Skip to main content
Erschienen in: Cellulose 3/2019

04.12.2018 | Original Research

Coconut oil-cellulose beaded microfibers by coaxial electrospinning: An eco-model system to study thermoregulation of confined phase change materials

verfasst von: W. M. Ranodhi N. Udangawa, Charles F. Willard, Chiara Mancinelli, Caitlyn Chapman, Robert J. Linhardt, Trevor John Simmons

Erschienen in: Cellulose | Ausgabe 3/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Coconut oil was used to produce biomass microfibers with a coconut oil core and a cellulose shell by a co-axial electrospinning technique. This novel material was developed as a model system to determine the effect of confining a phase changing material within an axial micropore of a coaxial fiber. The morphology of these composite fibers was determined by scanning electron microscopy and transmission electron microscopy, which revealed a unique beaded necklace morphology with sub-micron scale pockets of confined coconut oil. Thermogravimetric analysis and differential scanning calorimetry were employed to study the thermal behavior of the composite fibers. A significant increase of the specific heat capacity (+ 98%) was observed when the coconut oil was confined within the micropore of the composite fiber compared to the bulk. There was also a notable increase (+ 41%) of the specific heat of melting for the micropore confined coconut oil. Thus, coconut oil isolated in the axial micropore core of these cellulose composite fibers showed excellent potential for temperature regulation in the range of 7 to 22 °C, which includes 21 °C, the temperature which most humans find comfortable. The results of the studied model system can be used to tailor the properties of phase change materials in confined micropores, in both electrospun fibers and other mesoscale structures.

Graphical abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Abhat A (1983) Low temperature latent heat thermal energy storage: heat storage materials. Sol Energy 30:313–332CrossRef Abhat A (1983) Low temperature latent heat thermal energy storage: heat storage materials. Sol Energy 30:313–332CrossRef
Zurück zum Zitat Ajithkumar G, Jayadas N, Bhasi M (2009) Analysis of the pour point of coconut oil as a lubricant base stock using differential scanning calorimetry. Lubr Sci 21:13–26CrossRef Ajithkumar G, Jayadas N, Bhasi M (2009) Analysis of the pour point of coconut oil as a lubricant base stock using differential scanning calorimetry. Lubr Sci 21:13–26CrossRef
Zurück zum Zitat Arioli T, Peng L, Betzner AS, Burn J, Wittke W, Herth W, Camilleri C, Höfte H, Plazinski J, Birch R (1998) Molecular analysis of cellulose biosynthesis in arabidopsis. Science 279:717–720CrossRef Arioli T, Peng L, Betzner AS, Burn J, Wittke W, Herth W, Camilleri C, Höfte H, Plazinski J, Birch R (1998) Molecular analysis of cellulose biosynthesis in arabidopsis. Science 279:717–720CrossRef
Zurück zum Zitat Boardman B (2013) Fixing fuel poverty: challenges and solutions. Routledge, LondonCrossRef Boardman B (2013) Fixing fuel poverty: challenges and solutions. Routledge, LondonCrossRef
Zurück zum Zitat Cadarette BS, Cheuvront SN, Kolka MA, Stephenson LA, Montain SJ, Sawka MN (2006) Intermittent microclimate cooling during exercise-heat stress in us army chemical protective clothing. Ergonomics 49:209–219CrossRef Cadarette BS, Cheuvront SN, Kolka MA, Stephenson LA, Montain SJ, Sawka MN (2006) Intermittent microclimate cooling during exercise-heat stress in us army chemical protective clothing. Ergonomics 49:209–219CrossRef
