Skip to main content
Erschienen in: Neuroinformatics 3/2016

01.07.2016 | Original Article

Comparison of Feature Selection Techniques in Machine Learning for Anatomical Brain MRI in Dementia

verfasst von: Jussi Tohka, Elaheh Moradi, Heikki Huttunen, Alzheimer’s Disease Neuroimaging Initiative

Erschienen in: Neuroinformatics | Ausgabe 3/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We present a comparative split-half resampling analysis of various data driven feature selection and classification methods for the whole brain voxel-based classification analysis of anatomical magnetic resonance images. We compared support vector machines (SVMs), with or without filter based feature selection, several embedded feature selection methods and stability selection. While comparisons of the accuracy of various classification methods have been reported previously, the variability of the out-of-training sample classification accuracy and the set of selected features due to independent training and test sets have not been previously addressed in a brain imaging context. We studied two classification problems: 1) Alzheimer’s disease (AD) vs. normal control (NC) and 2) mild cognitive impairment (MCI) vs. NC classification. In AD vs. NC classification, the variability in the test accuracy due to the subject sample did not vary between different methods and exceeded the variability due to different classifiers. In MCI vs. NC classification, particularly with a large training set, embedded feature selection methods outperformed SVM-based ones with the difference in the test accuracy exceeding the test accuracy variability due to the subject sample. The filter and embedded methods produced divergent feature patterns for MCI vs. NC classification that suggests the utility of the embedded feature selection for this problem when linked with the good generalization performance. The stability of the feature sets was strongly correlated with the number of features selected, weakly correlated with the stability of classification accuracy, and uncorrelated with the average classification accuracy.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
This is akin to the implementation in the Donders Machine Learning Toolbox https://​github.​com/​distrep/​DMLT
 
2
Briefly, as the LASSO does not enforce grouping, it is sometimes considered as inappropriate for neuroimaging applications (Carroll et al. 2009). The performance of EN-VA was very similar with EN-05 in the AD vs. NC problem. For these reasons, we decided not to perform the experiments for these methods for MCI vs. NC problem.
 
Literatur
Zurück zum Zitat Baldassarre, L., Mourao-Miranda, J., & Pontil, M. (2012). Structured sparsity models for brain decoding from fmri data. In Pattern Recognition in NeuroImaging (PRNI), 2012 International Workshop on (pp. 5–8): IEEE. Baldassarre, L., Mourao-Miranda, J., & Pontil, M. (2012). Structured sparsity models for brain decoding from fmri data. In Pattern Recognition in NeuroImaging (PRNI), 2012 International Workshop on (pp. 5–8): IEEE.
Zurück zum Zitat Bouckaert, R.R., & Frank, E. (2004). Evaluating the replicability of significance tests for comparing learning algorithms. In Advances in knowledge discovery and data mining (pp. 3–12): Springer. Bouckaert, R.R., & Frank, E. (2004). Evaluating the replicability of significance tests for comparing learning algorithms. In Advances in knowledge discovery and data mining (pp. 3–12): Springer.
Zurück zum Zitat Bron, E.E., Smits, M., van der Flier, W.M., Vrenken, H., Barkhof, F., Scheltens, P., Papma, J.M., Steketee, R.M., Orellana, C.M., Meijboom, R., & et al. (2015). Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural mri: The caddementia challenge. NeuroImage, 111, 562–579.CrossRefPubMed Bron, E.E., Smits, M., van der Flier, W.M., Vrenken, H., Barkhof, F., Scheltens, P., Papma, J.M., Steketee, R.M., Orellana, C.M., Meijboom, R., & et al. (2015). Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural mri: The caddementia challenge. NeuroImage, 111, 562–579.CrossRefPubMed
Zurück zum Zitat Carroll, M.K., Cecchi, G.A., Rish, I., Garg, R., & Rao, A.R. (2009). Prediction and interpretation of distributed neural activity with sparse models. NeuroImage, 44(1), 112–122.CrossRefPubMed Carroll, M.K., Cecchi, G.A., Rish, I., Garg, R., & Rao, A.R. (2009). Prediction and interpretation of distributed neural activity with sparse models. NeuroImage, 44(1), 112–122.CrossRefPubMed
Zurück zum Zitat Casanova, R., Whitlow, C.T., Wagner, B., Williamson, J., Shumaker, S.A., Maldjian, J.A., & Espeland, M.A. (2011b). High dimensional classification of structural mri alzheimer’s disease data based on large scale regularization. Frontiers in neuroinformatics 5. Casanova, R., Whitlow, C.T., Wagner, B., Williamson, J., Shumaker, S.A., Maldjian, J.A., & Espeland, M.A. (2011b). High dimensional classification of structural mri alzheimer’s disease data based on large scale regularization. Frontiers in neuroinformatics 5.
