Skip to main content
Erschienen in:
Buchtitelbild

2018 | OriginalPaper | Buchkapitel

1. CMOS Nano-Pore Technology

verfasst von : Sina Parsnejad, Andrew J. Mason

Erschienen in: CMOS Circuits for Biological Sensing and Processing

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this chapter the principles of nano-pore sensing are discussed with a focus on CMOS interfacing requirements and solutions. The goal is to understand basic functionality of nano-pores, understand the conditions that would enable proper interfacing of nano-pore structures, and define the CMOS readout approaches that overcome limiting factors such as noise performance and area. Section 1 outlines nano-pore sensing, defines unique characteristics of nano-pore-enabled sensing, and describes varieties of nano-pores and their operation principles. Section 2 defines the challenges in interfacing with nano-pores using electrochemical methods and highlights some of the CMOS solutions available in literature. Section 2 also discusses the use of nano-pores in an array format for parallel sensing and characterization, outlines the challenges in nano-pore-facilitated sensing, and describes unique CMOS-based solutions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat G. Zheng, C.M. Lieber, Nanowire biosensors for label-free, real-time, ultrasensitive protein detection, in Nanoproteomics: Methods and Protocols, ed. by S. A. Toms, R. J. Weil (Humana Press, Totowa, 2011), pp. 223–237 G. Zheng, C.M. Lieber, Nanowire biosensors for label-free, real-time, ultrasensitive protein detection, in Nanoproteomics: Methods and Protocols, ed. by S. A. Toms, R. J. Weil (Humana Press, Totowa, 2011), pp. 223–237
2.
Zurück zum Zitat J. Wang, Carbon-nanotube based electrochemical biosensors: a review. Electroanalysis 17(1), 7–14 (2005)CrossRef J. Wang, Carbon-nanotube based electrochemical biosensors: a review. Electroanalysis 17(1), 7–14 (2005)CrossRef
3.
Zurück zum Zitat J. Wang, Electrochemical biosensors: towards point-of-care cancer diagnostics. Biosens. Bioelectron. 21(10), 1887–1892 (2006)CrossRef J. Wang, Electrochemical biosensors: towards point-of-care cancer diagnostics. Biosens. Bioelectron. 21(10), 1887–1892 (2006)CrossRef
4.
Zurück zum Zitat D. Zhang, Q. Liu, Biosensors and bioelectronics on smartphone for portable biochemical detection. Biosens. Bioelectron. 75, 273–284 (2016)CrossRef D. Zhang, Q. Liu, Biosensors and bioelectronics on smartphone for portable biochemical detection. Biosens. Bioelectron. 75, 273–284 (2016)CrossRef
5.
Zurück zum Zitat H. Li et al., CMOS electrochemical instrumentation for biosensor microsystems: a review. Sensors 17(1), 74 (2016)CrossRef H. Li et al., CMOS electrochemical instrumentation for biosensor microsystems: a review. Sensors 17(1), 74 (2016)CrossRef
6.
Zurück zum Zitat X.-S. Zhou, E. Maisonhaute, Electrochemistry to record single events, in Electrochemistry: Volume 11 - Nanosystems Electrochemistry, vol. 11, (The Royal Society of Chemistry, UK, 2013), pp. 1–33 X.-S. Zhou, E. Maisonhaute, Electrochemistry to record single events, in Electrochemistry: Volume 11 - Nanosystems Electrochemistry, vol. 11, (The Royal Society of Chemistry, UK, 2013), pp. 1–33
7.
Zurück zum Zitat K. Zhou, J.M. Perry, S.C. Jacobson, Transport and sensing in nanofluidic devices. Annu. Rev. Anal. Chem. 4(1), 321–341 (2011)CrossRef K. Zhou, J.M. Perry, S.C. Jacobson, Transport and sensing in nanofluidic devices. Annu. Rev. Anal. Chem. 4(1), 321–341 (2011)CrossRef
8.
Zurück zum Zitat C. Dekker, Solid-state nanopores. Nat. Nanotechnol. 2(4), 209–215 (2007)CrossRef C. Dekker, Solid-state nanopores. Nat. Nanotechnol. 2(4), 209–215 (2007)CrossRef
9.
