Skip to main content
Erschienen in: Arabian Journal for Science and Engineering 1/2020

06.11.2019 | Research Article - Physics

Comparative Analysis Between Three-Dimensional Flow of Water Conveying Alumina Nanoparticles and Water Conveying Alumina–Iron(III) Oxide Nanoparticles in the Presence of Lorentz Force

verfasst von: O. K. Koriko, K. S. Adegbie, I. L. Animasaun, A. F. Ijirimoye

Erschienen in: Arabian Journal for Science and Engineering | Ausgabe 1/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the manufacturing companies of the hybrid-powered engine, little is known on the significance of adding iron(III) oxide nanoparticles to an existing alumina–water nanofluid in the presence of Lorentz force. This study presents the three-dimensional flow of water conveying alumina nanoparticles and water conveying alumina/iron(III) oxide nanoparticles within the thin boundary layer formed on a bidirectional linearly stretchable surface. The governing equation that models the transport phenomena was non-dimensionalized and parameterized using the suitable similarity variables. The boundary value problem of the corresponding ordinary differential equation was solved numerically. The technique of slope of the linear regression through the data point was adopted to quantify the observed results. The results of this study show that the addition of Fe3O4 nanoparticles to Al2O3–water nanofluid slightly reduces the motion of the flow at all points from the wall to the free stream. However, the temperature distribution across the flow may be improved. The two components of velocity for the motion of both fluids along x-direction and y-direction increase and decreases across the fluid domain, respectively, when Lorentz force is minimum and maximum due to the significance of stretching rate that is predominant along y-direction. When the stretching rate is small, the maximum velocity along x-direction is ascertained in the flow of nanofluid. Skin friction coefficients in the flow along both directions decrease with both Lorentz force and stretching rate.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Sandeep, N.; Koriko, O.K.; Animasaun, I.L.: Modified kinematic viscosity model for 3D-Casson fluid flow within boundary layer formed on a surface at absolute zero. J. Mol. Liq. 221, 1197–1206 (2016)CrossRef Sandeep, N.; Koriko, O.K.; Animasaun, I.L.: Modified kinematic viscosity model for 3D-Casson fluid flow within boundary layer formed on a surface at absolute zero. J. Mol. Liq. 221, 1197–1206 (2016)CrossRef
2.
Zurück zum Zitat Howarth, L.: CXLIV. The boundary layer in three-dimensional flow-Part II. The flow near a stagnation point. Lond. Edinb. Dublin Philos. Mag. J. Sci. 42(335), 1433–1440 (1951)MathSciNetCrossRef Howarth, L.: CXLIV. The boundary layer in three-dimensional flow-Part II. The flow near a stagnation point. Lond. Edinb. Dublin Philos. Mag. J. Sci. 42(335), 1433–1440 (1951)MathSciNetCrossRef
3.
Zurück zum Zitat Chong, M.S.; Perry, A.E.; Cantwell, B.J.: A general classification of three-dimensional flow fields. Phys. Fluids A Fluid Dyn. 2(5), 765–777 (1990)MathSciNetCrossRef Chong, M.S.; Perry, A.E.; Cantwell, B.J.: A general classification of three-dimensional flow fields. Phys. Fluids A Fluid Dyn. 2(5), 765–777 (1990)MathSciNetCrossRef
4.
Zurück zum Zitat Niknia, N.; Keshavarzi, A.: 3D flow velocity pattern in a circular section within river reach: an experimental study. Arab. J. Sci. Eng. 39(6), 4377–4389 (2014)CrossRef Niknia, N.; Keshavarzi, A.: 3D flow velocity pattern in a circular section within river reach: an experimental study. Arab. J. Sci. Eng. 39(6), 4377–4389 (2014)CrossRef
5.
Zurück zum Zitat Ramzan, M.; Yousaf, F.: Boundary layer flow of three-dimensional viscoelastic nanofluid past a bi-directional stretching sheet with Newtonian heating. AIP Adv. 5(5), 057132 (2015)CrossRef Ramzan, M.; Yousaf, F.: Boundary layer flow of three-dimensional viscoelastic nanofluid past a bi-directional stretching sheet with Newtonian heating. AIP Adv. 5(5), 057132 (2015)CrossRef
6.
Zurück zum Zitat Hayat, T.; Imtiaz, M.; Almezal, S.: Modeling and analysis for three-dimensional flow with homogeneous-heterogeneous reactions. AIP Adv. 5(10), 107209 (2015)CrossRef Hayat, T.; Imtiaz, M.; Almezal, S.: Modeling and analysis for three-dimensional flow with homogeneous-heterogeneous reactions. AIP Adv. 5(10), 107209 (2015)CrossRef
7.
