Skip to main content
Erschienen in: Energy, Ecology and Environment 2/2018

16.02.2018 | Original Article

Combinatorial application of ammonium carbonate and sulphuric acid pretreatment to achieve enhanced sugar yield from pine needle biomass for potential biofuel–ethanol production

verfasst von: Surbhi Vaid, Neha Bhat, Parushi Nargotra, Bijender Kumar Bajaj

Erschienen in: Energy, Ecology and Environment | Ausgabe 2/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Lignocellulosic biomass (LB) despite its huge potential as a renewable bioenergy resource faces bottlenecks due to its recalcitrance and lack of appropriate pretreatment approaches. The current study evaluates the combinatorial application of alkali and acid pretreatment of pine needle biomass (PNB), for achieving high sugar release upon enzymatic saccharification. Pine needle accumulation poses a big threat to the forest soil fertility and overall ecosystem and environment. However, pine needle waste can be valorized after appropriate pretreatment and enzymatic saccharification for production of renewable energy, i.e. biofuel–ethanol. In combinatorial pretreatment strategy, first PNB was subjected to ammonium carbonate pretreatment, and parameters like ammonium carbonate concentration, incubation time and pretreatment temperature were optimized using design of experiment (DoE) approach. The relative influence of parameters on efficacy of pretreatment was established individually and in interactive terms. Based on DoE, sugar yield of 7.56 mg/g of PNB was obtained. Furthermore, DoE-based pretreated PNB was subjected to sulphuric acid pretreatment, followed by enzymatic saccharification. The sugar released during various steps was pooled (8.19 g/100 g), concentrated and subjected to ethanol fermentation with dual yeast cultures using Saccharomyces cerevisiae and Pichia stipitis. An ethanol yield of 8.8%, v/v (6.94% w/v), was obtained. This represents the process efficiency of 19.34% for bioethanol production from PNB.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Alvira P, Tomas-Pejo E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861CrossRef Alvira P, Tomas-Pejo E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861CrossRef
Zurück zum Zitat Choi WI, Park JY, Lee JP, Oh YK, Park YC, Kim JS, Park JM, Kim CH, Lee JS (2013) Optimization of NaOH-catalyzed steam pretreatment of empty fruit bunch. Biotechnol Biofuel 6:170CrossRef Choi WI, Park JY, Lee JP, Oh YK, Park YC, Kim JS, Park JM, Kim CH, Lee JS (2013) Optimization of NaOH-catalyzed steam pretreatment of empty fruit bunch. Biotechnol Biofuel 6:170CrossRef
Zurück zum Zitat de Souza ROMA, Mirandaa LSM, Luque R (2014) Bio(chemo)technological strategies for biomass conversion into bioethanol and key carboxylic acids. Green Chem 16:2386CrossRef de Souza ROMA, Mirandaa LSM, Luque R (2014) Bio(chemo)technological strategies for biomass conversion into bioethanol and key carboxylic acids. Green Chem 16:2386CrossRef
Zurück zum Zitat Gao W, Tabil LG, Dumonceaux T, Ríos SE, Zhao R (2017) Optimization of biological pretreatment to enhance the quality of wheat straw pellets. Biomass Bioenergy 97:77–89CrossRef Gao W, Tabil LG, Dumonceaux T, Ríos SE, Zhao R (2017) Optimization of biological pretreatment to enhance the quality of wheat straw pellets. Biomass Bioenergy 97:77–89CrossRef
Zurück zum Zitat Ghosh MK, Ghosh UK (2011) Utilization of pine needles as bed material in solid state fermentation for production of lactic acid by lactobacillus strains. BioResources 6:1556–1575 Ghosh MK, Ghosh UK (2011) Utilization of pine needles as bed material in solid state fermentation for production of lactic acid by lactobacillus strains. BioResources 6:1556–1575
Zurück zum Zitat Guo X, Cavka A, Jonsson LJ, Hong F (2013) Comparison of methods for detoxification of spruce hydrolysate for bacterial cellulose production. Microb Cell Fact 12:1CrossRef Guo X, Cavka A, Jonsson LJ, Hong F (2013) Comparison of methods for detoxification of spruce hydrolysate for bacterial cellulose production. Microb Cell Fact 12:1CrossRef
