Skip to main content

2019 | OriginalPaper | Buchkapitel

Comparison of Saturated Hydraulic Conductivity Methods for Sandy Loam Soil with Different Land Uses

verfasst von : Aminul Islam, D. R. Mailapalli, Anuradha Behera

Erschienen in: Water Resources and Environmental Engineering I

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Saturated hydraulic conductivity (Ks) is a quantitative measure of saturated soil properties and it is essential for designing irrigation, drainage and waste water systems, modelling studies for understanding and prediting rates of infiltration, runoff, erosion, seepage, upflux, solute transport and migration of pollutant to groundwater. However, the accuracy of Ks is highly dependent on the method used, soil and surface characteristics. The objective of the study was to compare Ks methods such as two in situ [Double ring infiltrometer (DRI), air entry permeameter (AEP)] and one pedotransfer function (PTF) based methods for four different land uses such as paddy field (PADF), mango field (MANF), cashew field (CASF) and playground (PLAG). The Ks obtained from the DRI, AEP and PTF methods were used to study the effect of the method and land use on Ks and suitability of a method for a land use. It was observed that the measured Ks data using AEP and DRI of different land uses follow a log-normal distribution. The mean Ks were significantly different for both measuring technique and the land use. The AEP resulted highest (2.64 mm/h) and PTF lowest (1.59 mm/h) values of Ks, respectively for all land uses, whereas the Ks was highest (2.47 mm/h) and lowest (1.75 mm/h) for the land uses CASF and PLAG, respectively. For all land uses, the mean Ks were highest for AEP followed by DRI, and PTF methods. The order of Ks obtained for the land uses were CASF (2.51 mm/h), MANF (1.87 mm/h), PADF (1.82 mm/h) and PLAG (1.71 mm/h). Spatial variability of Ks was observed for DRI method and the land use PLAG. The selection of best suitable method for a particular situation can be obtained by optimizing the interdependent parameters, including method to be used, accuracy in instrument and measurement methods, soil condition and the numbers of practical constraints of the investigation (e.g., cost, availability of manpower, time requirement, portability of estimate, simplicity in measuring technique, operating condition).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Reynolds, W.D.: Saturated hydraulic conductivity: Laboratory measurement. In: Carter, M.R. (ed.) Soil Sampling and Methods of Analysis, pp. 589–598 (1993) Reynolds, W.D.: Saturated hydraulic conductivity: Laboratory measurement. In: Carter, M.R. (ed.) Soil Sampling and Methods of Analysis, pp. 589–598 (1993)
2.
Zurück zum Zitat Shukla, M., Lal, R.: Transport of dissolve organic carbon through soil columns. Annual Meeting of ASA/SSSA Seattle, WA, p. 31 (2004) Shukla, M., Lal, R.: Transport of dissolve organic carbon through soil columns. Annual Meeting of ASA/SSSA Seattle, WA, p. 31 (2004)
3.
Zurück zum Zitat Prieksat, M.A., Kaspar, T.C., Ankeny, M.D.: Positional and temporal changes in pounded infiltration in corn field. Soil Sci. Soc. Am. J. 58, 181–184 (1994)CrossRef Prieksat, M.A., Kaspar, T.C., Ankeny, M.D.: Positional and temporal changes in pounded infiltration in corn field. Soil Sci. Soc. Am. J. 58, 181–184 (1994)CrossRef
4.
Zurück zum Zitat Lekamalage, W.B.: Characterization of surface soil hydraulic conductivity in sloping landscapes. Thesis Submitted to the College of Graduate Studies and Research in Partial Fulfillment of the Requirements for the Degree of Master of Science in the Department of Soil Science University of Saskatchewan Saskatoon, pp. 1–4 (2003) Lekamalage, W.B.: Characterization of surface soil hydraulic conductivity in sloping landscapes. Thesis Submitted to the College of Graduate Studies and Research in Partial Fulfillment of the Requirements for the Degree of Master of Science in the Department of Soil Science University of Saskatchewan Saskatoon, pp. 1–4 (2003)
5.