Zurück zum Zitat J.J. Kasianowicz et al., Nanoscopic porous sensors. Annu. Rev. Anal. Chem. 1(1), 737–766 (2008)CrossRef J.J. Kasianowicz et al., Nanoscopic porous sensors. Annu. Rev. Anal. Chem. 1(1), 737–766 (2008)CrossRef
10.
Zurück zum Zitat M. Wanunu et al., Rapid electronic detection of probe-specific microRNAs using thin nanopore sensors. Nat. Nanotechnol. 5(11), 807–814 (2010)CrossRef M. Wanunu et al., Rapid electronic detection of probe-specific microRNAs using thin nanopore sensors. Nat. Nanotechnol. 5(11), 807–814 (2010)CrossRef
11.
Zurück zum Zitat O.K. Dudko et al., Extracting kinetics from single-molecule force spectroscopy: nanopore unzipping of DNA hairpins. Biophys. J. 92(12), 4188–4195 (2007)CrossRef O.K. Dudko et al., Extracting kinetics from single-molecule force spectroscopy: nanopore unzipping of DNA hairpins. Biophys. J. 92(12), 4188–4195 (2007)CrossRef
12.
Zurück zum Zitat K.M. Halverson et al., Anthrax biosensor, protective antigen ion channel asymmetric blockade. J. Biol. Chem. 280(40), 34056–34062 (2005)CrossRef K.M. Halverson et al., Anthrax biosensor, protective antigen ion channel asymmetric blockade. J. Biol. Chem. 280(40), 34056–34062 (2005)CrossRef
13.
Zurück zum Zitat D.W. Deamer, D. Branton, Characterization of nucleic acids by nanopore analysis. Acc. Chem. Res. 35(10), 817–825 (2002)CrossRef D.W. Deamer, D. Branton, Characterization of nucleic acids by nanopore analysis. Acc. Chem. Res. 35(10), 817–825 (2002)CrossRef
14.
Zurück zum Zitat B. Hille et al., Ion Channels of Excitable Membranes (Sinauer, Sunderland, 2001) B. Hille et al., Ion Channels of Excitable Membranes (Sinauer, Sunderland, 2001)
15.
Zurück zum Zitat W. Asghar et al., Shrinking of solid-state nanopores by direct thermal heating. Nanoscale Res. Lett. 6(1), 372 (2011)CrossRef W. Asghar et al., Shrinking of solid-state nanopores by direct thermal heating. Nanoscale Res. Lett. 6(1), 372 (2011)CrossRef
16.
Zurück zum Zitat J.D. Uram, K. Ke, M. Mayer, Noise and bandwidth of current recordings from Submicrometer pores and nanopores. ACS Nano 2(5), 857–872 (2008)CrossRef J.D. Uram, K. Ke, M. Mayer, Noise and bandwidth of current recordings from Submicrometer pores and nanopores. ACS Nano 2(5), 857–872 (2008)CrossRef
17.
Zurück zum Zitat J. Li et al., Ion-beam sculpting at nanometre length scales. Nature 412(6843), 166–169 (2001)CrossRef J. Li et al., Ion-beam sculpting at nanometre length scales. Nature 412(6843), 166–169 (2001)CrossRef
18.
Zurück zum Zitat A.J. Storm et al., Fabrication of solid-state nanopores with single-nanometre precision. Nat. Mater. 2, 537–540 (2003)CrossRef A.J. Storm et al., Fabrication of solid-state nanopores with single-nanometre precision. Nat. Mater. 2, 537–540 (2003)CrossRef
19.
Zurück zum Zitat M. Crescentini et al., Noise limits of CMOS current interfaces for biosensors: a review. IEEE Trans Biomed Circuits Syst 8(2), 278–292 (2014)CrossRef M. Crescentini et al., Noise limits of CMOS current interfaces for biosensors: a review. IEEE Trans Biomed Circuits Syst 8(2), 278–292 (2014)CrossRef
20.
Zurück zum Zitat H. Li et al., Ultracompact microwatt CMOS current readout with picoampere noise and kilohertz bandwidth for biosensor arrays. IEEE Trans Biomed Circuits Syst. 12(1), 35–46 (2018) H. Li et al., Ultracompact microwatt CMOS current readout with picoampere noise and kilohertz bandwidth for biosensor arrays. IEEE Trans Biomed Circuits Syst. 12(1), 35–46 (2018)
21.