Zurück zum Zitat Zhao, Q.; Xu, H.; Tao, L.; Raees, A.; Sun, Q.: Three-dimensional free bio-convection of nanofluid near stagnation point on general curved isothermal surface. Appl. Math. Mech. 37(4), 417–432 (2016)MathSciNetCrossRef Zhao, Q.; Xu, H.; Tao, L.; Raees, A.; Sun, Q.: Three-dimensional free bio-convection of nanofluid near stagnation point on general curved isothermal surface. Appl. Math. Mech. 37(4), 417–432 (2016)MathSciNetCrossRef
8.
Zurück zum Zitat Nayak, M.K.; Shaw, S.; Chamkha, A.J.: 3D MHD free convective stretched flow of a radiative nanofluid inspired by variable magnetic field. Arab. J. Sci. Eng. 44(2), 1269–1282 (2019)CrossRef Nayak, M.K.; Shaw, S.; Chamkha, A.J.: 3D MHD free convective stretched flow of a radiative nanofluid inspired by variable magnetic field. Arab. J. Sci. Eng. 44(2), 1269–1282 (2019)CrossRef
9.
Zurück zum Zitat Crane, L.J.: Flow past a stretching plate. Z. Angew. Math. Phys. ZAMP 21(4), 645–647 (1970)CrossRef Crane, L.J.: Flow past a stretching plate. Z. Angew. Math. Phys. ZAMP 21(4), 645–647 (1970)CrossRef
10.
Zurück zum Zitat Gupta, P.S.; Gupta, A.S.: Heat and mass transfer on a stretching sheet with suction or blowing. Can. J. Chem. Eng. 55(6), 744–746 (1977)CrossRef Gupta, P.S.; Gupta, A.S.: Heat and mass transfer on a stretching sheet with suction or blowing. Can. J. Chem. Eng. 55(6), 744–746 (1977)CrossRef
11.
Zurück zum Zitat Magyari, E.; Keller, B.: Exact solutions for self-similar boundary-layer flows induced by permeable stretching walls. Eur. J. Mech. B. Fluids 19(1), 109–122 (2000)MathSciNetCrossRef Magyari, E.; Keller, B.: Exact solutions for self-similar boundary-layer flows induced by permeable stretching walls. Eur. J. Mech. B. Fluids 19(1), 109–122 (2000)MathSciNetCrossRef
12.
Zurück zum Zitat Cortell, R.: Effects of viscous dissipation and radiation on the thermal boundary layer over a nonlinearly stretching sheet. Phys. Lett. A 372(5), 631–636 (2008)CrossRef Cortell, R.: Effects of viscous dissipation and radiation on the thermal boundary layer over a nonlinearly stretching sheet. Phys. Lett. A 372(5), 631–636 (2008)CrossRef
13.
Zurück zum Zitat Hayat, T.; Awais, M.; Obaidat, S.: Three-dimensional flow of a Jeffery fluid over a linearly stretching sheet. Commun. Nonlinear Sci. Numer. Simul. 17(2), 699–707 (2012)MathSciNetCrossRef Hayat, T.; Awais, M.; Obaidat, S.: Three-dimensional flow of a Jeffery fluid over a linearly stretching sheet. Commun. Nonlinear Sci. Numer. Simul. 17(2), 699–707 (2012)MathSciNetCrossRef
14.
Zurück zum Zitat Nadeem, S.; Lee, C.: Boundary layer flow of nanofluid over an exponentially stretching surface. Nanoscale Res. Lett. 7(1), 94 (2012)CrossRef Nadeem, S.; Lee, C.: Boundary layer flow of nanofluid over an exponentially stretching surface. Nanoscale Res. Lett. 7(1), 94 (2012)CrossRef
15.
Zurück zum Zitat Animasaun, I.L.; Adebile, E.A.; Fagbade, A.I.: Casson fluid flow with variable thermo-physical property along exponentially stretching sheet with suction and exponentially decaying internal heat generation using the homotopy analysis method. J. Niger. Math. Soc. 35(1), 1–17 (2016)MathSciNetCrossRef Animasaun, I.L.; Adebile, E.A.; Fagbade, A.I.: Casson fluid flow with variable thermo-physical property along exponentially stretching sheet with suction and exponentially decaying internal heat generation using the homotopy analysis method. J. Niger. Math. Soc. 35(1), 1–17 (2016)MathSciNetCrossRef
16.