Zurück zum Zitat Lee, H.J.: Comparing the inverse parameter estimation approach with pedo-transfer function method for estimating soil hydraulic conductivity. Geosci. J. 9(3), 269–276 (2005)CrossRef Lee, H.J.: Comparing the inverse parameter estimation approach with pedo-transfer function method for estimating soil hydraulic conductivity. Geosci. J. 9(3), 269–276 (2005)CrossRef
6.
Zurück zum Zitat Kechavarzi, C., Dawson, Q., Leeds-Harrison, P.B.: Physical properties of low-lying agricultural peat soils in England. Geoderma 154, 196–202 (2010)CrossRef Kechavarzi, C., Dawson, Q., Leeds-Harrison, P.B.: Physical properties of low-lying agricultural peat soils in England. Geoderma 154, 196–202 (2010)CrossRef
7.
Zurück zum Zitat Jarvis, N., Koestel, J., Messing, I., Moeys, J., Lindahl, A.: influence of soil, land use and climatic factors on the hydraulic conductivity of soil. Hydrol. Earth Syst. Sci. 17, 5185–5195 (2013)CrossRef Jarvis, N., Koestel, J., Messing, I., Moeys, J., Lindahl, A.: influence of soil, land use and climatic factors on the hydraulic conductivity of soil. Hydrol. Earth Syst. Sci. 17, 5185–5195 (2013)CrossRef
8.
Zurück zum Zitat Holden, J., Burt, T.P.: Hydraulic conductivity in upland blanket peat. Measur. Var. Hydrological Process. 17, 1227–1237 (2003)CrossRef Holden, J., Burt, T.P.: Hydraulic conductivity in upland blanket peat. Measur. Var. Hydrological Process. 17, 1227–1237 (2003)CrossRef
9.
Zurück zum Zitat Rossiter, G.D., Jatten, G.V.: Effects of soil depth and saturated hydraulic conductivity spatial variation on runoff simulation by Limburg soil erosion model (LISEM). A Case Study in Faucon Catchment, France. Enschede, the Nederland’s (2011) Rossiter, G.D., Jatten, G.V.: Effects of soil depth and saturated hydraulic conductivity spatial variation on runoff simulation by Limburg soil erosion model (LISEM). A Case Study in Faucon Catchment, France. Enschede, the Nederland’s (2011)
10.
Zurück zum Zitat Nielsen, D.R., Biggar, J.W., Erh, K.T.: Spatial variability of field-measured soil-water properties. Hilgardia 42, 215–259 (1973)CrossRef Nielsen, D.R., Biggar, J.W., Erh, K.T.: Spatial variability of field-measured soil-water properties. Hilgardia 42, 215–259 (1973)CrossRef
11.
Zurück zum Zitat Darzi, A., Yari, A., Bagheri, H., Sabe, G., Yari, R.: Study of variation of saturated hydraulic conductivity with time. J. Irrig. Drain. Eng. 134, 479–484 (2008)CrossRef Darzi, A., Yari, A., Bagheri, H., Sabe, G., Yari, R.: Study of variation of saturated hydraulic conductivity with time. J. Irrig. Drain. Eng. 134, 479–484 (2008)CrossRef
12.
Zurück zum Zitat Bagarello, V., Provenzano, G., Sgroi, A.: Fitting particle size distribution models to data from burundian soils for the best procedure and other purposes. Biosys. Eng. 4, 435–441 (2009)CrossRef Bagarello, V., Provenzano, G., Sgroi, A.: Fitting particle size distribution models to data from burundian soils for the best procedure and other purposes. Biosys. Eng. 4, 435–441 (2009)CrossRef
13.
Zurück zum Zitat Dev, K.S., Shukla, K.M.: Variability of hydraulic conductivity due to multiple factors. Am. J. Environ. Sci. 8(5), 489–502 (2012)CrossRef Dev, K.S., Shukla, K.M.: Variability of hydraulic conductivity due to multiple factors. Am. J. Environ. Sci. 8(5), 489–502 (2012)CrossRef
14.