Zurück zum Zitat Cao J (1999) Mathematical studies of modulated differential scanning calorimetry: I. Heat capacity measurements. Thermochim Acta 325:101–109CrossRef Cao J (1999) Mathematical studies of modulated differential scanning calorimetry: I. Heat capacity measurements. Thermochim Acta 325:101–109CrossRef
Zurück zum Zitat Chen C, Wang L, Huang Y (2007) Electrospinning of thermo-regulating ultrafine fibers based on polyethylene glycol/cellulose acetate composite. Polymer 48:5202–5207CrossRef Chen C, Wang L, Huang Y (2007) Electrospinning of thermo-regulating ultrafine fibers based on polyethylene glycol/cellulose acetate composite. Polymer 48:5202–5207CrossRef
Zurück zum Zitat Chen C, Wang L, Huang Y (2009) Crosslinking of the electrospun polyethylene glycol/cellulose acetate composite fibers as shape-stabilized phase change materials. Mater Lett 63:569–571CrossRef Chen C, Wang L, Huang Y (2009) Crosslinking of the electrospun polyethylene glycol/cellulose acetate composite fibers as shape-stabilized phase change materials. Mater Lett 63:569–571CrossRef
Zurück zum Zitat Chen Z, Wang P, Wei B, Mo X, Cui F (2010) Electrospun collagen–chitosan nanofiber: A biomimetic extracellular matrix for endothelial cell and smooth muscle cell. Acta Biomater 6:372–382CrossRef Chen Z, Wang P, Wei B, Mo X, Cui F (2010) Electrospun collagen–chitosan nanofiber: A biomimetic extracellular matrix for endothelial cell and smooth muscle cell. Acta Biomater 6:372–382CrossRef
Zurück zum Zitat Chen C, Wang L, Huang Y (2011) Electrospun phase change fibers based on polyethylene glycol/cellulose acetate blends. Appl Energy 88:3133–3139CrossRef Chen C, Wang L, Huang Y (2011) Electrospun phase change fibers based on polyethylene glycol/cellulose acetate blends. Appl Energy 88:3133–3139CrossRef
Zurück zum Zitat Cooley JF (1902) Apparatus for electrically dispersing fluids. U.S. Patent US692631A, 1902 Cooley JF (1902) Apparatus for electrically dispersing fluids. U.S. Patent US692631A, 1902
Zurück zum Zitat Coyle S, Wu Y, Lau K-T, De Rossi D, Wallace G, Diamond D (2007) Smart nanotextiles: a review of materials and applications. MRS Bull 32:434–442CrossRef Coyle S, Wu Y, Lau K-T, De Rossi D, Wallace G, Diamond D (2007) Smart nanotextiles: a review of materials and applications. MRS Bull 32:434–442CrossRef
Zurück zum Zitat Fang X, Zhang Z (2006) A novel montmorillonite-based composite phase change material and its applications in thermal storage building materials. Energy Build 38:377–380CrossRef Fang X, Zhang Z (2006) A novel montmorillonite-based composite phase change material and its applications in thermal storage building materials. Energy Build 38:377–380CrossRef
Zurück zum Zitat Fang Y, Kuang S, Gao X, Zhang Z (2008) Preparation and characterization of novel nanoencapsulated phase change materials. Energy Convers Manage 49:3704–3707CrossRef Fang Y, Kuang S, Gao X, Zhang Z (2008) Preparation and characterization of novel nanoencapsulated phase change materials. Energy Convers Manage 49:3704–3707CrossRef
Zurück zum Zitat Fang G, Chen Z, Li H (2010) Synthesis and properties of microencapsulated paraffin composites with sio 2 shell as thermal energy storage materials. Chem Eng J 163:154–159CrossRef Fang G, Chen Z, Li H (2010) Synthesis and properties of microencapsulated paraffin composites with sio 2 shell as thermal energy storage materials. Chem Eng J 163:154–159CrossRef