Zurück zum Zitat He YC, Liu F, Gong L, Lu T, Ding Y, Zhang Dan-Ping, Qing Q, Zhang Y (2015) Improving enzymatic hydrolysis of corn stover pretreated by ethylene glycol-perchloric acid-water mixture. Appl Biochem Biotechnol 175:1306–1317CrossRef He YC, Liu F, Gong L, Lu T, Ding Y, Zhang Dan-Ping, Qing Q, Zhang Y (2015) Improving enzymatic hydrolysis of corn stover pretreated by ethylene glycol-perchloric acid-water mixture. Appl Biochem Biotechnol 175:1306–1317CrossRef
Zurück zum Zitat Hou Q, Ju M, Li W, Liu L, Chen Y, Yang Q (2017) Pretreatment of lignocellulosic biomass with ionic liquids and ionic liquid-based solvent systems. Molecules 22:490CrossRef Hou Q, Ju M, Li W, Liu L, Chen Y, Yang Q (2017) Pretreatment of lignocellulosic biomass with ionic liquids and ionic liquid-based solvent systems. Molecules 22:490CrossRef
Zurück zum Zitat Jin S, Zhang G, Zhang P, Fan S, Li F (2015) High-pressure homogenization pretreatment of four different lignocellulosic biomass for enhancing enzymatic digestibility. Bioresour Technol 181:270–274CrossRef Jin S, Zhang G, Zhang P, Fan S, Li F (2015) High-pressure homogenization pretreatment of four different lignocellulosic biomass for enhancing enzymatic digestibility. Bioresour Technol 181:270–274CrossRef
Zurück zum Zitat Jonsson LJ, Martin C (2016) Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresour Technol 199:103–112CrossRef Jonsson LJ, Martin C (2016) Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresour Technol 199:103–112CrossRef
Zurück zum Zitat Karcher MA, Iqbal Y, Lewandowski T (2015) Comparing the performance of Miscanthus giganteus and wheat straw biomass in sulfuric acid based pretreatment. Bioresour Technol 180:360–364CrossRef Karcher MA, Iqbal Y, Lewandowski T (2015) Comparing the performance of Miscanthus giganteus and wheat straw biomass in sulfuric acid based pretreatment. Bioresour Technol 180:360–364CrossRef
Zurück zum Zitat Kim I, Lee B, Song D, Han JI (2014) Effects of ammonium carbonate pretreatment on the enzymatic digestibility and structural features of rice straw. Bioresour Technol 166:353–357CrossRef Kim I, Lee B, Song D, Han JI (2014) Effects of ammonium carbonate pretreatment on the enzymatic digestibility and structural features of rice straw. Bioresour Technol 166:353–357CrossRef
Zurück zum Zitat Kim JS, Lee YY, Kim TH (2016) A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresour Technol 199:42–48CrossRef Kim JS, Lee YY, Kim TH (2016) A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresour Technol 199:42–48CrossRef
Zurück zum Zitat Kumar R, Tabatabaei M, Karimi K, Sárvári Horváth I (2016) Recent updates on lignocellulosic biomass derived ethanol—a review. Biofuel Res J 9:347–356CrossRef Kumar R, Tabatabaei M, Karimi K, Sárvári Horváth I (2016) Recent updates on lignocellulosic biomass derived ethanol—a review. Biofuel Res J 9:347–356CrossRef
Zurück zum Zitat Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428CrossRef Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428CrossRef
Zurück zum Zitat Mohan M, Banerjee T, Goud VV (2015) Hydrolysis of bamboo biomass by subcritical water treatment. Bioresour Technol 191:244–252CrossRef Mohan M, Banerjee T, Goud VV (2015) Hydrolysis of bamboo biomass by subcritical water treatment. Bioresour Technol 191:244–252CrossRef
Zurück zum Zitat Nanda S, Dalai AK, Kozinski JA (2014) Butanol and ethanol production from lignocellulosic feedstock: biomass pretreatment and bioconversion. Energy Sci Eng 2:138–148CrossRef Nanda S, Dalai AK, Kozinski JA (2014) Butanol and ethanol production from lignocellulosic feedstock: biomass pretreatment and bioconversion. Energy Sci Eng 2:138–148CrossRef