Zurück zum Zitat Reynolds, D.W., Bowman, B.T., Brunke, R.R., Drury, C.F., Tan, C.S.: Comparison of tension infiltrometer, pressure infiltrometer, and soil core estimates of saturated hydraulic conductivity. Soil Sci. Soc. Am. J. 64, 478–484 (2000)CrossRef Reynolds, D.W., Bowman, B.T., Brunke, R.R., Drury, C.F., Tan, C.S.: Comparison of tension infiltrometer, pressure infiltrometer, and soil core estimates of saturated hydraulic conductivity. Soil Sci. Soc. Am. J. 64, 478–484 (2000)CrossRef
15.
Zurück zum Zitat Bagarello, B., Castellini, M., Di Prima, S., Giordano, G., Iovino, M.: Testing a simplified approach to determine field saturated soil hydraulic conductivity. Procedia Environ. Sci. 19, 599–608 (2013)CrossRef Bagarello, B., Castellini, M., Di Prima, S., Giordano, G., Iovino, M.: Testing a simplified approach to determine field saturated soil hydraulic conductivity. Procedia Environ. Sci. 19, 599–608 (2013)CrossRef
16.
Zurück zum Zitat Klute, A.: Laboratory measurement of hydraulic conductivity of saturated soil. In: Black, C.A. (ed.). Methods of Soil Analysis, Part 1, pp. 210–221 (1965) Klute, A.: Laboratory measurement of hydraulic conductivity of saturated soil. In: Black, C.A. (ed.). Methods of Soil Analysis, Part 1, pp. 210–221 (1965)
17.
Zurück zum Zitat Lee, M.D., Reynolds, D.W., Elrick, E.D., Clotheier, E.B.: A comparison of three field method for measuring saturated hydraulic conductivity. Can. J. Soil Sci. 65, 563–573 (1985)CrossRef Lee, M.D., Reynolds, D.W., Elrick, E.D., Clotheier, E.B.: A comparison of three field method for measuring saturated hydraulic conductivity. Can. J. Soil Sci. 65, 563–573 (1985)CrossRef
18.
Zurück zum Zitat Klute, A., Dirksen, C.: Hydraulic conductivity and diffusivity: laboratory methods. In: Methods of Soil Analysis: Part 1—Physical and Mineralogical Methods, pp. 687–734 (1986) Klute, A., Dirksen, C.: Hydraulic conductivity and diffusivity: laboratory methods. In: Methods of Soil Analysis: Part 1—Physical and Mineralogical Methods, pp. 687–734 (1986)
19.
Zurück zum Zitat Grant, C.D., Groenevelt, P.H.: Weighting the differential water capacity to account for declining hydraulic conductivity in a drying coarse-textured soil. Soil Res. 53(4), 386–391 (2015)CrossRef Grant, C.D., Groenevelt, P.H.: Weighting the differential water capacity to account for declining hydraulic conductivity in a drying coarse-textured soil. Soil Res. 53(4), 386–391 (2015)CrossRef
20.
Zurück zum Zitat Jačka, L., Pavlásek, J., Kuráž, V., Pech, P.: A comparison of three measuring methods for estimating the saturated hydraulic conductivity in the shallow subsurface layer of mountain podzols. Geoderma 219, 82–88 (2014)CrossRef Jačka, L., Pavlásek, J., Kuráž, V., Pech, P.: A comparison of three measuring methods for estimating the saturated hydraulic conductivity in the shallow subsurface layer of mountain podzols. Geoderma 219, 82–88 (2014)CrossRef
21.
Zurück zum Zitat Burgy, R.H., Luthin, J.N.: A test of the single and double ring type infiltrometers. Trans. Am. Geophys. Union 37, 189–191 (1956)CrossRef Burgy, R.H., Luthin, J.N.: A test of the single and double ring type infiltrometers. Trans. Am. Geophys. Union 37, 189–191 (1956)CrossRef
22.
Zurück zum Zitat Bagarello, V., Iovino, M., Lai, J.B.: Field and numerical tests of the two-ponding depth procedure for analysis of single-ring pressure infiltrometer data. Pedosphere 23(6), 779–789 (2013)CrossRef Bagarello, V., Iovino, M., Lai, J.B.: Field and numerical tests of the two-ponding depth procedure for analysis of single-ring pressure infiltrometer data. Pedosphere 23(6), 779–789 (2013)CrossRef
23.
