Skip to main content
Erschienen in: International Journal of Energy and Environmental Engineering 2/2020

24.02.2020 | Original Research

Compactness analysis of PCM-based cooling systems for lithium battery-operated vehicles

verfasst von: Ravichandra Rangappa, Srithar Rajoo, P. M. Samin, S. Rajesha

Erschienen in: International Journal of Energy and Environmental Engineering | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Demand for sustainable transport system is craving for hybrid and electric vehicles with high-power and high-energy electric storage system for increased range of haul. To support such high-power applications, the Li-Ion battery developers’ trends are to formulate batteries with high discharge rate and high ampere rate of up to 100 Ah. Those batteries would suffer from a drastic increase in heat generation rate, which could increase the temperature of the battery above 313 K (40 °C) under the conventional cooling system. Most of the research works proposed direct liquid cooling or liquid cooling plates to attain sufficient cooling for high ampere battery packs. In the present research, the focus is on a hybrid cooling system that is more versatile in providing a flexible cooling mechanism with various design parameters to control the cooling performance for the battery pack. Through computational fluid dynamics simulations, it is understood that it needs 9 mm thickness for pure phase change material (PCM) cooling system to control the temperature within 313 K (40 °C) for the battery with heat generation rate of 30,046 W/m3. The proposed hybrid cooling system can control the temperature within 313 K (40 °C) for battery with heat generation rate of 120,183 W/m3 applying 6 mm thickness of PCM, thus reducing the overall size of the cooling system by 16.3%. It is also predicted that the hybrid cooling system can further improve its performance by increasing the coolant flow rate beyond 2 L/min. Under the 0.5C discharge condition, hybrid cooling can be manageable with zero pumping losses.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ramadass, P., Haran, B., White, R., Popov, B.N.: Capacity fade of Sony 18650 cells cycled at elevated temperatures: Part II. Capacity fade analysis. J. Power Sources 112(2), 614–620 (2002)CrossRef Ramadass, P., Haran, B., White, R., Popov, B.N.: Capacity fade of Sony 18650 cells cycled at elevated temperatures: Part II. Capacity fade analysis. J. Power Sources 112(2), 614–620 (2002)CrossRef
2.
Zurück zum Zitat Lundgren, C.A., Xu, K., Jow, T.R., Allen, J., Zhang, S.S.: Lithium-ion batteries and materials. In: Breitkopf, C., Swider-Lyons, K. (eds.) Springer handbook of electrochemical energy, pp. 449–495. Springer, Berlin (2017)CrossRef Lundgren, C.A., Xu, K., Jow, T.R., Allen, J., Zhang, S.S.: Lithium-ion batteries and materials. In: Breitkopf, C., Swider-Lyons, K. (eds.) Springer handbook of electrochemical energy, pp. 449–495. Springer, Berlin (2017)CrossRef
4.
Zurück zum Zitat Tong, W., Somasundaram, K., Birgersson, E., Mujumdar, A.S., Yap, C.: Numerical investigation of water cooling for a lithium-ion bipolar battery pack. Int. J. Therm. Sci. 94, 259–269 (2015)CrossRef Tong, W., Somasundaram, K., Birgersson, E., Mujumdar, A.S., Yap, C.: Numerical investigation of water cooling for a lithium-ion bipolar battery pack. Int. J. Therm. Sci. 94, 259–269 (2015)CrossRef
5.
Zurück zum Zitat Lan, C., Xu, J., Qiao, Y., Ma, Y.: Thermal management for high power lithium-ion battery by minichannel aluminum tubes. Appl. Therm. Eng. 101, 284–292 (2016)CrossRef Lan, C., Xu, J., Qiao, Y., Ma, Y.: Thermal management for high power lithium-ion battery by minichannel aluminum tubes. Appl. Therm. Eng. 101, 284–292 (2016)CrossRef
6.