Zurück zum Zitat Hayat, T.; Aziz, A.; Muhammad, T.; Alsaedi, A.: On magnetohydrodynamic three-dimensional flow of nanofluid over a convectively heated nonlinear stretching surface. Int. J. Heat Mass Transf. 100, 566–572 (2016)CrossRef Hayat, T.; Aziz, A.; Muhammad, T.; Alsaedi, A.: On magnetohydrodynamic three-dimensional flow of nanofluid over a convectively heated nonlinear stretching surface. Int. J. Heat Mass Transf. 100, 566–572 (2016)CrossRef
17.
Zurück zum Zitat Ting, L.: Boundary layer theory to matched asymptotics. ZAMM J. Appl. Math. Mech. Z. Angew. Math. Mech. Appl. Math. Mech. 80(11–12), 845–855 (2000)MathSciNetCrossRef Ting, L.: Boundary layer theory to matched asymptotics. ZAMM J. Appl. Math. Mech. Z. Angew. Math. Mech. Appl. Math. Mech. 80(11–12), 845–855 (2000)MathSciNetCrossRef
18.
Zurück zum Zitat Olubode, K.K.; John, O.; Lare, A.I.: Effects of some thermo-physical parameters on free convective heat and mass transfer over vertical stretching surface at absolute zero. J. Heat Mass Transf. Res. (JHMTR) 3(1), 31–46 (2016) Olubode, K.K.; John, O.; Lare, A.I.: Effects of some thermo-physical parameters on free convective heat and mass transfer over vertical stretching surface at absolute zero. J. Heat Mass Transf. Res. (JHMTR) 3(1), 31–46 (2016)
19.
Zurück zum Zitat Omowaye, A.J.; Koriko, O.K.: Steady arrhenius laminar free convective MHD flow and heat transfer past a vertical stretching sheet with viscous dissipation. J. Niger. Math. Soc. 33, 259–271 (2014)MathSciNetMATH Omowaye, A.J.; Koriko, O.K.: Steady arrhenius laminar free convective MHD flow and heat transfer past a vertical stretching sheet with viscous dissipation. J. Niger. Math. Soc. 33, 259–271 (2014)MathSciNetMATH
20.
Zurück zum Zitat Buongiorno, J.: Convective transport in nanofluids. J. Heat Transf. 128(3), 240–250 (2006)CrossRef Buongiorno, J.: Convective transport in nanofluids. J. Heat Transf. 128(3), 240–250 (2006)CrossRef
21.
Zurück zum Zitat Azizian, R.; Doroodchi, E.; McKrell, T.; Buongiorno, J.; Hu, L.W.; Moghtaderi, B.: Effect of magnetic field on laminar convective heat transfer of magnetite nanofluids. Int. J. Heat Mass Transf. 68, 94–109 (2014)CrossRef Azizian, R.; Doroodchi, E.; McKrell, T.; Buongiorno, J.; Hu, L.W.; Moghtaderi, B.: Effect of magnetic field on laminar convective heat transfer of magnetite nanofluids. Int. J. Heat Mass Transf. 68, 94–109 (2014)CrossRef
22.
Zurück zum Zitat Suresh, S.; Venkitaraj, K.P.; Selvakumar, P.; Chandrasekar, M.: Synthesis of Al2O3–Cu/water hybrid nanofluids using two step method and its thermo physical properties. Colloids Surf. A Physicochem. Eng. Asp. 388(1–3), 41–48 (2011)CrossRef Suresh, S.; Venkitaraj, K.P.; Selvakumar, P.; Chandrasekar, M.: Synthesis of Al2O3–Cu/water hybrid nanofluids using two step method and its thermo physical properties. Colloids Surf. A Physicochem. Eng. Asp. 388(1–3), 41–48 (2011)CrossRef
23.
Zurück zum Zitat Moghadassi, A.; Ghomi, E.; Parvizian, F.: A numerical study of water based Al2O3 and Al2O3–Cu hybrid nanofluid effect on forced convective heat transfer. Int. J. Therm. Sci. 92, 50–57 (2015)CrossRef Moghadassi, A.; Ghomi, E.; Parvizian, F.: A numerical study of water based Al2O3 and Al2O3–Cu hybrid nanofluid effect on forced convective heat transfer. Int. J. Therm. Sci. 92, 50–57 (2015)CrossRef
24.
Zurück zum Zitat Madhesh, D.; Kalaiselvam, S.: Experimental analysis of hybrid nanofluid as a coolant. Procedia Eng. 97, 1667–1675 (2014)CrossRef Madhesh, D.; Kalaiselvam, S.: Experimental analysis of hybrid nanofluid as a coolant. Procedia Eng. 97, 1667–1675 (2014)CrossRef
25.
