Skip to main content
Erschienen in: Wireless Personal Communications 2/2023

15.02.2023

Comparison of Cumulative Power Consumption with Signal Strength Variations in New Generation Wireless Networks

verfasst von: Vinodini Gupta, Padma Bonde, Rohit Raja, Sandeep Kumar

Erschienen in: Wireless Personal Communications | Ausgabe 2/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this era of telecommunication, quality of service (QoS) is the prime metric for defining the performance of wireless networks. However, QoS is highly affected by the levels of signal strength. Variations in signal strength lead to several undesirable consequences, increasing wireless device's power consumption, especially during handover. In the perspective of Green Networking, to devise energy-efficient handover techniques, this paper compares the power consumption of wireless nodes under different states of affairs, leading to variations in signal strength. A vertical handover scenario between Wi-Fi and WiMAX networks was carried out to analyze the power consumption of two different sets of nodes, namely Type-I and Type-II nodes. Five different scenarios leading to signal strength fluctuations during handover were considered during the study. The initial energy levels of nodes were calculated at three different voltage levels, namely charge voltage, nominal voltage and cut-off voltage. The results explained the individual battery drainage pattern of wireless nodes with variations in signal strength under different scenarios and evaluated the cumulative power consumption of wireless nodes with variable signal strength at three voltage levels. Network performance was analyzed based on residual energy of nodes, throughput and packet delivery ratio. The cumulative analysis of power consumption presented in this paper can provide a prominent proposal of the battery drainage pattern of wireless nodes for various scenarios leading to variable signal strength, which can serve as a roadmap for devising energy-efficient mechanisms during handover in new generation ubiquitous networks.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Barolli, L., Xhafa, F., Durresi, A., Koyama, A. (2008). A fuzzy-based handover system for avoiding ping-pong effect in wireless cellular networks. In 2008 International conference on parallel processing-workshops, pp. 135–142. Barolli, L., Xhafa, F., Durresi, A., Koyama, A. (2008). A fuzzy-based handover system for avoiding ping-pong effect in wireless cellular networks. In 2008 International conference on parallel processing-workshops, pp. 135–142.
2.
Zurück zum Zitat Edwards, G., Kandel, A., & Sankar, R. (2000). Fuzzy handoff algorithms for wireless communication. Fuzzy Sets and Systems, 110(3), 379–388.CrossRef Edwards, G., Kandel, A., & Sankar, R. (2000). Fuzzy handoff algorithms for wireless communication. Fuzzy Sets and Systems, 110(3), 379–388.CrossRef
3.
Zurück zum Zitat Gupta, V., Bonde, P. (2018). Handover techniques in new generation wireless networks. In Smart Computing and Informatics, pp. 127–138. Gupta, V., Bonde, P. (2018). Handover techniques in new generation wireless networks. In Smart Computing and Informatics, pp. 127–138.
4.
Zurück zum Zitat Bensky, A. (2019). Short-range wireless communication In Book: Short-range Wireless Communication, pp.163–198. Bensky, A. (2019). Short-range wireless communication In Book: Short-range Wireless Communication, pp.163–198.
5.
Zurück zum Zitat Singh, V., & Gill, S. S. (2014). Signal strength estimation of wireless communication system. International Journal of Advanced Research in Computer Engineering & Technology (IJARCET), 3(8), 2612–2617. Singh, V., & Gill, S. S. (2014). Signal strength estimation of wireless communication system. International Journal of Advanced Research in Computer Engineering & Technology (IJARCET), 3(8), 2612–2617.
6.
Zurück zum Zitat Yamamoto, B., Wong, A., Agcanas, P. J., Jones, K., Gaspar, D., Andrade, R., & Trimble, A. Z. (2019). Received signal strength indication (RSSI) of 2.4 GHz and 5 GHz wireless local area network systems projected over land and sea for near-shore maritime robot operations. Journal of Marine Science and Engineering, 7(9), 290.CrossRef Yamamoto, B., Wong, A., Agcanas, P. J., Jones, K., Gaspar, D., Andrade, R., & Trimble, A. Z. (2019). Received signal strength indication (RSSI) of 2.4 GHz and 5 GHz wireless local area network systems projected over land and sea for near-shore maritime robot operations. Journal of Marine Science and Engineering, 7(9), 290.CrossRef
7.
Zurück zum Zitat Ngala, D.K., Akanbasiam J.A., Yiadom, K.K. (2018). Received signal Strength variation for a typical suburban environment. In IEEE 7th International Conference on Adaptive Science & Technology (ICAST), pp. 1–7. Ngala, D.K., Akanbasiam J.A., Yiadom, K.K. (2018). Received signal Strength variation for a typical suburban environment. In IEEE 7th International Conference on Adaptive Science & Technology (ICAST), pp. 1–7.
8.
Zurück zum Zitat Garg,V. (2007). Radio propagation and propagation path-loss models. In Book Wireless communications & networking, a volume in the morgan kaufmann series in networking, pp. 47–84. Garg,V. (2007). Radio propagation and propagation path-loss models. In Book Wireless communications & networking, a volume in the morgan kaufmann series in networking, pp. 47–84.
9.
Zurück zum Zitat Bonde, P. (2020). Evaluation of power consumption for mobile environment in new generation wireless networks. Solid State Technology, 63(5), 3841–3851. Bonde, P. (2020). Evaluation of power consumption for mobile environment in new generation wireless networks. Solid State Technology, 63(5), 3841–3851.