Zurück zum Zitat Farid MM, Khudhair AM, Razack SAK, Al-Hallaj S (2004) A review on phase change energy storage: materials and applications. Energy Convers Manage 45:1597–1615CrossRef Farid MM, Khudhair AM, Razack SAK, Al-Hallaj S (2004) A review on phase change energy storage: materials and applications. Energy Convers Manage 45:1597–1615CrossRef
Zurück zum Zitat Farrán A, Cai C, Sandoval M, Xu Y, Liu J, Hernáiz MJ, Linhardt RJ (2015) Green solvents in carbohydrate chemistry: from raw materials to fine chemicals. Chem Rev 115:6811–6853CrossRef Farrán A, Cai C, Sandoval M, Xu Y, Liu J, Hernáiz MJ, Linhardt RJ (2015) Green solvents in carbohydrate chemistry: from raw materials to fine chemicals. Chem Rev 115:6811–6853CrossRef
Zurück zum Zitat Flouris AD, Cheung SS (2006) Design and control optimization of microclimate liquid cooling systems underneath protective clothing. Ann Biomed Eng 34:359CrossRef Flouris AD, Cheung SS (2006) Design and control optimization of microclimate liquid cooling systems underneath protective clothing. Ann Biomed Eng 34:359CrossRef
Zurück zum Zitat Freire MG, Teles ARR, Ferreira RA, Carlos LD, Lopes-da-Silva JA, Coutinho JA (2011) Electrospun nanosized cellulose fibers using ionic liquids at room temperature. Green Chem 13:3173–3180CrossRef Freire MG, Teles ARR, Ferreira RA, Carlos LD, Lopes-da-Silva JA, Coutinho JA (2011) Electrospun nanosized cellulose fibers using ionic liquids at room temperature. Green Chem 13:3173–3180CrossRef
Zurück zum Zitat Frenot A, Henriksson MW, Walkenström P (2007) Electrospinning of cellulose-based nanofibers. J Appl Polym Sci 103:1473–1482CrossRef Frenot A, Henriksson MW, Walkenström P (2007) Electrospinning of cellulose-based nanofibers. J Appl Polym Sci 103:1473–1482CrossRef
Zurück zum Zitat Greiner A, Wendorff JH (2007) Electrospinning: A fascinating method for the preparation of ultrathin fibers. Angew Chem Int Edit 46:5670–5703CrossRef Greiner A, Wendorff JH (2007) Electrospinning: A fascinating method for the preparation of ultrathin fibers. Angew Chem Int Edit 46:5670–5703CrossRef
Zurück zum Zitat Hasnain S (1998) Review on sustainable thermal energy storage technologies, part I: heat storage materials and techniques. Energy Convers Manage 39:1127–1138CrossRef Hasnain S (1998) Review on sustainable thermal energy storage technologies, part I: heat storage materials and techniques. Energy Convers Manage 39:1127–1138CrossRef
Zurück zum Zitat Hou L, Udangawa WRN, Pochiraju A, Dong W, Zheng Y, Linhardt RJ, Simmons TJ (2016) Synthesis of heparin-immobilized, magnetically addressable cellulose nanofibers for biomedical applications. ACS Biomater Sci Eng 2:1905–1913CrossRef Hou L, Udangawa WRN, Pochiraju A, Dong W, Zheng Y, Linhardt RJ, Simmons TJ (2016) Synthesis of heparin-immobilized, magnetically addressable cellulose nanofibers for biomedical applications. ACS Biomater Sci Eng 2:1905–1913CrossRef
Zurück zum Zitat Huang H-D, Xu J-Z, Fan Y, Xu L, Li Z-M (2013) Poly (l-lactic acid) crystallization in a confined space containing graphene oxide nanosheets. J Phys Chem B 117:10641–10651CrossRef Huang H-D, Xu J-Z, Fan Y, Xu L, Li Z-M (2013) Poly (l-lactic acid) crystallization in a confined space containing graphene oxide nanosheets. J Phys Chem B 117:10641–10651CrossRef
Zurück zum Zitat Huang F, Xu Y, Peng B, Su Y, Jiang F, Hsieh Y-L, Wei Q (2015) Coaxial electrospun cellulose-core fluoropolymer-shell fibrous membrane from recycled cigarette filter as separator for high performance lithium-ion battery. ACS Sustain Chem Eng 3:932–940CrossRef Huang F, Xu Y, Peng B, Su Y, Jiang F, Hsieh Y-L, Wei Q (2015) Coaxial electrospun cellulose-core fluoropolymer-shell fibrous membrane from recycled cigarette filter as separator for high performance lithium-ion battery. ACS Sustain Chem Eng 3:932–940CrossRef