Zurück zum Zitat Megatif, L.; Ghozatloo, A.; Arimi, A.; Shariati-Niasar, M.: Investigation of laminar convective heat transfer of a novel TiO2–carbon nanotube hybrid water-based nanofluid. Exp. Heat Transf. 29(1), 124–138 (2016)CrossRef Megatif, L.; Ghozatloo, A.; Arimi, A.; Shariati-Niasar, M.: Investigation of laminar convective heat transfer of a novel TiO2–carbon nanotube hybrid water-based nanofluid. Exp. Heat Transf. 29(1), 124–138 (2016)CrossRef
26.
Zurück zum Zitat Takabi, B.; Shokouhmand, H.: Effects of Al2O3–Cu/water hybrid nanofluid on heat transfer and flow characteristics in turbulent regime. Int. J. Mod. Phys. C (IJMPC) 26(04), 1–25 (2015) Takabi, B.; Shokouhmand, H.: Effects of Al2O3–Cu/water hybrid nanofluid on heat transfer and flow characteristics in turbulent regime. Int. J. Mod. Phys. C (IJMPC) 26(04), 1–25 (2015)
27.
Zurück zum Zitat Shah, N.A.; Animasaun, I.L.; Ibraheem, R.O.; Babatunde, H.A.; Sandeep, N.; Pop, I.: Scrutinization of the effects of Grashof number on the flow of different fluids driven by convection over various surfaces. J. Mol. Liq. 249, 980–990 (2018)CrossRef Shah, N.A.; Animasaun, I.L.; Ibraheem, R.O.; Babatunde, H.A.; Sandeep, N.; Pop, I.: Scrutinization of the effects of Grashof number on the flow of different fluids driven by convection over various surfaces. J. Mol. Liq. 249, 980–990 (2018)CrossRef
28.
Zurück zum Zitat Animasaun, I.L.; Koriko, O.K.; Mahanthesh, B.; Dogonchi, A.S.: A note on the significance of quartic autocatalysis chemical reaction on the motion of air conveying dust particles. Z. Naturforschung A 74(10), 879–904 (2019)CrossRef Animasaun, I.L.; Koriko, O.K.; Mahanthesh, B.; Dogonchi, A.S.: A note on the significance of quartic autocatalysis chemical reaction on the motion of air conveying dust particles. Z. Naturforschung A 74(10), 879–904 (2019)CrossRef
29.
Zurück zum Zitat Animasaun, I.L.; Ibraheem, R.O.; Mahanthesh, B.; Babatunde, H.A.: A meta-analysis on the effects of haphazard motion of tiny/nano-sized particles on the dynamics and other physical properties of some fluids. Chin. J. Phys. 60, 676–687 (2019)MathSciNetCrossRef Animasaun, I.L.; Ibraheem, R.O.; Mahanthesh, B.; Babatunde, H.A.: A meta-analysis on the effects of haphazard motion of tiny/nano-sized particles on the dynamics and other physical properties of some fluids. Chin. J. Phys. 60, 676–687 (2019)MathSciNetCrossRef
30.
Zurück zum Zitat Animasaun, I.L.; Koriko, O.K.; Adegbie, K.S.; Babatunde, H.A.; Ibraheem, R.O.; Sandeep, N.; Mahanthesh, B.: Comparative analysis between 36 nm and 47 nm alumina–water nanofluid flows in the presence of Hall effect. J. Therm. Anal. Calorim. 135(2), 873–886 (2018). https://doi.org/10.1007/s10973-018-7379-4 CrossRef Animasaun, I.L.; Koriko, O.K.; Adegbie, K.S.; Babatunde, H.A.; Ibraheem, R.O.; Sandeep, N.; Mahanthesh, B.: Comparative analysis between 36 nm and 47 nm alumina–water nanofluid flows in the presence of Hall effect. J. Therm. Anal. Calorim. 135(2), 873–886 (2018). https://​doi.​org/​10.​1007/​s10973-018-7379-4 CrossRef
Metadaten
Titel
Comparative Analysis Between Three-Dimensional Flow of Water Conveying Alumina Nanoparticles and Water Conveying Alumina–Iron(III) Oxide Nanoparticles in the Presence of Lorentz Force
verfasst von
O. K. Koriko
K. S. Adegbie
I. L. Animasaun
A. F. Ijirimoye
Publikationsdatum
06.11.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Arabian Journal for Science and Engineering / Ausgabe 1/2020
Print ISSN: 2193-567X
Elektronische ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-019-04223-9

Weitere Artikel der Ausgabe 1/2020

Arabian Journal for Science and Engineering 1/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.