Zurück zum Zitat Chang, C.C., & Lin, C.J. (2011). Libsvm: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology (TIST), 2(3), 27. Chang, C.C., & Lin, C.J. (2011). Libsvm: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology (TIST), 2(3), 27.
Zurück zum Zitat Chu, C., Hsu, A.L., Chou, K.H., Bandettini, P., Lin, C., Initiative, A.D.N., & et al. (2012). Does feature selection improve classification accuracy? impact of sample size and feature selection on classification using anatomical magnetic resonance images. Neuroimage, 60(1), 59–70.CrossRefPubMed Chu, C., Hsu, A.L., Chou, K.H., Bandettini, P., Lin, C., Initiative, A.D.N., & et al. (2012). Does feature selection improve classification accuracy? impact of sample size and feature selection on classification using anatomical magnetic resonance images. Neuroimage, 60(1), 59–70.CrossRefPubMed
Zurück zum Zitat Cuadra, M.B., Cammoun, L., Butz, T., Cuisenaire, O., & Thiran, J.P. (2005). Comparison and validation of tissue modelization and statistical classification methods in t1-weighted mr brain images. IEEE Transactions on Medical Imaging, 24(12), 1548–1565.CrossRefPubMed Cuadra, M.B., Cammoun, L., Butz, T., Cuisenaire, O., & Thiran, J.P. (2005). Comparison and validation of tissue modelization and statistical classification methods in t1-weighted mr brain images. IEEE Transactions on Medical Imaging, 24(12), 1548–1565.CrossRefPubMed
Zurück zum Zitat Cuingnet, R., Gerardin, E., Tessieras, J., Auzias, G., Lehéricy, S, Habert, M.O., Chupin, M., Benali, H., & Colliot, O. (2011). Automatic classification of patients with alzheimer’s disease from structural mri: a comparison of ten methods using the adni database. Neuroimage, 56(2), 766–781.CrossRefPubMed Cuingnet, R., Gerardin, E., Tessieras, J., Auzias, G., Lehéricy, S, Habert, M.O., Chupin, M., Benali, H., & Colliot, O. (2011). Automatic classification of patients with alzheimer’s disease from structural mri: a comparison of ten methods using the adni database. Neuroimage, 56(2), 766–781.CrossRefPubMed
Zurück zum Zitat Cuingnet, R., Glaunès, J.A., Chupin, M., Benali, H., & Colliot, O. (2013). Spatial and anatomical regularization of svm: a general framework for neuroimaging data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(3), 682–696.CrossRefPubMed Cuingnet, R., Glaunès, J.A., Chupin, M., Benali, H., & Colliot, O. (2013). Spatial and anatomical regularization of svm: a general framework for neuroimaging data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(3), 682–696.CrossRefPubMed
Zurück zum Zitat Dalton, L.A., & Dougherty, E.R. (2011). Bayesian minimum mean-square error estimation for classification error—part II: The Bayesian MMSE error estimator for linear classification of Gaussian distributions. IEEE Trans Signal Process, 59(1), 130–144.CrossRef Dalton, L.A., & Dougherty, E.R. (2011). Bayesian minimum mean-square error estimation for classification error—part II: The Bayesian MMSE error estimator for linear classification of Gaussian distributions. IEEE Trans Signal Process, 59(1), 130–144.CrossRef
Zurück zum Zitat Davis, T., LaRocque, K.F., Mumford, J.A., Norman, K.A., Wagner, A.D., & Poldrack, R.A. (2014). What do differences between multi-voxel and univariate analysis mean? how subject-, voxel-, and trial-level variance impact fmri analysis. NeuroImage, 97, 271–283.CrossRefPubMedPubMedCentral Davis, T., LaRocque, K.F., Mumford, J.A., Norman, K.A., Wagner, A.D., & Poldrack, R.A. (2014). What do differences between multi-voxel and univariate analysis mean? how subject-, voxel-, and trial-level variance impact fmri analysis. NeuroImage, 97, 271–283.CrossRefPubMedPubMedCentral