Zurück zum Zitat Elrick, D.E., Reynolds, W.D., Tan, K.A.: Hydraulic conductivity measurements in the unsaturated zone using improved well analyses. Groundw. Monit. Remediat. 9(3), 184–193 (1989)CrossRef Elrick, D.E., Reynolds, W.D., Tan, K.A.: Hydraulic conductivity measurements in the unsaturated zone using improved well analyses. Groundw. Monit. Remediat. 9(3), 184–193 (1989)CrossRef
24.
Zurück zum Zitat Bouwer, H.: A double tube method for measuring hydraulic conductivity of soil in situ above a water table. In: Soil Science Society of America Proceedings, vol. 25, pp. 334–342 (1961) Bouwer, H.: A double tube method for measuring hydraulic conductivity of soil in situ above a water table. In: Soil Science Society of America Proceedings, vol. 25, pp. 334–342 (1961)
25.
Zurück zum Zitat Perroux, K.M., White, I.: Designs for disc permeameters. Soil Sci. Soc. Am. J. 52, 1205–1215 (1988)CrossRef Perroux, K.M., White, I.: Designs for disc permeameters. Soil Sci. Soc. Am. J. 52, 1205–1215 (1988)CrossRef
26.
Zurück zum Zitat Bouwer, H.: Rapid field measurement of air entry value and hydraulic conductivity of soil as significant parameters in flow system analysis. Water Resour. Res. 2, 729–738 (1966)CrossRef Bouwer, H.: Rapid field measurement of air entry value and hydraulic conductivity of soil as significant parameters in flow system analysis. Water Resour. Res. 2, 729–738 (1966)CrossRef
27.
Zurück zum Zitat Bagarello, V., Iovino, M., Elrick, D.: A simplified falling-head technique for rapid determination of field saturated hydraulic conductivity. Soil Sci. Soc. Am. J. 68, 66–73 (2004)CrossRef Bagarello, V., Iovino, M., Elrick, D.: A simplified falling-head technique for rapid determination of field saturated hydraulic conductivity. Soil Sci. Soc. Am. J. 68, 66–73 (2004)CrossRef
28.
Zurück zum Zitat Topp, G.C., Binns, M.N.: Field measurement of hydraulic conductivity with a modified air entry permeameter. Can. J. Soil Sci. 56, 139–147 (1976)CrossRef Topp, G.C., Binns, M.N.: Field measurement of hydraulic conductivity with a modified air entry permeameter. Can. J. Soil Sci. 56, 139–147 (1976)CrossRef
29.
Zurück zum Zitat Mohanty, B.P., Kanwar, S.R., Everts, J.C.: Comparison of saturated hydraulic conductivity measurement methods for a glacial-till soil. soil Sci. Soc. Am. J. 58(3), 672–677 (1994)CrossRef Mohanty, B.P., Kanwar, S.R., Everts, J.C.: Comparison of saturated hydraulic conductivity measurement methods for a glacial-till soil. soil Sci. Soc. Am. J. 58(3), 672–677 (1994)CrossRef
30.
Zurück zum Zitat Bodhinayake, W., Si, C.B.: Near-saturated surface soil hydraulic properties under different land uses in the St Denis National Wildlife Area, Saskatchewan, Canada. Hydrol. Process. 18, 2835–2850 (2004)CrossRef Bodhinayake, W., Si, C.B.: Near-saturated surface soil hydraulic properties under different land uses in the St Denis National Wildlife Area, Saskatchewan, Canada. Hydrol. Process. 18, 2835–2850 (2004)CrossRef
31.
Zurück zum Zitat Fallico, C., Migliari, E., Troisi, S.: Comparison of three measurement methods of saturated hydraulic conductivity. Hydrol. Earth Syst. Sci. Discuss. 3, 987–1019 (2006)CrossRef Fallico, C., Migliari, E., Troisi, S.: Comparison of three measurement methods of saturated hydraulic conductivity. Hydrol. Earth Syst. Sci. Discuss. 3, 987–1019 (2006)CrossRef
32.