Zurück zum Zitat Iqbal K, Sun D (2014) Development of thermo-regulating polypropylene fibre containing microencapsulated phase change materials. Renew Energy 71:473–479CrossRef Iqbal K, Sun D (2014) Development of thermo-regulating polypropylene fibre containing microencapsulated phase change materials. Renew Energy 71:473–479CrossRef
Zurück zum Zitat Jaganathan SK, Fauzi Ismail A (2017) Production and hemocompatibility assessment of novel electrospun polyurethane nanofibers loaded with dietary virgin coconut oil for vascular graft applications. J Bioact Compat Polym 33:210–223CrossRef Jaganathan SK, Fauzi Ismail A (2017) Production and hemocompatibility assessment of novel electrospun polyurethane nanofibers loaded with dietary virgin coconut oil for vascular graft applications. J Bioact Compat Polym 33:210–223CrossRef
Zurück zum Zitat Jayadas N, Nair KP (2006) Coconut oil as base oil for industrial lubricants—evaluation and modification of thermal, oxidative and low temperature properties. Tribol Int 39:873–878CrossRef Jayadas N, Nair KP (2006) Coconut oil as base oil for industrial lubricants—evaluation and modification of thermal, oxidative and low temperature properties. Tribol Int 39:873–878CrossRef
Zurück zum Zitat Jiang Z, Chen D, Yu Y, Miao J, Liu Y, Zhang L (2017) Composite fibers prepared from multi-walled carbon nanotubes/cellulose dispersed/dissolved in ammonium/dimethyl sulfoxide mixed solvent. RSC Adv 7:2186–2192CrossRef Jiang Z, Chen D, Yu Y, Miao J, Liu Y, Zhang L (2017) Composite fibers prepared from multi-walled carbon nanotubes/cellulose dispersed/dissolved in ammonium/dimethyl sulfoxide mixed solvent. RSC Adv 7:2186–2192CrossRef
Zurück zum Zitat Khalil HA, Bhat A, Yusra AI (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohyd Polym 87:963–979CrossRef Khalil HA, Bhat A, Yusra AI (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohyd Polym 87:963–979CrossRef
Zurück zum Zitat Kim C-W, Kim D-S, Kang S-Y, Marquez M, Joo YL (2006) Structural studies of electrospun cellulose nanofibers. Polymer 47:5097–5107CrossRef Kim C-W, Kim D-S, Kang S-Y, Marquez M, Joo YL (2006) Structural studies of electrospun cellulose nanofibers. Polymer 47:5097–5107CrossRef
Zurück zum Zitat Krumm C, Pfaendtner J, Dauenhauer PJ (2016) Millisecond pulsed films unify the mechanisms of cellulose fragmentation. Chem Mater 28:3108–3114CrossRef Krumm C, Pfaendtner J, Dauenhauer PJ (2016) Millisecond pulsed films unify the mechanisms of cellulose fragmentation. Chem Mater 28:3108–3114CrossRef
Zurück zum Zitat Lalia BS, Guillen-Burrieza E, Arafat HA, Hashaikeh R (2013) Fabrication and characterization of polyvinylidenefluoride-co-hexafluoropropylene (pvdf-hfp) electrospun membranes for direct contact membrane distillation. J Membrane Sci 428:104–115CrossRef Lalia BS, Guillen-Burrieza E, Arafat HA, Hashaikeh R (2013) Fabrication and characterization of polyvinylidenefluoride-co-hexafluoropropylene (pvdf-hfp) electrospun membranes for direct contact membrane distillation. J Membrane Sci 428:104–115CrossRef
