Z. Xu, Y. Li, Facile synthesis of NASICON-type Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte and its application for enhanced cyclic performance in lithium ion batteries through the introduction of an artificial Li3PO4 SEI layer. RSC Adv. 7, 46545–46552 (2017)CrossRef J. Liu, T. Liu, Y. Pu, M. Guan, Z. Tang, F. Ding, Z. Xu, Y. Li, Facile synthesis of NASICON-type Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte and its application for enhanced cyclic performance in lithium ion batteries through the introduction of an artificial Li3PO4 SEI layer. RSC Adv. 7, 46545–46552 (2017)CrossRef
16.
Zurück zum Zitat W.C. West, J.F. Whitacre, J.R. Lim, Chemical stability enhancement of lithium conducting solid electrolyte plates using sputtered LiPON thin films. J. Power Sources 126, 134–138 (2004)CrossRef W.C. West, J.F. Whitacre, J.R. Lim, Chemical stability enhancement of lithium conducting solid electrolyte plates using sputtered LiPON thin films. J. Power Sources 126, 134–138 (2004)CrossRef
17.
Zurück zum Zitat J.P. Han, B. Zhang, L.Y. Wang, H.L. Zhu, Y.X. Qi, L.W. Yin, H. Li, N. Lun, Y.J. Bai, Li1.3Al0.3Ti1.7(PO4)3 Behaving as a fast ionic conductor and bridge to boost the electrochemical performance of Li4Ti5O12. Chem. Eng. 6(6), 7273–7282 (2018) J.P. Han, B. Zhang, L.Y. Wang, H.L. Zhu, Y.X. Qi, L.W. Yin, H. Li, N. Lun, Y.J. Bai, Li1.3Al0.3Ti1.7(PO4)3 Behaving as a fast ionic conductor and bridge to boost the electrochemical performance of Li4Ti5O12. Chem. Eng. 6(6), 7273–7282 (2018)
18.
Zurück zum Zitat J.G. Kim, D. Shi, M.S. Park, G. Jeong, Y.U. Heo, M. Seo, Y.J. Kim, J.H. Kim, S.X. Dou, Controlled Ag-driven superior rate-capability of Li4Ti5O12 anodes for lithium rechargeable batteries. Nano Res. 6(5), 365–372 (2013)CrossRef J.G. Kim, D. Shi, M.S. Park, G. Jeong, Y.U. Heo, M. Seo, Y.J. Kim, J.H. Kim, S.X. Dou, Controlled Ag-driven superior rate-capability of Li4Ti5O12 anodes for lithium rechargeable batteries. Nano Res. 6(5), 365–372 (2013)CrossRef
19.
Zurück zum Zitat K. Arbi, S. Mandal, J.M. Rojo, J. Sanz, Dependence of ionic conductivity on composition of fast ionic conductors Li1+xTi2−xAlx(PO4)3, 0 ≤ x ≤ 0.7. A parallel NMR and electric impedance study. Chem. Mater. 14, 1091–1097 (2002)CrossRef K. Arbi, S. Mandal, J.M. Rojo, J. Sanz, Dependence of ionic conductivity on composition of fast ionic conductors Li1+xTi2−xAlx(PO4)3, 0 ≤ x ≤ 0.7. A parallel NMR and electric impedance study. Chem. Mater. 14, 1091–1097 (2002)CrossRef
20.
Zurück zum Zitat A. Mertens, S. Yu, N. Schön, D.C. Gunduz, H. Tempel, R. Schierholz, F. Hausen, H. Kungl, J. Granwehr, R.A. Eichel, Superionic bulk conductivity in Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte. Solid State Ionics 309, 180–186 (2017)CrossRef A. Mertens, S. Yu, N. Schön, D.C. Gunduz, H. Tempel, R. Schierholz, F. Hausen, H. Kungl, J. Granwehr, R.A. Eichel, Superionic bulk conductivity in Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte. Solid State Ionics 309, 180–186 (2017)CrossRef
21.
Zurück zum Zitat K.P. Abhilash, P. Christopher Selvin, B. Nalini, P. Nithyadharseni, on pure and Ag doped lithium lanthanum titanate (LLTO) nanocrystalline ceramic electrolytes for rechargeable lithium-ion batteries. Ceram. Int. 39, 947–952 (2013)CrossRef K.P. Abhilash, P. Christopher Selvin, B. Nalini, P. Nithyadharseni, on pure and Ag doped lithium lanthanum titanate (LLTO) nanocrystalline ceramic electrolytes for rechargeable lithium-ion batteries. Ceram. Int. 39, 947–952 (2013)CrossRef
22.