Zurück zum Zitat Bagarello, V., Sgroi, A.: Using the single-ring infiltrometer method to detect temporal changes in surface soil field saturated hydraulic conductivity. Soil Tillage Res. 76(1), 13–24 (2004)CrossRef Bagarello, V., Sgroi, A.: Using the single-ring infiltrometer method to detect temporal changes in surface soil field saturated hydraulic conductivity. Soil Tillage Res. 76(1), 13–24 (2004)CrossRef
33.
Zurück zum Zitat Fodor, N., Sandor, R., Orfanus, T., Lichne, L., Rajkai, K.: Evaluation method dependency of measured saturated hydraulic conductivity. Geoderma 165, 60–68 (2011)CrossRef Fodor, N., Sandor, R., Orfanus, T., Lichne, L., Rajkai, K.: Evaluation method dependency of measured saturated hydraulic conductivity. Geoderma 165, 60–68 (2011)CrossRef
34.
Zurück zum Zitat Ronayne, M.J., Houghton, T.B., Stednick, J.D.: Field characterization of hydraulic conductivity in a heterogeneous alpine glacial till. J. Hydrol. Eng. 458(459), 103–109 (2012)CrossRef Ronayne, M.J., Houghton, T.B., Stednick, J.D.: Field characterization of hydraulic conductivity in a heterogeneous alpine glacial till. J. Hydrol. Eng. 458(459), 103–109 (2012)CrossRef
35.
Zurück zum Zitat Runbin, D.R., Fedler, B.C., Borrelli, J.: Comparison of methods to estimate saturated hydraulic conductivity in texas soils with grass. J. Irrig. Drain. Eng. 138(4), 322–327 (2012)CrossRef Runbin, D.R., Fedler, B.C., Borrelli, J.: Comparison of methods to estimate saturated hydraulic conductivity in texas soils with grass. J. Irrig. Drain. Eng. 138(4), 322–327 (2012)CrossRef
36.
Zurück zum Zitat Bagarello, V., Baiamonte, G., Castellini, M., Di Prima, D., Iovino, M.: A comparison between the single ring pressure infiltrometer and simplified falling head techniques. Hydrol. Process. 28, 4843–4853 (2014)CrossRef Bagarello, V., Baiamonte, G., Castellini, M., Di Prima, D., Iovino, M.: A comparison between the single ring pressure infiltrometer and simplified falling head techniques. Hydrol. Process. 28, 4843–4853 (2014)CrossRef
37.
Zurück zum Zitat Hall, D.G., Reeve, M.J., Thomasson, A.J., Wright, A.F.: Water Retention, Porosity and Density of Field Soils. Soil Survey of England and Wales. Rothamsted Experimental Station, Harpenden, UK (1977) Hall, D.G., Reeve, M.J., Thomasson, A.J., Wright, A.F.: Water Retention, Porosity and Density of Field Soils. Soil Survey of England and Wales. Rothamsted Experimental Station, Harpenden, UK (1977)
38.
Zurück zum Zitat Campbell, G.S.: Soil Physics with Basic: Transport Models for Soil Plant Systems. Elsevier Science, New York (1985) Campbell, G.S.: Soil Physics with Basic: Transport Models for Soil Plant Systems. Elsevier Science, New York (1985)
39.
Zurück zum Zitat Rawls, W.J., Gimenez, D., Grossman, R.: Use of soil texture, bulk density and slope of the water retention curve to predict saturated hydraulic conductivity. Am. Soc. Agric. Biol. Eng. 41(4), 983–988 (1998)CrossRef Rawls, W.J., Gimenez, D., Grossman, R.: Use of soil texture, bulk density and slope of the water retention curve to predict saturated hydraulic conductivity. Am. Soc. Agric. Biol. Eng. 41(4), 983–988 (1998)CrossRef
40.
