Skip to main content

2017 | OriginalPaper | Buchkapitel

Collective Dynamics of Particles in Viscous Flows with an Emphasis on Slender Rods

verfasst von : Jason E. Butler

Erschienen in: Collective Dynamics of Particles

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Basic principles that govern the viscous motion of non-colloidal particles are described, and then the principles are applied to the analysis and simulation of the collective motion of particles in a concentrated suspension. Though rigid spheres are discussed in general, the dynamics of rigid rods are the focus of the given examples, equations, and simulation methods.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
A thorough and readable introduction to these concepts is available in the text by Guazzelli and Morris (2012). Also, the text by Kim and Karrila (2005) is a useful handbook containing multiple relationships for performing calculations on these types of suspensions.
 
Literatur
Zurück zum Zitat S.J. Aarseth. Gravitational N-Body Simulations. Cambridge University Press, 2003. S.J. Aarseth. Gravitational N-Body Simulations. Cambridge University Press, 2003.
Zurück zum Zitat S.A. Altobelli, R.C. Givler, and E. Fukushima. Velocity and concentration measurements of suspensions by nuclear magnetic resonance imaging. J. Rheol., 35: 721–734, 1991.CrossRef S.A. Altobelli, R.C. Givler, and E. Fukushima. Velocity and concentration measurements of suspensions by nuclear magnetic resonance imaging. J. Rheol., 35: 721–734, 1991.CrossRef
Zurück zum Zitat P.A. Arp and S.G. Mason. The kinetics of flowing dispersions. VIII. Doublets of rigid spheres (theoretical). J. Colloid Interface Sci., 61: 21–43, 1977.CrossRef P.A. Arp and S.G. Mason. The kinetics of flowing dispersions. VIII. Doublets of rigid spheres (theoretical). J. Colloid Interface Sci., 61: 21–43, 1977.CrossRef
Zurück zum Zitat G.K. Batchelor. Slender-body theory for particles of arbitrary cross-section in Stokes flow. J. Fluid Mech., 44: 419–440, 1970.MathSciNetCrossRefMATH G.K. Batchelor. Slender-body theory for particles of arbitrary cross-section in Stokes flow. J. Fluid Mech., 44: 419–440, 1970.MathSciNetCrossRefMATH
Zurück zum Zitat R.B. Bird, H.R. Warner Jr., and D. C. Evans. Kinetic theory and rheology of dumbbell suspensions with Brownian motion. Adv. Poly. Sci., 8: 1–90, 1971.CrossRef R.B. Bird, H.R. Warner Jr., and D. C. Evans. Kinetic theory and rheology of dumbbell suspensions with Brownian motion. Adv. Poly. Sci., 8: 1–90, 1971.CrossRef
Zurück zum Zitat I. Bitsanis, H.T. Davis, and M. Tirrell. Brownian dynamics of nondilute solutions of rodlike polymers. 1. Low concentrations. Macromolecules, 21: 2824–2835, 1988.CrossRef I. Bitsanis, H.T. Davis, and M. Tirrell. Brownian dynamics of nondilute solutions of rodlike polymers. 1. Low concentrations. Macromolecules, 21: 2824–2835, 1988.CrossRef
Zurück zum Zitat I. Bitsanis, H.T. Davis, and M. Tirrell. Brownian dynamics of nondilute solutions of rodlike polymers. 2. High concentrations. Macromolecules, 23, 1990. I. Bitsanis, H.T. Davis, and M. Tirrell. Brownian dynamics of nondilute solutions of rodlike polymers. 2. High concentrations. Macromolecules, 23, 1990.