Zurück zum Zitat Lan T, Shao Z-Q, Wang J-Q, Gu M-J (2015) Fabrication of hydroxyapatite nanoparticles decorated cellulose triacetate nanofibers for protein adsorption by coaxial electrospinning. Chem Eng J 260:818–825CrossRef Lan T, Shao Z-Q, Wang J-Q, Gu M-J (2015) Fabrication of hydroxyapatite nanoparticles decorated cellulose triacetate nanofibers for protein adsorption by coaxial electrospinning. Chem Eng J 260:818–825CrossRef
Zurück zum Zitat Landry MR (2005) Thermoporometry by differential scanning calorimetry: experimental considerations and applications. Thermochim Acta 433:27–50CrossRef Landry MR (2005) Thermoporometry by differential scanning calorimetry: experimental considerations and applications. Thermochim Acta 433:27–50CrossRef
Zurück zum Zitat Lee KH, Kim HY, La YM, Lee DR, Sung NH (2002) Influence of a mixing solvent with tetrahydrofuran and n, n-dimethylformamide on electrospun poly (vinyl chloride) nonwoven mats. J Polym Sci Pol Phys 40:2259–2268CrossRef Lee KH, Kim HY, La YM, Lee DR, Sung NH (2002) Influence of a mixing solvent with tetrahydrofuran and n, n-dimethylformamide on electrospun poly (vinyl chloride) nonwoven mats. J Polym Sci Pol Phys 40:2259–2268CrossRef
Zurück zum Zitat Li Y, Huang Z, Lǚ Y (2006) Electrospinning of nylon-6, 66, 1010 terpolymer. Eur Polym J 42:1696–1704CrossRef Li Y, Huang Z, Lǚ Y (2006) Electrospinning of nylon-6, 66, 1010 terpolymer. Eur Polym J 42:1696–1704CrossRef
Zurück zum Zitat Li F, Zhao Y, Song Y (2010) Core-shell nanofibers: nano channel and capsule by coaxial electrospinning. In: Kumar A (ed) nanofibers. InTech, Croatia, pp 419–438 Li F, Zhao Y, Song Y (2010) Core-shell nanofibers: nano channel and capsule by coaxial electrospinning. In: Kumar A (ed) nanofibers. InTech, Croatia, pp 419–438
Zurück zum Zitat Liebert T (2010) Cellulose solvents-remarkable history, bright future. In: Liebert TF, Heinze TJ, Edgar KJ (eds) Cellulose solvents: for analysis, shaping and chemical modification, vol 1033. Acs symposium series. Oxford University Press, Oxford, pp 3–54CrossRef Liebert T (2010) Cellulose solvents-remarkable history, bright future. In: Liebert TF, Heinze TJ, Edgar KJ (eds) Cellulose solvents: for analysis, shaping and chemical modification, vol 1033. Acs symposium series. Oxford University Press, Oxford, pp 3–54CrossRef
Zurück zum Zitat Liu H, Hsieh YL (2002) Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate. J Polym Sci Pol Phys 40:2119–2129CrossRef Liu H, Hsieh YL (2002) Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate. J Polym Sci Pol Phys 40:2119–2129CrossRef
Zurück zum Zitat Mahadeva SK, Kim J (2012) Influence of residual ionic liquid on the thermal stability and electromechanical behavior of cellulose regenerated from 1-ethyl-3-methylimidazolium acetate. Fiber Polym 13:289–294CrossRef Mahadeva SK, Kim J (2012) Influence of residual ionic liquid on the thermal stability and electromechanical behavior of cellulose regenerated from 1-ethyl-3-methylimidazolium acetate. Fiber Polym 13:289–294CrossRef
Zurück zum Zitat McCann JT, Marquez M, Xia Y (2006) Melt coaxial electrospinning: a versatile method for the encapsulation of solid materials and fabrication of phase change nanofibers. Nano Lett 6:2868–2872CrossRef McCann JT, Marquez M, Xia Y (2006) Melt coaxial electrospinning: a versatile method for the encapsulation of solid materials and fabrication of phase change nanofibers. Nano Lett 6:2868–2872CrossRef
Zurück zum Zitat Meli L, Miao J, Dordick JS, Linhardt RJ (2010) Electrospinning from room temperature ionic liquids for biopolymer fiber formation. Green Chem 12:1883–1892CrossRef Meli L, Miao J, Dordick JS, Linhardt RJ (2010) Electrospinning from room temperature ionic liquids for biopolymer fiber formation. Green Chem 12:1883–1892CrossRef