Zurück zum Zitat Smettem, K.R.J., Bristow, K.L.: Obtaining soil hydraulic properties for water balance and leaching models from survey data. 2. Hydraulic conductivity. Aust. J. Agric. Res. 50(7), 1259–1262 (1999)CrossRef Smettem, K.R.J., Bristow, K.L.: Obtaining soil hydraulic properties for water balance and leaching models from survey data. 2. Hydraulic conductivity. Aust. J. Agric. Res. 50(7), 1259–1262 (1999)CrossRef
41.
Zurück zum Zitat Wösten, J.H.M., Pachepsky, Y.A., Rawls, W.J.: Pedotransfer functions: bridging the gap between available basic soil data and missing soil hydraulic characteristics. J. Hydrol. 251, 123–150 (2001) Wösten, J.H.M., Pachepsky, Y.A., Rawls, W.J.: Pedotransfer functions: bridging the gap between available basic soil data and missing soil hydraulic characteristics. J. Hydrol. 251, 123–150 (2001)
42.
Zurück zum Zitat Wosten, J.H.M., Lilly, A., Nemes, A., Le Bas, C.: Development and use of a database of hydraulic properties of European soils. Geoderma 90, 169–185 (1999)CrossRef Wosten, J.H.M., Lilly, A., Nemes, A., Le Bas, C.: Development and use of a database of hydraulic properties of European soils. Geoderma 90, 169–185 (1999)CrossRef
43.
Zurück zum Zitat Schaap, M.G., Leij, F.J., Van Genuchten, M.T.: Rosetta: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. J. Hydrol. 251, 163–176 (2001)CrossRef Schaap, M.G., Leij, F.J., Van Genuchten, M.T.: Rosetta: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. J. Hydrol. 251, 163–176 (2001)CrossRef
44.
Zurück zum Zitat Wagner, B., Tarnawski, V.R., Hennings, V., Müller, U., Wessolek, G., Plagge, R.: Evaluation of pedo-transfer functions for unsaturated soil hydraulic conductivity using an independent data set. Geoderma 102, 275–297 (2001)CrossRef Wagner, B., Tarnawski, V.R., Hennings, V., Müller, U., Wessolek, G., Plagge, R.: Evaluation of pedo-transfer functions for unsaturated soil hydraulic conductivity using an independent data set. Geoderma 102, 275–297 (2001)CrossRef
45.
Zurück zum Zitat Bouma, J.: Measuring the hydraulic conductivity of soil horizons with continuous macropores. Soil Sci. Soc. Am. J. 46, 438–441 (1983)CrossRef Bouma, J.: Measuring the hydraulic conductivity of soil horizons with continuous macropores. Soil Sci. Soc. Am. J. 46, 438–441 (1983)CrossRef
46.
Zurück zum Zitat Nielsen, D.R., Wendroth, O.: Spatial and Temporal Statistics—Sampling Field Soils and Their Vegetation. Catena, Reiskirchen, Germany, p. 416 (2003) Nielsen, D.R., Wendroth, O.: Spatial and Temporal Statistics—Sampling Field Soils and Their Vegetation. Catena, Reiskirchen, Germany, p. 416 (2003)
47.
Zurück zum Zitat Bormann, H., Klaassen, K.: Seasonal and land use dependent variability of soil hydraulic and soil hydrological properties of two northern german soils. Geoderma 145, 295–302 (2008)CrossRef Bormann, H., Klaassen, K.: Seasonal and land use dependent variability of soil hydraulic and soil hydrological properties of two northern german soils. Geoderma 145, 295–302 (2008)CrossRef
48.
Zurück zum Zitat Hu, W., Shao, M., Wang, Q., She, D.: Effects of measurement method, scale, and landscape features on variability of saturated hydraulic conductivity. J. Hydrol. Eng. 18, 378–386 (2013)CrossRef Hu, W., Shao, M., Wang, Q., She, D.: Effects of measurement method, scale, and landscape features on variability of saturated hydraulic conductivity. J. Hydrol. Eng. 18, 378–386 (2013)CrossRef
49.