10.
Zurück zum Zitat Gupta, V., Padma, B. (2018). Energy-efficient mechanisms for next-generation green networks. In Recent Findings in Intelligent Computing Techniques, pp. 415–423. Gupta, V., Padma, B. (2018). Energy-efficient mechanisms for next-generation green networks. In Recent Findings in Intelligent Computing Techniques, pp. 415–423.
11.
Zurück zum Zitat Baroudi, U., Qureshi, A., & Mekid, S. (2015). Characterization and modeling of received signal strength and charging time for wireless energy transfer. Advances in Electrical Engineering, 2015(1), 1–15.CrossRef Baroudi, U., Qureshi, A., & Mekid, S. (2015). Characterization and modeling of received signal strength and charging time for wireless energy transfer. Advances in Electrical Engineering, 2015(1), 1–15.CrossRef
12.
Zurück zum Zitat Ding, N., Wagner, D., Chen, X., Pathak, A., Hu, Y. C., & Rice, A. (2013). Characterizing and modeling the impact of wireless signal strength on smartphone battery drain. ACM SIGMETRICS Performance Evaluation Review, 41(1), 29–40.CrossRef Ding, N., Wagner, D., Chen, X., Pathak, A., Hu, Y. C., & Rice, A. (2013). Characterizing and modeling the impact of wireless signal strength on smartphone battery drain. ACM SIGMETRICS Performance Evaluation Review, 41(1), 29–40.CrossRef
13.
Zurück zum Zitat Kakar, J., & Sezgin, A. (2017). A survey on robust interference management in wireless networks. Entropy, 19(7), 362.CrossRef Kakar, J., & Sezgin, A. (2017). A survey on robust interference management in wireless networks. Entropy, 19(7), 362.CrossRef
14.
Zurück zum Zitat Zhao, G., Wang Q., Xu, C., Yu, S. (2018). Analyzing and modelling the interference impact on energy efficiency of WLANs. In IEEE international conference on communications (ICC), pp. 1–6. Zhao, G., Wang Q., Xu, C., Yu, S. (2018). Analyzing and modelling the interference impact on energy efficiency of WLANs. In IEEE international conference on communications (ICC), pp. 1–6.
15.
Zurück zum Zitat Bhattacharjee, S., & Bandyopadhyay, S. (2012). An interference aware minimum energy routing protocol for wireless networks considering transmission and reception power of nodes. Procedia Technology, 4(1), 1–8.CrossRef Bhattacharjee, S., & Bandyopadhyay, S. (2012). An interference aware minimum energy routing protocol for wireless networks considering transmission and reception power of nodes. Procedia Technology, 4(1), 1–8.CrossRef
16.
Zurück zum Zitat Kiruthika, V., & Vembu, S. (2020). Dynamic handover algorithm with interference cancellation in 5g networks for emergency communication. International Journal of Communication Systems, 33(4), 4227.CrossRef Kiruthika, V., & Vembu, S. (2020). Dynamic handover algorithm with interference cancellation in 5g networks for emergency communication. International Journal of Communication Systems, 33(4), 4227.CrossRef
17.
Zurück zum Zitat Andjamba, T.S., Zodi, G.A.L., Jat, DS. (2016). Interference analysis of IEEE 802.11 wireless networks: A case study of namibia university of science and technology. In International Conference on ICT in Business Industry & Government (ICTBIG), pp. 1–5. Andjamba, T.S., Zodi, G.A.L., Jat, DS. (2016). Interference analysis of IEEE 802.11 wireless networks: A case study of namibia university of science and technology. In International Conference on ICT in Business Industry & Government (ICTBIG), pp. 1–5.
18.
Zurück zum Zitat Yun, J.-H. (2019). Handover-driven interference management for co-channel deployment of femto-and macro-cells. Applied Sciences, 9(17), 3463.CrossRef Yun, J.-H. (2019). Handover-driven interference management for co-channel deployment of femto-and macro-cells. Applied Sciences, 9(17), 3463.CrossRef
19.
Zurück zum Zitat López-Pérez, D., Valcarce, A., Ladányi, Á., de la Roche, G., & Zhang, J. (2010). Intracell handover for interference and handover mitigation in OFDMA two-tier macrocell-femtocell networks. EURASIP Journal on Wireless Communications and Networking, 1, 1–15. López-Pérez, D., Valcarce, A., Ladányi, Á., de la Roche, G., & Zhang, J. (2010). Intracell handover for interference and handover mitigation in OFDMA two-tier macrocell-femtocell networks. EURASIP Journal on Wireless Communications and Networking, 1, 1–15.
20.
Zurück zum Zitat Chellani, G., & Kalla, A. (2013). A review: study of handover performance in mobile IP. International Journal of Computer Networks & Communications (IJCNC), 9(6), 1–10. Chellani, G., & Kalla, A. (2013). A review: study of handover performance in mobile IP. International Journal of Computer Networks & Communications (IJCNC), 9(6), 1–10.
21.
Zurück zum Zitat Ashraf, A. (2019). A review on mobile internet protocol (Mobile IP). International Journal for Scientific Research & Development, 7(05), 2321–0613. Ashraf, A. (2019). A review on mobile internet protocol (Mobile IP). International Journal for Scientific Research & Development, 7(05), 2321–0613.
22.
Zurück zum Zitat Mojamed, M. A. (2020). Integrating IP mobility management protocols and MANET: a survey. Future Internet, 12(9), 1–11.CrossRef Mojamed, M. A. (2020). Integrating IP mobility management protocols and MANET: a survey. Future Internet, 12(9), 1–11.CrossRef
Metadaten
Titel
Comparison of Cumulative Power Consumption with Signal Strength Variations in New Generation Wireless Networks
verfasst von
Vinodini Gupta
Padma Bonde
Rohit Raja
Sandeep Kumar
Publikationsdatum
15.02.2023
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 2/2023
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-023-10171-3

Weitere Artikel der Ausgabe 2/2023

Wireless Personal Communications 2/2023 Zur Ausgabe

Neuer Inhalt