Zurück zum Zitat R.S. Martin et al., Recent developments in amperometric detection for microchip capillary electrophoresis. Electrophoresis 23, 3667–3677 (2002)CrossRef R.S. Martin et al., Recent developments in amperometric detection for microchip capillary electrophoresis. Electrophoresis 23, 3667–3677 (2002)CrossRef
23.
Zurück zum Zitat J.K. Rosenstein, K.L. Shepard, Temporal resolution of nanopore sensor recordings. in 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (2013), pp. 4110–4113 J.K. Rosenstein, K.L. Shepard, Temporal resolution of nanopore sensor recordings. in 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (2013), pp. 4110–4113
24.
Zurück zum Zitat D. Wei et al., Electrochemical biosensors at the nanoscale. Lab Chip 9(15), 2123–2131 (2009)CrossRef D. Wei et al., Electrochemical biosensors at the nanoscale. Lab Chip 9(15), 2123–2131 (2009)CrossRef
25.
Zurück zum Zitat X. Liu, L. Li, A.J. Mason, High throughput single-ion-channel array microsystem with CMOS instrumentation. in 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (2014), pp. 2765–2768 X. Liu, L. Li, A.J. Mason, High throughput single-ion-channel array microsystem with CMOS instrumentation. in 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (2014), pp. 2765–2768
26.
Zurück zum Zitat B. Le Pioufle et al., Lipid bilayer microarray for parallel recording of transmembrane ion currents. Anal. Chem. 80(1), 328–332 (2008)CrossRef B. Le Pioufle et al., Lipid bilayer microarray for parallel recording of transmembrane ion currents. Anal. Chem. 80(1), 328–332 (2008)CrossRef
27.
Zurück zum Zitat F. Thei et al., Parallel recording of single ion channels: a heterogeneous system approach. IEEE Trans. Nanotechnol. 9(3), 295–302 (2010)CrossRef F. Thei et al., Parallel recording of single ion channels: a heterogeneous system approach. IEEE Trans. Nanotechnol. 9(3), 295–302 (2010)CrossRef
28.
Zurück zum Zitat B. Goldstein et al., CMOS low current measurement system for biomedical applications. IEEE Trans Biomed Circuits Syst 6(2), 111–119 (2012)CrossRef B. Goldstein et al., CMOS low current measurement system for biomedical applications. IEEE Trans Biomed Circuits Syst 6(2), 111–119 (2012)CrossRef
29.
Zurück zum Zitat G. Ferrari et al., Transimpedance amplifier for high sensitivity current measurements on Nanodevices. IEEE J. Solid State Circuits 44(5), 1609–1616 (2009)CrossRef G. Ferrari et al., Transimpedance amplifier for high sensitivity current measurements on Nanodevices. IEEE J. Solid State Circuits 44(5), 1609–1616 (2009)CrossRef
30.
Zurück zum Zitat P. Weerakoon et al., An integrated patch-clamp potentiostat with electrode compensation. IEEE Trans Biomed Circuits Syst 3(2), 117–125 (2009)CrossRef P. Weerakoon et al., An integrated patch-clamp potentiostat with electrode compensation. IEEE Trans Biomed Circuits Syst 3(2), 117–125 (2009)CrossRef
31.
Zurück zum Zitat P. Ciccarella et al., Integrated low-noise current amplifier for glass-based nanopore sensing. in 10th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME) (2014), pp. 1–4 P. Ciccarella et al., Integrated low-noise current amplifier for glass-based nanopore sensing. in 10th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME) (2014), pp. 1–4
32.
Zurück zum Zitat J. Kim, K. Pedrotti, W.B. Dunbar, An area-efficient low-noise CMOS DNA detection sensor for multichannel nanopore applications. Sensors Actuators B Chem. 176, 1051–1055 (2013)CrossRef J. Kim, K. Pedrotti, W.B. Dunbar, An area-efficient low-noise CMOS DNA detection sensor for multichannel nanopore applications. Sensors Actuators B Chem. 176, 1051–1055 (2013)CrossRef
33.