Zurück zum Zitat Dice, L.R. (1945). Measures of the amount of ecologic association between species. Ecology, 26(3), 297–302.CrossRef Dice, L.R. (1945). Measures of the amount of ecologic association between species. Ecology, 26(3), 297–302.CrossRef
Zurück zum Zitat Dietterich, T.G. (1998). Approximate statistical tests for comparing supervised classification learning algorithms. Neural computation, 10(7), 1895–1923.CrossRefPubMed Dietterich, T.G. (1998). Approximate statistical tests for comparing supervised classification learning algorithms. Neural computation, 10(7), 1895–1923.CrossRefPubMed
Zurück zum Zitat Dougherty, E.R., Sima, C., Hanczar, B., & Braga-Neto, U.M. (2010). Performance of error estimators for classification. Current Bioinformatics, 5(1), 53.CrossRef Dougherty, E.R., Sima, C., Hanczar, B., & Braga-Neto, U.M. (2010). Performance of error estimators for classification. Current Bioinformatics, 5(1), 53.CrossRef
Zurück zum Zitat Dubuisson, M.P., & Jain, A.K. (1994). A modified hausdorff distance for object matching. In Pattern Recognition, 1994. Vol. 1-Conference A: Computer Vision & Image Processing., Proceedings of the 12th IAPR International Conference on, (Vol. 1 pp. 566–568): IEEE. Dubuisson, M.P., & Jain, A.K. (1994). A modified hausdorff distance for object matching. In Pattern Recognition, 1994. Vol. 1-Conference A: Computer Vision & Image Processing., Proceedings of the 12th IAPR International Conference on, (Vol. 1 pp. 566–568): IEEE.
Zurück zum Zitat Dukart, J., Schroeter, M.L., & Mueller, K. (2011). Age correction in dementia–matching to a healthy brain. PloS one, 6(7), e22–193.CrossRef Dukart, J., Schroeter, M.L., & Mueller, K. (2011). Age correction in dementia–matching to a healthy brain. PloS one, 6(7), e22–193.CrossRef
Zurück zum Zitat Fiot, J.B., Raguet, H., Risser, L., Cohen, L.D., Fripp, J., & Vialard, F.X. (2014). Longitudinal deformation models, spatial regularizations and learning strategies to quantify alzheimer’s disease progression. NeuroImage: Clinical, 4, 718–729.CrossRef Fiot, J.B., Raguet, H., Risser, L., Cohen, L.D., Fripp, J., & Vialard, F.X. (2014). Longitudinal deformation models, spatial regularizations and learning strategies to quantify alzheimer’s disease progression. NeuroImage: Clinical, 4, 718–729.CrossRef
Zurück zum Zitat Fjell, A.M., McEvoy, L., Holland, D., Dale, A.M., Walhovd, K.B., & et al. (2013). Brain changes in older adults at very low risk for alzheimer’s disease. The Journal of Neuroscience, 33(19), 8237–8242.CrossRefPubMedPubMedCentral Fjell, A.M., McEvoy, L., Holland, D., Dale, A.M., Walhovd, K.B., & et al. (2013). Brain changes in older adults at very low risk for alzheimer’s disease. The Journal of Neuroscience, 33(19), 8237–8242.CrossRefPubMedPubMedCentral
Zurück zum Zitat Franke, K., Ziegler, G., Klöppel, S., & Gaser, C. (2010). Estimating the age of healthy subjects from t1-weighted mri scans using kernel methods: Exploring the influence of various parameters. Neuroimage, 50(3), 883–892.CrossRefPubMed Franke, K., Ziegler, G., Klöppel, S., & Gaser, C. (2010). Estimating the age of healthy subjects from t1-weighted mri scans using kernel methods: Exploring the influence of various parameters. Neuroimage, 50(3), 883–892.CrossRefPubMed
Zurück zum Zitat Franke, K., Ristow, M., Gaser, C., Initiative, A.D.N., & et al. (2014). Gender-specific impact of personal health parameters on individual brain aging in cognitively unimpaired elderly subjects. Frontiers in Aging Neuroscience, 6(94). Franke, K., Ristow, M., Gaser, C., Initiative, A.D.N., & et al. (2014). Gender-specific impact of personal health parameters on individual brain aging in cognitively unimpaired elderly subjects. Frontiers in Aging Neuroscience, 6(94).