Zurück zum Zitat Reynolds, W.D., Elrick, D.E., Young, E.G.: Ring or cylinder infiltrometers (vadose zone). In: Dane, J.H., Topp, G.C. (eds.) Methods of Soil Analysis, Part 4: Physical Methods. Soil Science Society of America Journal Madison, pp. 818–843 (2002) Reynolds, W.D., Elrick, D.E., Young, E.G.: Ring or cylinder infiltrometers (vadose zone). In: Dane, J.H., Topp, G.C. (eds.) Methods of Soil Analysis, Part 4: Physical Methods. Soil Science Society of America Journal Madison, pp. 818–843 (2002)
50.
Zurück zum Zitat Hu, W., Shao, M., Wang, Q., Fan, J., Horton, R.: Temporal changes of soil hydraulic properties under different land uses. Geoderma 149(3–4), 355–366 (2009)CrossRef Hu, W., Shao, M., Wang, Q., Fan, J., Horton, R.: Temporal changes of soil hydraulic properties under different land uses. Geoderma 149(3–4), 355–366 (2009)CrossRef
51.
Zurück zum Zitat Carter, M.R., Gregorich, E.G.: Soil Sampling and Methods of analysis. Canadian Society of Soil Science, Pinawa, Manitoba (2008) Carter, M.R., Gregorich, E.G.: Soil Sampling and Methods of analysis. Canadian Society of Soil Science, Pinawa, Manitoba (2008)
52.
Zurück zum Zitat Rao, M.D., Raghuwanshi, N.S., Singh, R.: Development of a physically based 1d-infiltration model for irrigated soils. Agric. Water Manag. 85(1), 165–174 (2006) Rao, M.D., Raghuwanshi, N.S., Singh, R.: Development of a physically based 1d-infiltration model for irrigated soils. Agric. Water Manag. 85(1), 165–174 (2006)
53.
Zurück zum Zitat Nimmo, J.R., Schmidt, K.M., Perkins, K.S., Stock, J.D.: Rapid measurement of field-saturated hydraulic conductivity for areal characterization. Vadose Zone J. 8(1), 142–149 (2009)CrossRef Nimmo, J.R., Schmidt, K.M., Perkins, K.S., Stock, J.D.: Rapid measurement of field-saturated hydraulic conductivity for areal characterization. Vadose Zone J. 8(1), 142–149 (2009)CrossRef
54.
Zurück zum Zitat Schaap, M.G.: Rosetta Version 1.0. U.S. Salinity Laboratory, ARS, U.S. Department of Agriculture, Riverside, CA. (1999) Schaap, M.G.: Rosetta Version 1.0. U.S. Salinity Laboratory, ARS, U.S. Department of Agriculture, Riverside, CA. (1999)
55.
Zurück zum Zitat Alvarez-Acosta, C., Lascano, R.J., Stroosnijder, L.: Test of the Rosetta pedotransfer function for saturated hydraulic conductivity. Open J. Soil Sci. 2(3), 203–212 (2012)CrossRef Alvarez-Acosta, C., Lascano, R.J., Stroosnijder, L.: Test of the Rosetta pedotransfer function for saturated hydraulic conductivity. Open J. Soil Sci. 2(3), 203–212 (2012)CrossRef
56.
Zurück zum Zitat Schaap, M.G., Van Genuchten, M.T.: A modified Mualem-Van Genuchten formulation. Vadose Zone J. 5, 27–34 (2006)CrossRef Schaap, M.G., Van Genuchten, M.T.: A modified Mualem-Van Genuchten formulation. Vadose Zone J. 5, 27–34 (2006)CrossRef
57.
Zurück zum Zitat Aldabagh, A.S.Y., Beer, C.E.: Field measurement of hydraulic conductivity above a water table with air-entry permeameter. Am. Soc. Agric. Biol. Eng. 14(1), 29–31 (1971) Aldabagh, A.S.Y., Beer, C.E.: Field measurement of hydraulic conductivity above a water table with air-entry permeameter. Am. Soc. Agric. Biol. Eng. 14(1), 29–31 (1971)
58.
Zurück zum Zitat Nemati, M.R., Caron, J., Banton, O., Tardif, P.: Determining air entry value in peat substrates. Soil Sci. Soc. Am. J. 66(2), 367–373 (2002)CrossRef Nemati, M.R., Caron, J., Banton, O., Tardif, P.: Determining air entry value in peat substrates. Soil Sci. Soc. Am. J. 66(2), 367–373 (2002)CrossRef
59.