Zurück zum Zitat J.R. Blake. A note on the image system for a Stokeslet in a no-slip boundary. Proc. Cambridge Philos. Soc., 70: 303, 1971.CrossRefMATH J.R. Blake. A note on the image system for a Stokeslet in a no-slip boundary. Proc. Cambridge Philos. Soc., 70: 303, 1971.CrossRefMATH
Zurück zum Zitat J.F. Brady and G. Bossis. Stokesian dynamics. Ann. Rev. Fluid Mech., 20: 111–157, 1988.CrossRef J.F. Brady and G. Bossis. Stokesian dynamics. Ann. Rev. Fluid Mech., 20: 111–157, 1988.CrossRef
Zurück zum Zitat J.F. Brady, R.J. Phillips, J.C. Lester, and G. Bossis. Dynamic simulation of hydrodynamically interacting suspensions. J. Fluid Mech., 195: 257–280, 1988.CrossRefMATH J.F. Brady, R.J. Phillips, J.C. Lester, and G. Bossis. Dynamic simulation of hydrodynamically interacting suspensions. J. Fluid Mech., 195: 257–280, 1988.CrossRefMATH
Zurück zum Zitat J.E. Butler. Suspension dynamics: moving beyond steady. J. Fluid Mech., 752: 1–4, 2014.CrossRef J.E. Butler. Suspension dynamics: moving beyond steady. J. Fluid Mech., 752: 1–4, 2014.CrossRef
Zurück zum Zitat J.E. Butler and R.T. Bonnecaze. Imaging of particle shear migration with electrical impedance tomography. Phys. Fluids, 11: 1982–1994, 1991.CrossRefMATH J.E. Butler and R.T. Bonnecaze. Imaging of particle shear migration with electrical impedance tomography. Phys. Fluids, 11: 1982–1994, 1991.CrossRefMATH
Zurück zum Zitat J.E. Butler and E.S.G. Shaqfeh. Dynamic simulations of the inhomogeneous sedimentation of rigid fibres. J. Fluid Mech., 468: 205–237, 2002.CrossRefMATH J.E. Butler and E.S.G. Shaqfeh. Dynamic simulations of the inhomogeneous sedimentation of rigid fibres. J. Fluid Mech., 468: 205–237, 2002.CrossRefMATH
Zurück zum Zitat T. Chwang and T.Y. Wu. Hydromechanics of low-Reynolds-number flow. Part 2. Singularity method for Stokes flows. J. Fluid Mech., 67: 787–815, 1975.MathSciNetCrossRefMATH T. Chwang and T.Y. Wu. Hydromechanics of low-Reynolds-number flow. Part 2. Singularity method for Stokes flows. J. Fluid Mech., 67: 787–815, 1975.MathSciNetCrossRefMATH
Zurück zum Zitat I.L. Claeys and J.F. Brady. Lubrication singularities of the grand resistance tensor for two arbitrary particles. Physico Chem. Hydrodyn., 11: 261–293, 1989. I.L. Claeys and J.F. Brady. Lubrication singularities of the grand resistance tensor for two arbitrary particles. Physico Chem. Hydrodyn., 11: 261–293, 1989.
Zurück zum Zitat I.L. Claeys and J.F. Brady. Suspensions of prolate spheroids in Stokes flow. Part 1. Dynamics of a finite number of particles in an unbounded fluid. J. Fluid Mech., 251: 411–442, 1993.CrossRefMATH I.L. Claeys and J.F. Brady. Suspensions of prolate spheroids in Stokes flow. Part 1. Dynamics of a finite number of particles in an unbounded fluid. J. Fluid Mech., 251: 411–442, 1993.CrossRefMATH
Zurück zum Zitat R.G. Cox. The motion of long slender bodies in a viscous fluid. Part 1. General theory. J. Fluid Mech., 44: 791–810, 1970.CrossRefMATH R.G. Cox. The motion of long slender bodies in a viscous fluid. Part 1. General theory. J. Fluid Mech., 44: 791–810, 1970.CrossRefMATH
Zurück zum Zitat L. Durlofsky, J.F. Brady, and G. Bossis. Dynamic simulation of hydrodynamically interacting particles. J. Fluid Mech., 180: 21–49, 1987.CrossRefMATH L. Durlofsky, J.F. Brady, and G. Bossis. Dynamic simulation of hydrodynamically interacting particles. J. Fluid Mech., 180: 21–49, 1987.CrossRefMATH
Zurück zum Zitat A. Franceschini, E. Filippidi, E. Guazzelli, and D. J. Pine. Transverse alignment of fibers in a periodically sheared suspension: An absorbing phase transition with a slowly varying control parameter. Phys. Rev. Lett., 107: 250603, 2011.CrossRef A. Franceschini, E. Filippidi, E. Guazzelli, and D. J. Pine. Transverse alignment of fibers in a periodically sheared suspension: An absorbing phase transition with a slowly varying control parameter. Phys. Rev. Lett., 107: 250603, 2011.CrossRef
Zurück zum Zitat E. Guazzelli and J.F. Morris. A Physical Introduction to Suspension Dynamics. Cambridge University Press, 2012. E. Guazzelli and J.F. Morris. A Physical Introduction to Suspension Dynamics. Cambridge University Press, 2012.