Zurück zum Zitat Meng Q, Li G, Hu J (2015) Phase change fibers and assemblies. In: Tao X (ed) Handbook of smart textiles. Springer, Singapore, pp 225–251CrossRef Meng Q, Li G, Hu J (2015) Phase change fibers and assemblies. In: Tao X (ed) Handbook of smart textiles. Springer, Singapore, pp 225–251CrossRef
Zurück zum Zitat Miao J, Pangule RC, Paskaleva EE, Hwang EE, Kane RS, Linhardt RJ, Dordick JS (2011) Lysostaphin-functionalized cellulose fibers with antistaphylococcal activity for wound healing applications. Biomaterials 32:9557–9567CrossRef Miao J, Pangule RC, Paskaleva EE, Hwang EE, Kane RS, Linhardt RJ, Dordick JS (2011) Lysostaphin-functionalized cellulose fibers with antistaphylococcal activity for wound healing applications. Biomaterials 32:9557–9567CrossRef
Zurück zum Zitat Miller AF, Donald AM (2002) Surface and interfacial tension of cellulose suspensions. Langmuir 18:10155–10162CrossRef Miller AF, Donald AM (2002) Surface and interfacial tension of cellulose suspensions. Langmuir 18:10155–10162CrossRef
Zurück zum Zitat Miyauchi M, Miao J, Simmons TJ, Lee J-W, Doherty TV, Dordick JS, Linhardt RJ (2010) Conductive cable fibers with insulating surface prepared by coaxial electrospinning of multiwalled nanotubes and cellulose. Biomacromol 11:2440–2445CrossRef Miyauchi M, Miao J, Simmons TJ, Lee J-W, Doherty TV, Dordick JS, Linhardt RJ (2010) Conductive cable fibers with insulating surface prepared by coaxial electrospinning of multiwalled nanotubes and cellulose. Biomacromol 11:2440–2445CrossRef
Zurück zum Zitat Miyauchi M, Miao J, Simmons T, Dordick J, Linhardt R (2011) Flexible electrospun cellulose fibers as an affinity packing material for the separation of bovine serum albumin. J Chromatogr Sep Tech 2:110CrossRef Miyauchi M, Miao J, Simmons T, Dordick J, Linhardt R (2011) Flexible electrospun cellulose fibers as an affinity packing material for the separation of bovine serum albumin. J Chromatogr Sep Tech 2:110CrossRef
Zurück zum Zitat Mondal S (2008) Phase change materials for smart textiles–an overview. Appl Therm Eng 28:1536–1550CrossRef Mondal S (2008) Phase change materials for smart textiles–an overview. Appl Therm Eng 28:1536–1550CrossRef
Zurück zum Zitat Mosarof M, Kalam M, Masjuki H, Arslan A, Monirul I, Ruhul A, Shahir S, Khuong L (2016) Analysis of thermal stability and lubrication characteristics of millettia pinnata oil. RSC Adv 6:81414–81425CrossRef Mosarof M, Kalam M, Masjuki H, Arslan A, Monirul I, Ruhul A, Shahir S, Khuong L (2016) Analysis of thermal stability and lubrication characteristics of millettia pinnata oil. RSC Adv 6:81414–81425CrossRef
Zurück zum Zitat Nejman A, Goetzendorf-Grabowska B (2013) Heat balance of textile materials modified with the mixtures of pcm microcapsules. Thermochim Acta 569:144–150CrossRef Nejman A, Goetzendorf-Grabowska B (2013) Heat balance of textile materials modified with the mixtures of pcm microcapsules. Thermochim Acta 569:144–150CrossRef
Zurück zum Zitat Nelson G (2002) Application of microencapsulation in textiles. Int J Pharm 242:55–62CrossRef Nelson G (2002) Application of microencapsulation in textiles. Int J Pharm 242:55–62CrossRef
Zurück zum Zitat Putri WA, Fahmi Z, Sutjahja I, Kurnia D, Wonorahardjo S (2016) Thermophysical parameters of coconut oil and its potential application as the thermal energy storage system in indonesia. J Phys: Conf Ser 739:012065 Putri WA, Fahmi Z, Sutjahja I, Kurnia D, Wonorahardjo S (2016) Thermophysical parameters of coconut oil and its potential application as the thermal energy storage system in indonesia. J Phys: Conf Ser 739:012065