Zurück zum Zitat H.M. Jafari, R. Genov, Chopper-stabilized bidirectional current acquisition circuits for electrochemical Amperometric biosensors. IEEE Trans Circuits Syst I Regul Pap 60(5), 1149–1157 (2013)MathSciNetCrossRef H.M. Jafari, R. Genov, Chopper-stabilized bidirectional current acquisition circuits for electrochemical Amperometric biosensors. IEEE Trans Circuits Syst I Regul Pap 60(5), 1149–1157 (2013)MathSciNetCrossRef
34.
Zurück zum Zitat M. Carminati et al., Design and characterization of a current sensing platform for silicon-based nanopores with integrated tunneling nanoelectrodes. Analog Integr. Circ. Sig. Process 77(3), 333–343 (2013)CrossRef M. Carminati et al., Design and characterization of a current sensing platform for silicon-based nanopores with integrated tunneling nanoelectrodes. Analog Integr. Circ. Sig. Process 77(3), 333–343 (2013)CrossRef
35.
Zurück zum Zitat B.B. Haab, M.J. Dunham, P.O. Brown, Protein microarrays for highly parallel detection and quantitation of specific proteins and antibodies in complex solutions. Genome Biol. 2(2), research0004.1 (2001)CrossRef B.B. Haab, M.J. Dunham, P.O. Brown, Protein microarrays for highly parallel detection and quantitation of specific proteins and antibodies in complex solutions. Genome Biol. 2(2), research0004.1 (2001)CrossRef
36.
Zurück zum Zitat M.F. Lopez, M.G. Pluskal, Protein micro- and macroarrays: digitizing the proteome. J. Chromatogr. B 787(1), 19–27 (2003)CrossRef M.F. Lopez, M.G. Pluskal, Protein micro- and macroarrays: digitizing the proteome. J. Chromatogr. B 787(1), 19–27 (2003)CrossRef
37.
Zurück zum Zitat X. Liu, CMOS Instrumentation for Electrochemical Biosensor Array Microsystems (Michigan State University. Electrical Engineering 2014) X. Liu, CMOS Instrumentation for Electrochemical Biosensor Array Microsystems (Michigan State University. Electrical Engineering 2014)
38.
Zurück zum Zitat L. Li, A. Mason, Development of an integrated CMOS-microfluidic instrumentation array for high throughput membrane protein studies. in IEEE International Symposium on Circuits and Systems (2014), pp. 638–641 L. Li, A. Mason, Development of an integrated CMOS-microfluidic instrumentation array for high throughput membrane protein studies. in IEEE International Symposium on Circuits and Systems (2014), pp. 638–641
39.
Zurück zum Zitat Y. Huang, A.J. Mason, Lab-on-CMOS integration of microfluidics and electrochemical sensors. Lab Chip 13(19), 3929–3934 (2013)CrossRef Y. Huang, A.J. Mason, Lab-on-CMOS integration of microfluidics and electrochemical sensors. Lab Chip 13(19), 3929–3934 (2013)CrossRef
40.
Zurück zum Zitat S. Parsnejad, H. Li, A.J. Mason, Compact CMOS amperometric readout for nanopore arrays in high throughput lab-on-CMOS. in Proceedings – IEEE International Symposium on Circuits and Systems (2016) July, pp. 2851–2854 S. Parsnejad, H. Li, A.J. Mason, Compact CMOS amperometric readout for nanopore arrays in high throughput lab-on-CMOS. in Proceedings – IEEE International Symposium on Circuits and Systems (2016) July, pp. 2851–2854
41.
Zurück zum Zitat S. Ayers et al., Design of a CMOS Potentiostat circuit for electrochemical detector arrays. IEEE Trans Circuits Syst I Regul Pap 54(4), 736–744 (2007)CrossRef S. Ayers et al., Design of a CMOS Potentiostat circuit for electrochemical detector arrays. IEEE Trans Circuits Syst I Regul Pap 54(4), 736–744 (2007)CrossRef
Metadaten
Titel
CMOS Nano-Pore Technology
verfasst von
Sina Parsnejad
Andrew J. Mason
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-67723-1_1

Neuer Inhalt