Zurück zum Zitat R.E. Hampton, A.A. Mammoli, A.L. Graham, N. Tetlow, and S.A. Altobelli. Migration of particles undergoing pressure-driven flow in a circular conduit. J. Rheol., 41: 621–640, 1997.CrossRef R.E. Hampton, A.A. Mammoli, A.L. Graham, N. Tetlow, and S.A. Altobelli. Migration of particles undergoing pressure-driven flow in a circular conduit. J. Rheol., 41: 621–640, 1997.CrossRef
Zurück zum Zitat O.G. Harlen, R.R. Sundararajakumar, and D.L. Koch. Numerical simulation of a sphere settling through a suspension of neutrally buoyant fibres. J. Fluid Mech., 388: 355–388, 1999.CrossRefMATH O.G. Harlen, R.R. Sundararajakumar, and D.L. Koch. Numerical simulation of a sphere settling through a suspension of neutrally buoyant fibres. J. Fluid Mech., 388: 355–388, 1999.CrossRefMATH
Zurück zum Zitat H. Hasimoto. On the periodic fundamental solutions of the Stokes equations and their application to viscous flow past a cubic array of spheres. J. Fluid Mech., 5: 317–328, 1959.MathSciNetCrossRefMATH H. Hasimoto. On the periodic fundamental solutions of the Stokes equations and their application to viscous flow past a cubic array of spheres. J. Fluid Mech., 5: 317–328, 1959.MathSciNetCrossRefMATH
Zurück zum Zitat R. Hsu and P. Ganatos. Gravitational and zero-drag motion of a spheroid adjacent to an inclined plane at low Reynolds number. J. Fluid Mech., 268: 267, 1976.CrossRef R. Hsu and P. Ganatos. Gravitational and zero-drag motion of a spheroid adjacent to an inclined plane at low Reynolds number. J. Fluid Mech., 268: 267, 1976.CrossRef
Zurück zum Zitat W. Hunziker and I.M. Sigal. The quantum N-body problem. J. Math. Phys., 41, 2000. W. Hunziker and I.M. Sigal. The quantum N-body problem. J. Math. Phys., 41, 2000.
Zurück zum Zitat I.M. Janosi, T. Tel, D.E. Wolf, and J.A.C. Gallas. Chaotic particle dynamics in viscous flows: The three-particle Stokeslet problem. Phys. Rev. E, 65: 2858–2868, 1997.CrossRef I.M. Janosi, T. Tel, D.E. Wolf, and J.A.C. Gallas. Chaotic particle dynamics in viscous flows: The three-particle Stokeslet problem. Phys. Rev. E, 65: 2858–2868, 1997.CrossRef
Zurück zum Zitat G.B. Jeffery. The motion of ellipsoidal particles immersed in a viscous fluid. Proc. Roy. Soc. A, 102: 161–179, 1922.CrossRefMATH G.B. Jeffery. The motion of ellipsoidal particles immersed in a viscous fluid. Proc. Roy. Soc. A, 102: 161–179, 1922.CrossRefMATH
Zurück zum Zitat J. Jeffrey and Y. Onishi. Calculation of the resistance and mobility functions for two unequal rigid spheres in low-Reynolds-number flow. J. Fluid Mech., 139: 261–290, 1984.CrossRefMATH J. Jeffrey and Y. Onishi. Calculation of the resistance and mobility functions for two unequal rigid spheres in low-Reynolds-number flow. J. Fluid Mech., 139: 261–290, 1984.CrossRefMATH
Zurück zum Zitat A. Karnis, H. Goldsmith, and S. Mason. The kinetics of flowing dispersions: I. Concentrated suspensions of rigid particles. J. Colloid Interface Sci., 22: 531–553, 1966.CrossRef A. Karnis, H. Goldsmith, and S. Mason. The kinetics of flowing dispersions: I. Concentrated suspensions of rigid particles. J. Colloid Interface Sci., 22: 531–553, 1966.CrossRef
Zurück zum Zitat S. Kim and S.J. Karrila. Microhydrodynamics: Principles and Selected Applications. Butterworth-Heineman, 2005. S. Kim and S.J. Karrila. Microhydrodynamics: Principles and Selected Applications. Butterworth-Heineman, 2005.