Zurück zum Zitat Xu, J., Lan, C., Qiao, Y., Ma, Y.: Prevent thermal runaway of lithium-ion batteries with minichannel cooling. Them. Eng. 110, 883–890 (2017) Xu, J., Lan, C., Qiao, Y., Ma, Y.: Prevent thermal runaway of lithium-ion batteries with minichannel cooling. Them. Eng. 110, 883–890 (2017)
7.
Zurück zum Zitat Chen, D., Jiang, J., Kim, G., Yang, C., Pesaran, A.: Comparison of different cooling methods for lithium ion battery cells. Appl. Therm. Eng. 94, 846–854 (2016)CrossRef Chen, D., Jiang, J., Kim, G., Yang, C., Pesaran, A.: Comparison of different cooling methods for lithium ion battery cells. Appl. Therm. Eng. 94, 846–854 (2016)CrossRef
8.
Zurück zum Zitat An, Z., et al.: Experimental investigation on lithium-ion battery thermal management based on flow boiling in mini-channel. Appl. Them. Eng. 117, 534–543 (2017)CrossRef An, Z., et al.: Experimental investigation on lithium-ion battery thermal management based on flow boiling in mini-channel. Appl. Them. Eng. 117, 534–543 (2017)CrossRef
9.
Zurück zum Zitat Rangappa, R., Rajoo, S.: Effect of thermo-physical properties of cooling mass on hybrid cooling for lithium-ion battery pack using design of experiments. Int. J. Energy Environ. Eng. 10(1), 67–83 (2019)CrossRef Rangappa, R., Rajoo, S.: Effect of thermo-physical properties of cooling mass on hybrid cooling for lithium-ion battery pack using design of experiments. Int. J. Energy Environ. Eng. 10(1), 67–83 (2019)CrossRef
10.
Zurück zum Zitat Taheri, P., Bahrami, M.: Temperature rise in prismatic polymer lithium-ion batteries: an analytic approach. SAE Int. J. Passeng. Cars Electron. Electr. Syst. 5(1), 164–176 (2012)CrossRef Taheri, P., Bahrami, M.: Temperature rise in prismatic polymer lithium-ion batteries: an analytic approach. SAE Int. J. Passeng. Cars Electron. Electr. Syst. 5(1), 164–176 (2012)CrossRef
15.
Zurück zum Zitat Baczyńska, A., Niewiadomski, W., Gonçalves, A., Almeida, P., Luís, R.: Li-NMC batteries model evaluation with experimental data for electric vehicle application. Batteries 4(1), 11 (2018)CrossRef Baczyńska, A., Niewiadomski, W., Gonçalves, A., Almeida, P., Luís, R.: Li-NMC batteries model evaluation with experimental data for electric vehicle application. Batteries 4(1), 11 (2018)CrossRef
16.
Zurück zum Zitat Ling, Z., Wang, F., Fang, X., Gao, X., Zhang, Z.: A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling. Appl. Energy 148, 403–409 (2015)CrossRef Ling, Z., Wang, F., Fang, X., Gao, X., Zhang, Z.: A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling. Appl. Energy 148, 403–409 (2015)CrossRef
19.
Zurück zum Zitat Park, C., Co, F. M.: Thermal analysis of cooling system in hybrid electric vehicles. no. 724, (2013) Park, C., Co, F. M.: Thermal analysis of cooling system in hybrid electric vehicles. no. 724, (2013)
20.
Zurück zum Zitat Javani, N., Dincer, I., Naterer, G.F., Yilbas, B.S.: Heat transfer and thermal management with PCMs in a Li-Ion battery cell for electric vehicles. Int. J. Heat Mass Transf. 72, 690–703 (2014)CrossRef Javani, N., Dincer, I., Naterer, G.F., Yilbas, B.S.: Heat transfer and thermal management with PCMs in a Li-Ion battery cell for electric vehicles. Int. J. Heat Mass Transf. 72, 690–703 (2014)CrossRef
Metadaten
Titel
Compactness analysis of PCM-based cooling systems for lithium battery-operated vehicles
verfasst von
Ravichandra Rangappa
Srithar Rajoo
P. M. Samin
S. Rajesha
Publikationsdatum
24.02.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
International Journal of Energy and Environmental Engineering / Ausgabe 2/2020
Print ISSN: 2008-9163
Elektronische ISSN: 2251-6832
DOI
https://doi.org/10.1007/s40095-020-00339-z

Weitere Artikel der Ausgabe 2/2020

International Journal of Energy and Environmental Engineering 2/2020 Zur Ausgabe