Zurück zum Zitat Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software, 33(1), 1–22.CrossRefPubMedPubMedCentral Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software, 33(1), 1–22.CrossRefPubMedPubMedCentral
Zurück zum Zitat Gaser, C. (2009). Partial volume segmentation with adaptive maximum a posteriori (map) approach. NeuroImage, 47, S121.CrossRef Gaser, C. (2009). Partial volume segmentation with adaptive maximum a posteriori (map) approach. NeuroImage, 47, S121.CrossRef
Zurück zum Zitat Gaser, C., Franke, K., Klöppel, S., Koutsouleris, N., Sauer H, & Initiative, A.D.N. (2013). Brainage in mild cognitive impaired patients: Predicting the conversion to alzheimer’s disease. PloS one, 8(6), e67–346.CrossRef Gaser, C., Franke, K., Klöppel, S., Koutsouleris, N., Sauer H, & Initiative, A.D.N. (2013). Brainage in mild cognitive impaired patients: Predicting the conversion to alzheimer’s disease. PloS one, 8(6), e67–346.CrossRef
Zurück zum Zitat Genovese, C.R., Lazar, N.A., & Nichols, T. (2002). Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage, 15(4), 870–878.CrossRefPubMed Genovese, C.R., Lazar, N.A., & Nichols, T. (2002). Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage, 15(4), 870–878.CrossRefPubMed
Zurück zum Zitat Glick, N. (1978). Additive estimators for probabilities of correct classification. Pattern Recognition, 10(3), 211–222.CrossRef Glick, N. (1978). Additive estimators for probabilities of correct classification. Pattern Recognition, 10(3), 211–222.CrossRef
Zurück zum Zitat Grosenick, L., Greer, S., & Knutson, B. (2008). Interpretable classifiers for fmri improve prediction of purchases. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 16(6), 539–548.CrossRefPubMed Grosenick, L., Greer, S., & Knutson, B. (2008). Interpretable classifiers for fmri improve prediction of purchases. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 16(6), 539–548.CrossRefPubMed
Zurück zum Zitat Grosenick, L., Klingenberg, B., Katovich, K.B.K., & Taylor, J.E. (2013). Interpretable whole-brain prediction analysis with graphnet. NeuroImage, 72, 304–321.CrossRefPubMed Grosenick, L., Klingenberg, B., Katovich, K.B.K., & Taylor, J.E. (2013). Interpretable whole-brain prediction analysis with graphnet. NeuroImage, 72, 304–321.CrossRefPubMed
Zurück zum Zitat Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. The Journal of Machine Learning Research, 3, 1157–1182. Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. The Journal of Machine Learning Research, 3, 1157–1182.
Zurück zum Zitat Hastie, T., Rosset, S., Tibshirani, R., & Zhu, J. (2004). The entire regularization path for the support vector machine. The Journal of Machine Learning Research, 5, 1391–1415. Hastie, T., Rosset, S., Tibshirani, R., & Zhu, J. (2004). The entire regularization path for the support vector machine. The Journal of Machine Learning Research, 5, 1391–1415.
Zurück zum Zitat Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning, 2nd: Springer series in statistics. Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning, 2nd: Springer series in statistics.