Zurück zum Zitat Nargotra P, Vaid S, Bajaj BK (2016) Cellulase production from Bacillus subtilis SV1 and its application potential for saccharification of ionic liquid pretreated pine needle biomass under one pot consolidated bioprocess. Fermentation 2:19CrossRef Nargotra P, Vaid S, Bajaj BK (2016) Cellulase production from Bacillus subtilis SV1 and its application potential for saccharification of ionic liquid pretreated pine needle biomass under one pot consolidated bioprocess. Fermentation 2:19CrossRef
Zurück zum Zitat Novy V, Longus K, Nidetzky B (2015) From wheat straw to bioethanol: integrative analysis of a separate hydrolysis and co-fermentation process with implemented enzyme production. Biotechnol Biofuel 8:46CrossRef Novy V, Longus K, Nidetzky B (2015) From wheat straw to bioethanol: integrative analysis of a separate hydrolysis and co-fermentation process with implemented enzyme production. Biotechnol Biofuel 8:46CrossRef
Zurück zum Zitat Oladi S, Aita GM (2017) Optimization of liquid ammonia pretreatment variables for maximum enzymatic hydrolysis yield of energy cane bagasse. Ind Crops Product 103:122–132CrossRef Oladi S, Aita GM (2017) Optimization of liquid ammonia pretreatment variables for maximum enzymatic hydrolysis yield of energy cane bagasse. Ind Crops Product 103:122–132CrossRef
Zurück zum Zitat Pandey AK, Negi S (2015) Impact of surfactant assisted acid and alkali pretreatment on lignocellulosic structure of pine foliage and optimization of its saccharification parameters using response surface methodology. Bioresour Technol 192:115–125CrossRef Pandey AK, Negi S (2015) Impact of surfactant assisted acid and alkali pretreatment on lignocellulosic structure of pine foliage and optimization of its saccharification parameters using response surface methodology. Bioresour Technol 192:115–125CrossRef
Zurück zum Zitat Phitsuwan P, Permsriburasuk C, Waeonkul R, Pason P, Tachaapaikoon C, Ratankhanokchai K (2016) Evaluation of fuel ethanol production from aqueous ammonia-treated rice straw via simultaneous saccharification and fermentation. Biomass Bioenergy 150:150–157CrossRef Phitsuwan P, Permsriburasuk C, Waeonkul R, Pason P, Tachaapaikoon C, Ratankhanokchai K (2016) Evaluation of fuel ethanol production from aqueous ammonia-treated rice straw via simultaneous saccharification and fermentation. Biomass Bioenergy 150:150–157CrossRef
Zurück zum Zitat Rabemanolontsoa H, Saka S (2016) Various pretreatments of lignocellulosics. Bioresour Technol 199:83–91CrossRef Rabemanolontsoa H, Saka S (2016) Various pretreatments of lignocellulosics. Bioresour Technol 199:83–91CrossRef
Zurück zum Zitat Sharma M, Bajaj BK (2017) Optimization of bioprocess variables for production of a thermostable and wide range pH stable carboxymethyl cellulase from Bacillus subtilis MS 54 under solid state fermentation. Environ Prog Sustain Energy. https://doi.org/10.1002/ep.12557 Sharma M, Bajaj BK (2017) Optimization of bioprocess variables for production of a thermostable and wide range pH stable carboxymethyl cellulase from Bacillus subtilis MS 54 under solid state fermentation. Environ Prog Sustain Energy. https://​doi.​org/​10.​1002/​ep.​12557
Zurück zum Zitat Singh S, Anu, Vaid S, Singh P, Bajaj BK (2016) Physicochemical pretreatment of pine needle biomass by design of experiments approach for efficient enzymatic saccharification. J Mater Environ Sci 7:2034–2041 Singh S, Anu, Vaid S, Singh P, Bajaj BK (2016) Physicochemical pretreatment of pine needle biomass by design of experiments approach for efficient enzymatic saccharification. J Mater Environ Sci 7:2034–2041
Zurück zum Zitat Teramura H, Sasaki K, Oshima T, Matsuda F, Okamoto M, Shirai T, Kawaguchi H, Ogino C, Hirano K, Sazuka T, Kitano H (2016) Organosolv pretreatment of sorghum bagasse using a low concentration of hydrophobic solvents such as 1-butanol or 1-pentanol. Biotechnol Biofuel 9:27CrossRef Teramura H, Sasaki K, Oshima T, Matsuda F, Okamoto M, Shirai T, Kawaguchi H, Ogino C, Hirano K, Sazuka T, Kitano H (2016) Organosolv pretreatment of sorghum bagasse using a low concentration of hydrophobic solvents such as 1-butanol or 1-pentanol. Biotechnol Biofuel 9:27CrossRef