Zurück zum Zitat Van Den Berg, J.A., Louters, T.: The variability of soil moisture diffusivity of loamy to silty soils on marl, determined by the hot air method. J. Hydrol. 97(3), 235–250 (1988)CrossRef Van Den Berg, J.A., Louters, T.: The variability of soil moisture diffusivity of loamy to silty soils on marl, determined by the hot air method. J. Hydrol. 97(3), 235–250 (1988)CrossRef
60.
Zurück zum Zitat Chapuis, R.P.: Predicting the saturated hydraulic conductivity of sand and gravel using effective diameter and void ratio. Can. Geotech. J. 41(5), 787–795 (2004)CrossRef Chapuis, R.P.: Predicting the saturated hydraulic conductivity of sand and gravel using effective diameter and void ratio. Can. Geotech. J. 41(5), 787–795 (2004)CrossRef
61.
Zurück zum Zitat Park, E., Smucker, A.: Saturated hydraulic conductivity and porosity within macro aggregates modified by tillage. Soil Sci. Soc. Am. J. 69(1), 38–45 (2005)CrossRef Park, E., Smucker, A.: Saturated hydraulic conductivity and porosity within macro aggregates modified by tillage. Soil Sci. Soc. Am. J. 69(1), 38–45 (2005)CrossRef
62.
Zurück zum Zitat Zhou, X., Lin, H.S., White, E.A.: Surface soil hydraulic properties in four soil series under different land uses and their temporal changes. CATENA 73(2), 18–188 (2008)CrossRef Zhou, X., Lin, H.S., White, E.A.: Surface soil hydraulic properties in four soil series under different land uses and their temporal changes. CATENA 73(2), 18–188 (2008)CrossRef
63.
Zurück zum Zitat Matthews, G.P., Laudone, G.M., Gregory, A.S., Bird, N.R.A., Matthews, A.G., Whalley, W.R.: Measurement and simulation of the effect of compaction on the pore structure and saturated hydraulic conductivity of grassland and arable soil. Water Resour. Res. 10.1029/2009WR007720 (2010) Matthews, G.P., Laudone, G.M., Gregory, A.S., Bird, N.R.A., Matthews, A.G., Whalley, W.R.: Measurement and simulation of the effect of compaction on the pore structure and saturated hydraulic conductivity of grassland and arable soil. Water Resour. Res. 10.1029/2009WR007720 (2010)
64.
Zurück zum Zitat Zhang, X.C., Norton, L.D.: Effect of exchangeable mg on saturated hydraulic conductivity disaggregation and clay dispersion of disturbed soils. J. Hydrol. 260(1–4), 194–205 (2002)CrossRef Zhang, X.C., Norton, L.D.: Effect of exchangeable mg on saturated hydraulic conductivity disaggregation and clay dispersion of disturbed soils. J. Hydrol. 260(1–4), 194–205 (2002)CrossRef
65.
Zurück zum Zitat Lado, M., Paz, A., Ben-Hur, M.: Organic matter and aggregate size interactions in saturated hydraulic conductivity. Soil Sci. Soc. Am. J. 68(1), 234–242 (2004)CrossRef Lado, M., Paz, A., Ben-Hur, M.: Organic matter and aggregate size interactions in saturated hydraulic conductivity. Soil Sci. Soc. Am. J. 68(1), 234–242 (2004)CrossRef
66.
Zurück zum Zitat Dusa, A.A.: Effect of bulk density on saturated hydraulic conductivity. J. Eng. Appl. Sci. 5(1), 159–165 (2013) Dusa, A.A.: Effect of bulk density on saturated hydraulic conductivity. J. Eng. Appl. Sci. 5(1), 159–165 (2013)
Metadaten
Titel
Comparison of Saturated Hydraulic Conductivity Methods for Sandy Loam Soil with Different Land Uses
verfasst von
Aminul Islam
D. R. Mailapalli
Anuradha Behera
Copyright-Jahr
2019
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-2044-6_10