Zurück zum Zitat Haufe, S., Meinecke, F., Görgen, K., Dähne, S., Haynes, J.D., Blankertz, B., & Bießmann, F. (2014). On the interpretation of weight vectors of linear models in multivariate neuroimaging. Neuroimage, 87, 96–110.CrossRefPubMed Haufe, S., Meinecke, F., Görgen, K., Dähne, S., Haynes, J.D., Blankertz, B., & Bießmann, F. (2014). On the interpretation of weight vectors of linear models in multivariate neuroimaging. Neuroimage, 87, 96–110.CrossRefPubMed
Zurück zum Zitat Huttunen, H., & Tohka, J. (2015). Model selection for linear classifiers using bayesian error estimation. Pattern Recognition, 48, 3739–3748.CrossRef Huttunen, H., & Tohka, J. (2015). Model selection for linear classifiers using bayesian error estimation. Pattern Recognition, 48, 3739–3748.CrossRef
Zurück zum Zitat Huttunen, H., Manninen, T., & Tohka, J. (2012). Mind reading with multinomial logistic regression: Strategies for feature selection, (pp. 42–49). Helsinki, Finland: Federated Computer Science Event. Huttunen, H., Manninen, T., & Tohka, J. (2012). Mind reading with multinomial logistic regression: Strategies for feature selection, (pp. 42–49). Helsinki, Finland: Federated Computer Science Event.
Zurück zum Zitat Huttunen, H., Manninen, T., Kauppi, J.P., & Tohka, J. (2013a). Mind reading with regularized multinomial logistic regression. Machine Vision and Applications, 24(6), 1311–1325.CrossRef Huttunen, H., Manninen, T., Kauppi, J.P., & Tohka, J. (2013a). Mind reading with regularized multinomial logistic regression. Machine Vision and Applications, 24(6), 1311–1325.CrossRef
Zurück zum Zitat Huttunen, H., Manninen, T., & Tohka, J. (2013b). Bayesian error estimation and model selection in sparse logistic regression. In 2013 IEEE International Workshop on Machine Learning for Signal Processing (MLSP) (pp. 1–6): IEEE. Huttunen, H., Manninen, T., & Tohka, J. (2013b). Bayesian error estimation and model selection in sparse logistic regression. In 2013 IEEE International Workshop on Machine Learning for Signal Processing (MLSP) (pp. 1–6): IEEE.
Zurück zum Zitat Inza, I., Larrañaga, P., Blanco, R., & Cerrolaza, A.J. (2004). Filter versus wrapper gene selection approaches in dna microarray domains. Artificial Intelligence in Medicine, 31(2), 91–103.CrossRefPubMed Inza, I., Larrañaga, P., Blanco, R., & Cerrolaza, A.J. (2004). Filter versus wrapper gene selection approaches in dna microarray domains. Artificial Intelligence in Medicine, 31(2), 91–103.CrossRefPubMed
Zurück zum Zitat Jimura, K., & Poldrack, R.A. (2012). Analyses of regional-average activation and multivoxel pattern information tell complementary stories. Neuropsychologia, 50(4), 544–552.CrossRefPubMed Jimura, K., & Poldrack, R.A. (2012). Analyses of regional-average activation and multivoxel pattern information tell complementary stories. Neuropsychologia, 50(4), 544–552.CrossRefPubMed
Zurück zum Zitat Kenny, D. (1987). Statistics for the Social and Behavioral Sciences: Little Brown. Kenny, D. (1987). Statistics for the Social and Behavioral Sciences: Little Brown.
Zurück zum Zitat Kerr, W.T., Douglas, P.K., Anderson, A., & Cohen, M.S. (2014). The utility of data-driven feature selection: Re: Chu et al. 2012. NeuroImage, 84, 1107–1110.CrossRefPubMed Kerr, W.T., Douglas, P.K., Anderson, A., & Cohen, M.S. (2014). The utility of data-driven feature selection: Re: Chu et al. 2012. NeuroImage, 84, 1107–1110.CrossRefPubMed
Zurück zum Zitat Khundrakpam, B.S., Tohka, J., & Evans, A.C. (2015). Prediction of brain maturity based on cortical thickness at different spatial resolutions. NeuroImage, 111, 350–359.CrossRefPubMed Khundrakpam, B.S., Tohka, J., & Evans, A.C. (2015). Prediction of brain maturity based on cortical thickness at different spatial resolutions. NeuroImage, 111, 350–359.CrossRefPubMed
Zurück zum Zitat Klöppel, S., Peter, J., Ludl, A., Pilatus, A., Maier, S., Mader, I., Heimbach, B., Frings, L., Egger, K., Dukart, J., & et al. (2015). Applying automated mr-based diagnostic methods to the memory clinic: A prospective study. Journal of Alzheimer’s Disease, 47, 939–954.CrossRefPubMed Klöppel, S., Peter, J., Ludl, A., Pilatus, A., Maier, S., Mader, I., Heimbach, B., Frings, L., Egger, K., Dukart, J., & et al. (2015). Applying automated mr-based diagnostic methods to the memory clinic: A prospective study. Journal of Alzheimer’s Disease, 47, 939–954.CrossRefPubMed
Zurück zum Zitat Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. In International Joint Conference on Artificial Intelligence (IJCAI95), (Vol. 14 pp. 1137–1145). Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. In International Joint Conference on Artificial Intelligence (IJCAI95), (Vol. 14 pp. 1137–1145).