Zurück zum Zitat Tian D, Chandra RP, Lee JS, Lu C, Saddler JN (2017) A comparison of various lignin-extraction methods to enhance the accessibility and ease of enzymatic hydrolysis of the cellulosic component of steam-pretreated poplar. Biotechnol Biofuel 10:157CrossRef Tian D, Chandra RP, Lee JS, Lu C, Saddler JN (2017) A comparison of various lignin-extraction methods to enhance the accessibility and ease of enzymatic hydrolysis of the cellulosic component of steam-pretreated poplar. Biotechnol Biofuel 10:157CrossRef
Zurück zum Zitat Timung R, Mohan M, Chilukoti B, Sasmal S, Banerjee T, Goud VV (2015) Optimization of dilute acid and hot water pretreatment of different lignocellulosic biomass: a comparative study. Biomass Bioenerg 81:9–18CrossRef Timung R, Mohan M, Chilukoti B, Sasmal S, Banerjee T, Goud VV (2015) Optimization of dilute acid and hot water pretreatment of different lignocellulosic biomass: a comparative study. Biomass Bioenerg 81:9–18CrossRef
Zurück zum Zitat Vaid S, Bajaj BK (2017) Production of ionic liquid tolerant cellulase from Bacillus subtilis G2 using agroindustrial residues with application potential for saccharification of biomass under one pot consolidated bioprocess. Waste Biomass Valor 8:949–964CrossRef Vaid S, Bajaj BK (2017) Production of ionic liquid tolerant cellulase from Bacillus subtilis G2 using agroindustrial residues with application potential for saccharification of biomass under one pot consolidated bioprocess. Waste Biomass Valor 8:949–964CrossRef
Zurück zum Zitat Vats S, Maurya DP, Jain A, Mall V, Negi S (2013) Mathematical model-based optimization of physico-enzymatic hydrolysis of Pinus roxburghii needles for the production of reducing sugars. Indian J Exp Biol 51:944–953 Vats S, Maurya DP, Jain A, Mall V, Negi S (2013) Mathematical model-based optimization of physico-enzymatic hydrolysis of Pinus roxburghii needles for the production of reducing sugars. Indian J Exp Biol 51:944–953
Zurück zum Zitat Vogel KP, Dien BS, Jung HG, Casler MD, Masterson SD, Mitchell RB (2011) Quantifying actual and theoretical ethanol yields for switchgrass strains using NIRS analyses. Bioenergy Res 4:96–110CrossRef Vogel KP, Dien BS, Jung HG, Casler MD, Masterson SD, Mitchell RB (2011) Quantifying actual and theoretical ethanol yields for switchgrass strains using NIRS analyses. Bioenergy Res 4:96–110CrossRef
Zurück zum Zitat Wi SG, Cho EJ, Lee DS, Lee SJ, Lee YJ, Bae HJ (2015) Lignocellulose conversion for biofuel: a new pretreatment greatly improves downstream biocatalytic hydrolysis of various lignocellulosic materials. Biotechnol Biofuel 8:228CrossRef Wi SG, Cho EJ, Lee DS, Lee SJ, Lee YJ, Bae HJ (2015) Lignocellulose conversion for biofuel: a new pretreatment greatly improves downstream biocatalytic hydrolysis of various lignocellulosic materials. Biotechnol Biofuel 8:228CrossRef
Zurück zum Zitat Yadav SK, Naseeruddin S, Prashanthi SG, Sateesh L, Rao VL (2012) Bioethanol fermentation of concentrated rice straw hydrolysate using co-culture of Saccharomyces cerevisiae and Pichia stipitis. Bioresour Technol 102:6473–6478CrossRef Yadav SK, Naseeruddin S, Prashanthi SG, Sateesh L, Rao VL (2012) Bioethanol fermentation of concentrated rice straw hydrolysate using co-culture of Saccharomyces cerevisiae and Pichia stipitis. Bioresour Technol 102:6473–6478CrossRef
Metadaten
Titel
Combinatorial application of ammonium carbonate and sulphuric acid pretreatment to achieve enhanced sugar yield from pine needle biomass for potential biofuel–ethanol production
verfasst von
Surbhi Vaid
Neha Bhat
Parushi Nargotra
Bijender Kumar Bajaj
Publikationsdatum
16.02.2018
Verlag
Joint Center on Global Change and Earth System Science of the University of Maryland and Beijing Normal University
Erschienen in
Energy, Ecology and Environment / Ausgabe 2/2018
Print ISSN: 2363-7692
Elektronische ISSN: 2363-8338
DOI
https://doi.org/10.1007/s40974-018-0083-1

Weitere Artikel der Ausgabe 2/2018

Energy, Ecology and Environment 2/2018 Zur Ausgabe