Zurück zum Zitat E. Zhao, F. Ma, Y. Jin, K. Kanamura, Pechini synthesis of high ionic conductivity Li1.3Al0.3Ti1.7(PO4)3 solid electrolytes: the effect of dispersant. J. Alloys Compds. 680, 646–653 (2016)CrossRef E. Zhao, F. Ma, Y. Jin, K. Kanamura, Pechini synthesis of high ionic conductivity Li1.3Al0.3Ti1.7(PO4)3 solid electrolytes: the effect of dispersant. J. Alloys Compds. 680, 646–653 (2016)CrossRef
23.
Zurück zum Zitat J.S. Lee, C.M. Chang, Y.I. Lee, J.H.S.H. Lee Hong, Spark plasma sintering (SPS) of NASICON ceramics. J. Am. Ceram. Soc. 87, 305–307 (2004)CrossRef J.S. Lee, C.M. Chang, Y.I. Lee, J.H.S.H. Lee Hong, Spark plasma sintering (SPS) of NASICON ceramics. J. Am. Ceram. Soc. 87, 305–307 (2004)CrossRef
24.
Zurück zum Zitat K. Ullah, A. Ullah, A. Aldalbahi, J. Chung, W.C. Oh, Enhanced visible light photocatalytic activity and hydrogen evolution through novel heterostructure AgI–FG–TiO2 nanocomposites. J. Mol. Catal. A 410, 242–252 (2015)CrossRef K. Ullah, A. Ullah, A. Aldalbahi, J. Chung, W.C. Oh, Enhanced visible light photocatalytic activity and hydrogen evolution through novel heterostructure AgI–FG–TiO2 nanocomposites. J. Mol. Catal. A 410, 242–252 (2015)CrossRef
25.
Zurück zum Zitat Y. Liu, J. Liu, Q. Sun, D. Wang, K.R. Adair, J. Liang, C. Zhang, L. Zhang, S. Lu, H. Huang, X. Song, X. Sun, Insight into the microstructure and ionic conductivity of cold sintered NASICON solid electrolyte for solid-state batteries. ACS Appl. Mater. Interfaces 11(31), 27890–27896 (2019)CrossRef Y. Liu, J. Liu, Q. Sun, D. Wang, K.R. Adair, J. Liang, C. Zhang, L. Zhang, S. Lu, H. Huang, X. Song, X. Sun, Insight into the microstructure and ionic conductivity of cold sintered NASICON solid electrolyte for solid-state batteries. ACS Appl. Mater. Interfaces 11(31), 27890–27896 (2019)CrossRef
26.
Zurück zum Zitat S. Duluard, A. Paillassa, L. Puech, P. Vinatier, V. Turq, P. Rozier, P. Lenormand, P.L. Taberna, P. Simon, F. Ansart, Lithium conducting solid electrolyte Li1.3Al0.3Ti1.7(PO4)3 obtained via solution chemistry. J. Eur. Ceram. Soc. 33(6), 1145–1153 (2013)CrossRef S. Duluard, A. Paillassa, L. Puech, P. Vinatier, V. Turq, P. Rozier, P. Lenormand, P.L. Taberna, P. Simon, F. Ansart, Lithium conducting solid electrolyte Li1.3Al0.3Ti1.7(PO4)3 obtained via solution chemistry. J. Eur. Ceram. Soc. 33(6), 1145–1153 (2013)CrossRef
27.
Zurück zum Zitat G. Tan, F. Wu, L. Li, Y. Liu, Chen R Magnetron sputtering preparation of nitrogen-incorporated lithium–aluminum–titanium phosphate based thin film electrolytes for all-solid-state lithium ion batteries. J. Phys. Chem. C 116, 3817–3826 (2012)CrossRef G. Tan, F. Wu, L. Li, Y. Liu, Chen R Magnetron sputtering preparation of nitrogen-incorporated lithium–aluminum–titanium phosphate based thin film electrolytes for all-solid-state lithium ion batteries. J. Phys. Chem. C 116, 3817–3826 (2012)CrossRef
28.