Zurück zum Zitat Lazar, N.A., Luna, B., Sweeney, J.A., & Eddy, W.F. (2002). Combining brains: a survey of methods for statistical pooling of information. Neuroimage, 16(2), 538–550.CrossRefPubMed Lazar, N.A., Luna, B., Sweeney, J.A., & Eddy, W.F. (2002). Combining brains: a survey of methods for statistical pooling of information. Neuroimage, 16(2), 538–550.CrossRefPubMed
Zurück zum Zitat Meinshausen, N., & Bühlmann, P. (2010). Stability selection. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 72(4), 417–473.CrossRef Meinshausen, N., & Bühlmann, P. (2010). Stability selection. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 72(4), 417–473.CrossRef
Zurück zum Zitat Michel, V., Gramfort, A., Varoquaux, G., Eger, E., & Thirion, B. (2011). Total variation regularization for fmri-based prediction of behavior. IEEE Transactions on Medical Imaging, 30(7), 1328–1340.CrossRefPubMedPubMedCentral Michel, V., Gramfort, A., Varoquaux, G., Eger, E., & Thirion, B. (2011). Total variation regularization for fmri-based prediction of behavior. IEEE Transactions on Medical Imaging, 30(7), 1328–1340.CrossRefPubMedPubMedCentral
Zurück zum Zitat Mohr, H., Wolfensteller, U., Frimmel, S., & Ruge, H. (2015). Sparse regularization techniques provide novel insights into outcome integration processes. NeuroImage, 104, 163–176.CrossRefPubMed Mohr, H., Wolfensteller, U., Frimmel, S., & Ruge, H. (2015). Sparse regularization techniques provide novel insights into outcome integration processes. NeuroImage, 104, 163–176.CrossRefPubMed
Zurück zum Zitat Moradi, E., Gaser, C., & Tohka, J. (2014). Semi-supervised learning in mci-to-ad conversion prediction - when is unlabeled data useful IEEE Pattern Recognition in Neuro Imaging, 121–124. Moradi, E., Gaser, C., & Tohka, J. (2014). Semi-supervised learning in mci-to-ad conversion prediction - when is unlabeled data useful IEEE Pattern Recognition in Neuro Imaging, 121–124.
Zurück zum Zitat Moradi, E., Pepe, A., Gaser, C., Huttunen, H., & Tohka, J. (2015). Machine learning framework for early mri-based alzheimer’s conversion prediction in mci subjects. NeuroImage, 104, 398–412.CrossRefPubMed Moradi, E., Pepe, A., Gaser, C., Huttunen, H., & Tohka, J. (2015). Machine learning framework for early mri-based alzheimer’s conversion prediction in mci subjects. NeuroImage, 104, 398–412.CrossRefPubMed
Zurück zum Zitat Nadeau, C., & Bengio, Y. (2003). Inference for the generalization error. Machine Learning, 52(3), 239–281.CrossRef Nadeau, C., & Bengio, Y. (2003). Inference for the generalization error. Machine Learning, 52(3), 239–281.CrossRef
Zurück zum Zitat Pajula, J., Kauppi, J.P., & Tohka, J. (2012). Inter-subject correlation in fmri: method validation against stimulus-model based analysis. PloS one, 7(8), e41–196. Pajula, J., Kauppi, J.P., & Tohka, J. (2012). Inter-subject correlation in fmri: method validation against stimulus-model based analysis. PloS one, 7(8), e41–196.