Zurück zum Zitat Quan S-L, Kang S-G, Chin I-J (2010) Characterization of cellulose fibers electrospun using ionic liquid. Cellulose 17:223–230CrossRef Quan S-L, Kang S-G, Chin I-J (2010) Characterization of cellulose fibers electrospun using ionic liquid. Cellulose 17:223–230CrossRef
Zurück zum Zitat Si Y, Yu J, Tang X, Ge J, Ding B (2014) Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality. Nat Commun 5:5802CrossRef Si Y, Yu J, Tang X, Ge J, Ding B (2014) Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality. Nat Commun 5:5802CrossRef
Zurück zum Zitat Simmons TJ, Lee SH, Miao J, Miyauchi M, Park T-J, Bale SS, Pangule R, Bult J, Martin JG, Dordick JS (2011) Preparation of synthetic wood composites using ionic liquids. Wood Sci Technol 45:719–733CrossRef Simmons TJ, Lee SH, Miao J, Miyauchi M, Park T-J, Bale SS, Pangule R, Bult J, Martin JG, Dordick JS (2011) Preparation of synthetic wood composites using ionic liquids. Wood Sci Technol 45:719–733CrossRef
Zurück zum Zitat Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellose with ionic liquids. J Am Chem Soc 124:4974–4975CrossRef Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellose with ionic liquids. J Am Chem Soc 124:4974–4975CrossRef
Zurück zum Zitat Teo WE, Ramakrishna S (2006) A review on electrospinning design and nanofibre assemblies. Nanotechnology 17:R89CrossRef Teo WE, Ramakrishna S (2006) A review on electrospinning design and nanofibre assemblies. Nanotechnology 17:R89CrossRef
Zurück zum Zitat Thangaraja J, Anand K, Mehta PS (2016) Predicting surface tension for vegetable oil and biodiesel fuels. RSC Adv 6:84645–84657CrossRef Thangaraja J, Anand K, Mehta PS (2016) Predicting surface tension for vegetable oil and biodiesel fuels. RSC Adv 6:84645–84657CrossRef
Zurück zum Zitat Unruh T, Bunjes H, Westesen K, Koch MH (1999) Observation of size-dependent melting in lipid nanoparticles. J Phys Chem B 103:10373–10377CrossRef Unruh T, Bunjes H, Westesen K, Koch MH (1999) Observation of size-dependent melting in lipid nanoparticles. J Phys Chem B 103:10373–10377CrossRef
Zurück zum Zitat Vatankhah E, Semnani D, Prabhakaran MP, Tadayon M, Razavi S, Ramakrishna S (2014) Artificial neural network for modeling the elastic modulus of electrospun polycaprolactone/gelatin scaffolds. Acta Biomater 10:709–721CrossRef Vatankhah E, Semnani D, Prabhakaran MP, Tadayon M, Razavi S, Ramakrishna S (2014) Artificial neural network for modeling the elastic modulus of electrospun polycaprolactone/gelatin scaffolds. Acta Biomater 10:709–721CrossRef
Zurück zum Zitat Vigo TL, Frost C (1982) Temperature-sensitive hollow fibers containing phase change salts. Text Res J 52:633–637CrossRef Vigo TL, Frost C (1982) Temperature-sensitive hollow fibers containing phase change salts. Text Res J 52:633–637CrossRef
Zurück zum Zitat Vigo TL, Frost CM (1983) Temperature adaptable hollow fibers containing polyethylene glycols. J Coat Fabr 12:243–254CrossRef Vigo TL, Frost CM (1983) Temperature adaptable hollow fibers containing polyethylene glycols. J Coat Fabr 12:243–254CrossRef
Zurück zum Zitat Viswanathan G, Murugesan S, Pushparaj V, Nalamasu O, Ajayan PM, Linhardt RJ (2006) Preparation of biopolymer fibers by electrospinning from room temperature ionic liquids. Biomacromol 7:415–418CrossRef Viswanathan G, Murugesan S, Pushparaj V, Nalamasu O, Ajayan PM, Linhardt RJ (2006) Preparation of biopolymer fibers by electrospinning from room temperature ionic liquids. Biomacromol 7:415–418CrossRef