Zurück zum Zitat S. Kim and R.T. Mifflin. The resistance and mobility functions of two equal spheres in low-Reynolds-number flow. Phys. Fluids, 28: 2033–2045, 1985.CrossRefMATH S. Kim and R.T. Mifflin. The resistance and mobility functions of two equal spheres in low-Reynolds-number flow. Phys. Fluids, 28: 2033–2045, 1985.CrossRefMATH
Zurück zum Zitat D.L. Koch and E.S.G. Shaqfeh. The instability of a dispersion of sedimenting spheroids. J. Fluid Mech., 209: 521–542, 1989.MathSciNetCrossRefMATH D.L. Koch and E.S.G. Shaqfeh. The instability of a dispersion of sedimenting spheroids. J. Fluid Mech., 209: 521–542, 1989.MathSciNetCrossRefMATH
Zurück zum Zitat D. Leighton and A. Acrivos. The shear-induced migration of particles in concentrated suspensions. J. Fluid Mech., 181: 415–439, 1987.CrossRef D. Leighton and A. Acrivos. The shear-induced migration of particles in concentrated suspensions. J. Fluid Mech., 181: 415–439, 1987.CrossRef
Zurück zum Zitat M.B. Mackaplow and E.S.G. Shaqfeh. A numerical study of the sedimentation of fiber suspensions. J. Fluid Mech., 376: 149–182, 1998.CrossRefMATH M.B. Mackaplow and E.S.G. Shaqfeh. A numerical study of the sedimentation of fiber suspensions. J. Fluid Mech., 376: 149–182, 1998.CrossRefMATH
Zurück zum Zitat B. Metzger and J. E. Butler. Irreversibility and chaos: Role of long range hydrodynamic interactions in sheared suspensions. Phys. Rev. E, 82: 051406, 2010.CrossRef B. Metzger and J. E. Butler. Irreversibility and chaos: Role of long range hydrodynamic interactions in sheared suspensions. Phys. Rev. E, 82: 051406, 2010.CrossRef
Zurück zum Zitat B. Metzger, M. Nicolas, and E. Guazzelli. Falling clouds of particles in viscous fluids. J. Fluid Mech., 580: 283–301, 2007.CrossRefMATH B. Metzger, M. Nicolas, and E. Guazzelli. Falling clouds of particles in viscous fluids. J. Fluid Mech., 580: 283–301, 2007.CrossRefMATH
Zurück zum Zitat B. Metzger, P. Pham, and J.E. Butler. Irreversibility and chaos: Role of lubrication interactions in sheared suspensions. Phys. Rev. E, 87: 052304, 2013.CrossRef B. Metzger, P. Pham, and J.E. Butler. Irreversibility and chaos: Role of lubrication interactions in sheared suspensions. Phys. Rev. E, 87: 052304, 2013.CrossRef
Zurück zum Zitat P.R. Nott and J.F. Brady. Pressure-driven flow of suspensions: simulation and theory. J. Fluid Mech., 275: 157–199, 1994.CrossRefMATH P.R. Nott and J.F. Brady. Pressure-driven flow of suspensions: simulation and theory. J. Fluid Mech., 275: 157–199, 1994.CrossRefMATH
Zurück zum Zitat A. Oberbeck. Ueber stationiire Fliissigkeitsbewegungen mit Beriicksichtigung der inneren Reibung. J. reine angew. Math., 81: 62–80, 1876.MathSciNet A. Oberbeck. Ueber stationiire Fliissigkeitsbewegungen mit Beriicksichtigung der inneren Reibung. J. reine angew. Math., 81: 62–80, 1876.MathSciNet
Zurück zum Zitat J. Park and J.E. Butler. Inhomogeneous distribution of a rigid fibre undergoing rectilinear flow between parallel walls at high Peclet numbers. J. Fluid Mech., 630: 267–298, 2009.MathSciNetCrossRefMATH J. Park and J.E. Butler. Inhomogeneous distribution of a rigid fibre undergoing rectilinear flow between parallel walls at high Peclet numbers. J. Fluid Mech., 630: 267–298, 2009.MathSciNetCrossRefMATH
Zurück zum Zitat J. Park, J.M. Bricker, and J.E. Butler. Cross-stream migration in dilute solutions of rigid polymers undergoing rectilinear flow near a wall. Phys. Rev. E, 76: 040801(R), 2007.CrossRef J. Park, J.M. Bricker, and J.E. Butler. Cross-stream migration in dilute solutions of rigid polymers undergoing rectilinear flow near a wall. Phys. Rev. E, 76: 040801(R), 2007.CrossRef