Zurück zum Zitat Petersen, R., Aisen, P., Beckett, L., Donohue, M., Gamst, A., Harvey, D., Jack, C., Jagust, W., Shaw, L., Toga, A., & et al. (2010). Alzheimer’s disease neuroimaging initiative (adni) clinical characterization. Neurology, 74(3), 201–209.CrossRefPubMedPubMedCentral Petersen, R., Aisen, P., Beckett, L., Donohue, M., Gamst, A., Harvey, D., Jack, C., Jagust, W., Shaw, L., Toga, A., & et al. (2010). Alzheimer’s disease neuroimaging initiative (adni) clinical characterization. Neurology, 74(3), 201–209.CrossRefPubMedPubMedCentral
Zurück zum Zitat Rajapakse, J.C., Giedd, J.N., & Rapoport (1997). Statistical approach to segmentation of single-channel cerebral mr images. IEEE Transactions on Medical Imaging, 16(2), 176–186.CrossRefPubMed Rajapakse, J.C., Giedd, J.N., & Rapoport (1997). Statistical approach to segmentation of single-channel cerebral mr images. IEEE Transactions on Medical Imaging, 16(2), 176–186.CrossRefPubMed
Zurück zum Zitat Rasmussen, P.M., Hansen, L.K., Madsen, K.H., Churchill, N.W., & Strother, S.C. (2012). Model sparsity and brain pattern interpretation of classification models in neuroimaging. Pattern Recognition, 45(6), 2085–2100.CrossRef Rasmussen, P.M., Hansen, L.K., Madsen, K.H., Churchill, N.W., & Strother, S.C. (2012). Model sparsity and brain pattern interpretation of classification models in neuroimaging. Pattern Recognition, 45(6), 2085–2100.CrossRef
Zurück zum Zitat Retico, A, Bosco, P, Cerello, P, Fiorina, E, Chincarini, A, & Fantacci, ME. (2015). Predictive models based on support vector machines: Whole-brain versus regional analysis of structural mri in the alzheimer’s disease: Journal of Neuroimaging (in press). Retico, A, Bosco, P, Cerello, P, Fiorina, E, Chincarini, A, & Fantacci, ME. (2015). Predictive models based on support vector machines: Whole-brain versus regional analysis of structural mri in the alzheimer’s disease: Journal of Neuroimaging (in press).
Zurück zum Zitat Rondina, J.M., Hahn, T., De Oliveira, L., Marquand, A.F., Dresler, T., Leitner, T., Fallgatter, A.J., Shawe-Taylor, J., & Mourao-Miranda, J. (2014). Scors–a method based on stability for feature selection and mapping in neuroimaging. IEEE Transactions on Medical Imaging, 33(1), 85–98.CrossRefPubMed Rondina, J.M., Hahn, T., De Oliveira, L., Marquand, A.F., Dresler, T., Leitner, T., Fallgatter, A.J., Shawe-Taylor, J., & Mourao-Miranda, J. (2014). Scors–a method based on stability for feature selection and mapping in neuroimaging. IEEE Transactions on Medical Imaging, 33(1), 85–98.CrossRefPubMed
Zurück zum Zitat Ryali, S., Supekar, K., Abrams, D.A., & Menon, V. (2010). Sparse logistic regression for whole-brain classification of fmri data. NeuroImage, 51(2), 752–764.CrossRefPubMedPubMedCentral Ryali, S., Supekar, K., Abrams, D.A., & Menon, V. (2010). Sparse logistic regression for whole-brain classification of fmri data. NeuroImage, 51(2), 752–764.CrossRefPubMedPubMedCentral
Zurück zum Zitat Sabuncu, M.R., Konukoglu, E., Initiative, A.D.N., & et al. (2015). Clinical prediction from structural brain mri scans: A large-scale empirical study. Neuroinformatics, 13, 31–46.CrossRefPubMedPubMedCentral Sabuncu, M.R., Konukoglu, E., Initiative, A.D.N., & et al. (2015). Clinical prediction from structural brain mri scans: A large-scale empirical study. Neuroinformatics, 13, 31–46.CrossRefPubMedPubMedCentral
Zurück zum Zitat Strother, S.C., Anderson, J., Hansen, L.K., Kjems, U., Kustra, R., Sidtis, J., Frutiger, S., Muley, S., LaConte, S., & Rottenberg, D. (2002). The quantitative evaluation of functional neuroimaging experiments: the npairs data analysis framework. NeuroImage, 15(4), 747–771.CrossRefPubMed Strother, S.C., Anderson, J., Hansen, L.K., Kjems, U., Kustra, R., Sidtis, J., Frutiger, S., Muley, S., LaConte, S., & Rottenberg, D. (2002). The quantitative evaluation of functional neuroimaging experiments: the npairs data analysis framework. NeuroImage, 15(4), 747–771.CrossRefPubMed
Zurück zum Zitat Tibshirani, R. (1996). Regression shrinkage and selection via the LASSO. Journal of the Royal Statistical Society Series B, 58, 267–288. Tibshirani, R. (1996). Regression shrinkage and selection via the LASSO. Journal of the Royal Statistical Society Series B, 58, 267–288.