Zurück zum Zitat Walker JW (2009) Ask the experts: When air is the same temperature as our body, why do we feel hot? Sci Am 300:84CrossRef Walker JW (2009) Ask the experts: When air is the same temperature as our body, why do we feel hot? Sci Am 300:84CrossRef
Zurück zum Zitat Watkins D, Nuruddin M, Hosur M, Tcherbi-Narteh A, Jeelani S (2015) Extraction and characterization of lignin from different biomass resources. J Mater Res Technol 4:26–32CrossRef Watkins D, Nuruddin M, Hosur M, Tcherbi-Narteh A, Jeelani S (2015) Extraction and characterization of lignin from different biomass resources. J Mater Res Technol 4:26–32CrossRef
Zurück zum Zitat Werner K, Pommer L, Broström M (2014) Thermal decomposition of hemicelluloses. J Anal Appl Pyrol 110:130–137CrossRef Werner K, Pommer L, Broström M (2014) Thermal decomposition of hemicelluloses. J Anal Appl Pyrol 110:130–137CrossRef
Zurück zum Zitat Yu D, Wang X, Li X, Chian W, Li Y, Liao Y (2013a) Electrospun biphasic drug release polyvinylpyrrolidone/ethyl cellulose core/sheath nanofibers. Acta Biomater 9:5665–5672CrossRef Yu D, Wang X, Li X, Chian W, Li Y, Liao Y (2013a) Electrospun biphasic drug release polyvinylpyrrolidone/ethyl cellulose core/sheath nanofibers. Acta Biomater 9:5665–5672CrossRef
Zurück zum Zitat Yu D-G, Chian W, Wang X, Li X-Y, Li Y, Liao Y-Z (2013b) Linear drug release membrane prepared by a modified coaxial electrospinning process. J Membrane Sci 428:150–156CrossRef Yu D-G, Chian W, Wang X, Li X-Y, Li Y, Liao Y-Z (2013b) Linear drug release membrane prepared by a modified coaxial electrospinning process. J Membrane Sci 428:150–156CrossRef
Zurück zum Zitat Zhang Y, Zhou G, Lin K, Zhang Q, Di H (2007) Application of latent heat thermal energy storage in buildings: state-of-the-art and outlook. Build Environ 42:2197–2209CrossRef Zhang Y, Zhou G, Lin K, Zhang Q, Di H (2007) Application of latent heat thermal energy storage in buildings: state-of-the-art and outlook. Build Environ 42:2197–2209CrossRef
Zurück zum Zitat Zheng Y, Miao J, Maeda N, Frey D, Linhardt RJ, Simmons TJ (2014) Uniform nanoparticle coating of cellulose fibers during wet electrospinning. J Mater Chem A 2:15029–15034CrossRef Zheng Y, Miao J, Maeda N, Frey D, Linhardt RJ, Simmons TJ (2014) Uniform nanoparticle coating of cellulose fibers during wet electrospinning. J Mater Chem A 2:15029–15034CrossRef
Zurück zum Zitat Zheng Y, Cai C, Zhang F, Monty J, Linhardt RJ, Simmons TJ (2016) Can natural fibers be a silver bullet? Antibacterial cellulose fibers through the covalent bonding of silver nanoparticles to electrospun fibers. Nanotechnology 27:055102CrossRef Zheng Y, Cai C, Zhang F, Monty J, Linhardt RJ, Simmons TJ (2016) Can natural fibers be a silver bullet? Antibacterial cellulose fibers through the covalent bonding of silver nanoparticles to electrospun fibers. Nanotechnology 27:055102CrossRef
Metadaten
Titel
Coconut oil-cellulose beaded microfibers by coaxial electrospinning: An eco-model system to study thermoregulation of confined phase change materials
verfasst von
W. M. Ranodhi N. Udangawa
Charles F. Willard
Chiara Mancinelli
Caitlyn Chapman
Robert J. Linhardt
Trevor John Simmons
Publikationsdatum
04.12.2018
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 3/2019
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-018-2151-2

Weitere Artikel der Ausgabe 3/2019

Cellulose 3/2019 Zur Ausgabe