Zurück zum Zitat J. Park, B. Metzger, E. Guazzelli, and J.E. Butler. A cloud of rigid fibres sedimenting in a viscous fluid. J. Fluid Mech., 648: 351–362, 2010.CrossRefMATH J. Park, B. Metzger, E. Guazzelli, and J.E. Butler. A cloud of rigid fibres sedimenting in a viscous fluid. J. Fluid Mech., 648: 351–362, 2010.CrossRefMATH
Zurück zum Zitat P. Pham, B. Metzger, and J.E. Butler. Particle dispersion in sheared suspensions: Crucial role of solid-solid contacts. Phys. Fluids, 27: 051701, 2015.CrossRef P. Pham, B. Metzger, and J.E. Butler. Particle dispersion in sheared suspensions: Crucial role of solid-solid contacts. Phys. Fluids, 27: 051701, 2015.CrossRef
Zurück zum Zitat P. Pham, B. Metzger, and J.E. Butler. Origin of critical strain amplitude in periodically sheared suspensions. Physical Review Fluids, 1: 022201(R), 2016.CrossRef P. Pham, B. Metzger, and J.E. Butler. Origin of critical strain amplitude in periodically sheared suspensions. Physical Review Fluids, 1: 022201(R), 2016.CrossRef
Zurück zum Zitat D.J. Pine, J.P. Gollub, J.F. Brady, and A.M. Leshansky. Chaos and threshold for irreversibility in sheared suspensions. Nature, 438: 997, 2005.CrossRef D.J. Pine, J.P. Gollub, J.F. Brady, and A.M. Leshansky. Chaos and threshold for irreversibility in sheared suspensions. Nature, 438: 997, 2005.CrossRef
Zurück zum Zitat C. Pozrikidis. Boundary Integral and Singularity Methods for Linearized Viscous Flow. Cambridge University Press, 1992. C. Pozrikidis. Boundary Integral and Singularity Methods for Linearized Viscous Flow. Cambridge University Press, 1992.
Zurück zum Zitat J. Riseman and J. G. Kirkwood. The intrinsic viscosity, translational and rotatory diffusion constants of rod-like macromolecules in solution. J. Chem. Phys., 18: 512–516, 1950.CrossRef J. Riseman and J. G. Kirkwood. The intrinsic viscosity, translational and rotatory diffusion constants of rod-like macromolecules in solution. J. Chem. Phys., 18: 512–516, 1950.CrossRef
Zurück zum Zitat R.G. Larson. The Structure and Rheology of Complex Fluids. Oxford University Press, New York, 1999. R.G. Larson. The Structure and Rheology of Complex Fluids. Oxford University Press, New York, 1999.
Zurück zum Zitat W.B. Russel, E.J. Hinch, L.G. Leal, and G. Tieffenbruck. Rods falling near a vertical wall. J. Fluid Mech., 83: 273, 1977.CrossRefMATH W.B. Russel, E.J. Hinch, L.G. Leal, and G. Tieffenbruck. Rods falling near a vertical wall. J. Fluid Mech., 83: 273, 1977.CrossRefMATH
Zurück zum Zitat B. Snook, E. Guazzelli, and J.E. Butler. Vorticity alignment of rigid fibers in an oscillatory shear flow: Role of confinement. Phys. Fluids, 24: 121702, 2012.CrossRef B. Snook, E. Guazzelli, and J.E. Butler. Vorticity alignment of rigid fibers in an oscillatory shear flow: Role of confinement. Phys. Fluids, 24: 121702, 2012.CrossRef
Zurück zum Zitat B. Snook, L.M. Davidson, J.E. Butler, O. Pouliquen, and E. Guazzelli. Normal stress differences in suspensions of rigid fibres. J. Fluid Mech., 758: 486–507, 2014.CrossRef B. Snook, L.M. Davidson, J.E. Butler, O. Pouliquen, and E. Guazzelli. Normal stress differences in suspensions of rigid fibres. J. Fluid Mech., 758: 486–507, 2014.CrossRef
Zurück zum Zitat K. Yeo and M.R. Maxey. Numerical simulations of concentrated suspensions of mono-disperse particles in a Poiseuille flow. J. Fluid Mech., 682: 491–518, 2011.CrossRefMATH K. Yeo and M.R. Maxey. Numerical simulations of concentrated suspensions of mono-disperse particles in a Poiseuille flow. J. Fluid Mech., 682: 491–518, 2011.CrossRefMATH
Metadaten
Titel
Collective Dynamics of Particles in Viscous Flows with an Emphasis on Slender Rods
verfasst von
Jason E. Butler
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-51226-6_4

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.