Zurück zum Zitat Tohka, J., Zijdenbos, A., & Evans, A. (2004). Fast and robust parameter estimation for statistical partial volume models in brain mri. Neuroimage, 23(1), 84–97.CrossRefPubMed Tohka, J., Zijdenbos, A., & Evans, A. (2004). Fast and robust parameter estimation for statistical partial volume models in brain mri. Neuroimage, 23(1), 84–97.CrossRefPubMed
Zurück zum Zitat Van Gerven, M.A., Cseke, B., De Lange, F.P., & Heskes, T. (2010). Efficient bayesian multivariate fmri analysis using a sparsifying spatio-temporal prior. NeuroImage, 50(1), 150–161.CrossRefPubMed Van Gerven, M.A., Cseke, B., De Lange, F.P., & Heskes, T. (2010). Efficient bayesian multivariate fmri analysis using a sparsifying spatio-temporal prior. NeuroImage, 50(1), 150–161.CrossRefPubMed
Zurück zum Zitat Weiner, M., Veitch, D.P., Aisen, P.S., Beckett, L.A., Cairns, N.J., & et al. (2012). The alzheimer’s disease neuroimaging initiative: A review of paper published since its inception. Alzheimers & Dementia, 8(1), S1–S68.CrossRef Weiner, M., Veitch, D.P., Aisen, P.S., Beckett, L.A., Cairns, N.J., & et al. (2012). The alzheimer’s disease neuroimaging initiative: A review of paper published since its inception. Alzheimers & Dementia, 8(1), S1–S68.CrossRef
Zurück zum Zitat Ye, J., Farnum, M., Yang, E., Verbeeck, R., Lobanov, V., Raghavan, N., Novak, G., Dibernardo, A., & Narayan, V. (2012). Sparse learning and stability selection for predicting mci to ad conversion using baseline adni data. BMC Neurology, 12(46), 1–12. Ye, J., Farnum, M., Yang, E., Verbeeck, R., Lobanov, V., Raghavan, N., Novak, G., Dibernardo, A., & Narayan, V. (2012). Sparse learning and stability selection for predicting mci to ad conversion using baseline adni data. BMC Neurology, 12(46), 1–12.
Zurück zum Zitat Zijdenbos, A.P., Dawant, B.M., Margolin, R.A., & Palmer, A.C. (1994). Morphometric analysis of white matter lesions in mr images: method and validation. IEEE Transactions on Medical Imaging, 13(4), 716–724.CrossRefPubMed Zijdenbos, A.P., Dawant, B.M., Margolin, R.A., & Palmer, A.C. (1994). Morphometric analysis of white matter lesions in mr images: method and validation. IEEE Transactions on Medical Imaging, 13(4), 716–724.CrossRefPubMed
Zurück zum Zitat Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B, 67(2), 301–320.CrossRef Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B, 67(2), 301–320.CrossRef
Metadaten
Titel
Comparison of Feature Selection Techniques in Machine Learning for Anatomical Brain MRI in Dementia
verfasst von
Jussi Tohka
Elaheh Moradi
Heikki Huttunen
Alzheimer’s Disease Neuroimaging Initiative
Publikationsdatum
01.07.2016
Verlag
Springer US
Erschienen in
Neuroinformatics / Ausgabe 3/2016
Print ISSN: 1539-2791
Elektronische ISSN: 1559-0089
DOI
https://doi.org/10.1007/s12021-015-9292-3

Weitere Artikel der Ausgabe 3/2016

Neuroinformatics 3/2016 Zur Ausgabe

Premium Partner