Zurück zum Zitat S.V. Rathan, G.X. Govindaraj, Thermal and electrical relaxation studies in Li(4+x) TixNb1− xP3O12 (0.0 ≤ x ≤ 1.0) phosphate glasses. Solid State Sci. 12, 730–735 (2012)CrossRef S.V. Rathan, G.X. Govindaraj, Thermal and electrical relaxation studies in Li(4+x) TixNb1− xP3O12 (0.0 ≤ x ≤ 1.0) phosphate glasses. Solid State Sci. 12, 730–735 (2012)CrossRef
29.
Zurück zum Zitat N. Mustaffa, S. Adnan, M. Sulaiman, Mohamed N Low-temperature sintering effects on NASICON-structured LiSn2P3 O 12 solid electrolytes prepared via citric acid-assisted sol-gel method. Ionics 21, 955–965 (2015)CrossRef N. Mustaffa, S. Adnan, M. Sulaiman, Mohamed N Low-temperature sintering effects on NASICON-structured LiSn2P3 O 12 solid electrolytes prepared via citric acid-assisted sol-gel method. Ionics 21, 955–965 (2015)CrossRef
30.
Zurück zum Zitat G. Govindaraj, C.R. Mariappan, Synthesis, characterization and ion dynamic studies of NASICON type glasses. Solid State Ionics 147(1–2), 49–59 (2002)CrossRef G. Govindaraj, C.R. Mariappan, Synthesis, characterization and ion dynamic studies of NASICON type glasses. Solid State Ionics 147(1–2), 49–59 (2002)CrossRef
31.
Zurück zum Zitat A. Rodrigues, J. Narváez-Semanate, A. Cabral, A. Rodrigues, Determination of crystallization kinetics parameters of a Li1.5Al0.5Ge1.5 (PO4)3 (LAGP) glass by differential scanning calorimetry. Mater. Res. 16, 811–816 (2013)CrossRef A. Rodrigues, J. Narváez-Semanate, A. Cabral, A. Rodrigues, Determination of crystallization kinetics parameters of a Li1.5Al0.5Ge1.5 (PO4)3 (LAGP) glass by differential scanning calorimetry. Mater. Res. 16, 811–816 (2013)CrossRef
32.
Zurück zum Zitat J.L. Narváez-Semanate, A.C.M. Rodrigues, Microstructure and ionic conductivity of Li1+xAlxTi2−x(PO4)3 NASICON glass-ceramics. Solid State Ionics 181, 1197–1204 (2010)CrossRef J.L. Narváez-Semanate, A.C.M. Rodrigues, Microstructure and ionic conductivity of Li1+xAlxTi2−x(PO4)3 NASICON glass-ceramics. Solid State Ionics 181, 1197–1204 (2010)CrossRef
33.
Zurück zum Zitat V.M. Fokin, A.A. Cabral, R.M. Reis, M.L. Nascimento, Zanotto ED Critical assessment of DTA–DSC methods for the study of nucleation kinetics in glasses. J. Non-Cryst. Solids 356, 358–367 (2010)CrossRef V.M. Fokin, A.A. Cabral, R.M. Reis, M.L. Nascimento, Zanotto ED Critical assessment of DTA–DSC methods for the study of nucleation kinetics in glasses. J. Non-Cryst. Solids 356, 358–367 (2010)CrossRef
34.
Zurück zum Zitat K. Ullah, I.J. Kim, S. Yang, W.C. Oh, Preparation of highly expanded graphene with large surface area and its additional conductive effect for EDLC performance. J. Mater. Sci. 26, 6945–6953 (2015) K. Ullah, I.J. Kim, S. Yang, W.C. Oh, Preparation of highly expanded graphene with large surface area and its additional conductive effect for EDLC performance. J. Mater. Sci. 26, 6945–6953 (2015)
Metadaten
Titel
Fabrication and characterization of Ag-doped Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte with high ionic conductivity
verfasst von
Majid Soweizy
Mostafa Zahedifar
Merat Karimi
Publikationsdatum
02.05.2020
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 12/2020
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-020-03504-6

Weitere Artikel der Ausgabe 12/2020

Journal of Materials Science: Materials in Electronics 12/2020 Zur Ausgabe

Neuer Inhalt