Skip to main content
Erschienen in: Neural Processing Letters 2/2019

23.08.2018

Competitive Cross-Entropy Loss: A Study on Training Single-Layer Neural Networks for Solving Nonlinearly Separable Classification Problems

verfasst von: Kamaledin Ghiasi-Shirazi

Erschienen in: Neural Processing Letters | Ausgabe 2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

After Minsky and Papert (Perceptrons, MIT Press, Cambridge, 1969) showed the inability of perceptrons in solving nonlinearly separable problems, for several decades people misinterpreted it as an inherent weakness that is common to all single-layer neural networks. The introduction of the backpropagation algorithm reinforced this misinterpretation as its success in solving nonlinearly separable problems passed through the training of multilayer neural networks. Recently, Conaway and Kurtz (Neural Comput 29(3):861–866, 2017) proposed a single-layer network in which the number of output units for each class is the same as input units and showed that it could solve some nonlinearly separable problems. They used the MSE (Mean Square Error) between the input units and the output units of the actual class as the objective function for training the network. They showed that their method could solve the XOR and M&S’81 problems, but it could not do any better than random guessing on the 3-bit parity problem. In this paper, we use a soft competitive approach to generalize the CE (Cross-Entropy) loss, which is a widely accepted criterion for multiclass classification, to networks that have several output units for each class, calling the resulting measure the CCE (Competitive cross-entropy) loss. In contrast to Conaway and Kurtz (2017), in our method, the number of output units for each class can be chosen arbitrarily. We show that the proposed method can successfully solve the 3-bit parity problem, in addition to the XOR and M&S’81 problems. Furthermore, we perform experiments on several datasets for multiclass classification, comparing a single-layer network trained with the proposed CCE loss against LVQ, linear SVM, a single-layer network trained with the CE loss, and the method of Conaway and Kurtz (2017). The results show that the CCE loss performs remarkably better than existing algorithms for training single-layer neural networks.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
2
Note that while in this experiment the proposed method has 60 output neurons, the number of output neurons for the method of Conaway and Kurtz [4] is 7840.
 
Literatur
1.
Zurück zum Zitat Bagarello F, Cinà M, Gargano F (2017) Projector operators in clustering. Math Methods Appl Sci 40(1):49–59MathSciNetCrossRef Bagarello F, Cinà M, Gargano F (2017) Projector operators in clustering. Math Methods Appl Sci 40(1):49–59MathSciNetCrossRef
2.
Zurück zum Zitat Bishop CM (1995) Neural networks for pattern recognition. Oxford University Press, OxfordMATH Bishop CM (1995) Neural networks for pattern recognition. Oxford University Press, OxfordMATH
3.
Zurück zum Zitat Chan TH, Jia K, Gao S, Lu J, Zeng Z, Ma Y (2015) Pcanet: a simple deep learning baseline for image classification? IEEE Trans Image Process 24(12):5017–5032MathSciNetCrossRef Chan TH, Jia K, Gao S, Lu J, Zeng Z, Ma Y (2015) Pcanet: a simple deep learning baseline for image classification? IEEE Trans Image Process 24(12):5017–5032MathSciNetCrossRef
4.
Zurück zum Zitat Conaway N, Kurtz KJ (2017) Solving nonlinearly separable classifications in a single-layer neural network. Neural Comput 29(3):861–866MathSciNetCrossRef Conaway N, Kurtz KJ (2017) Solving nonlinearly separable classifications in a single-layer neural network. Neural Comput 29(3):861–866MathSciNetCrossRef
5.
Zurück zum Zitat Crammer K, Dekel O, Keshet J, Shalev-Shwartz S, Singer Y (2006) Online passive-aggressive algorithms. J Mach Learn Res 7(Mar):551–585MathSciNetMATH Crammer K, Dekel O, Keshet J, Shalev-Shwartz S, Singer Y (2006) Online passive-aggressive algorithms. J Mach Learn Res 7(Mar):551–585MathSciNetMATH
6.
Zurück zum Zitat Fan RE, Chang KW, Hsieh CJ, Wang XR, Lin CJ (2008) Liblinear: a library for large linear classification. J Mach Learn Res 9(Aug):1871–1874MATH Fan RE, Chang KW, Hsieh CJ, Wang XR, Lin CJ (2008) Liblinear: a library for large linear classification. J Mach Learn Res 9(Aug):1871–1874MATH
7.
Zurück zum Zitat Girshick R, Donahue J, Darrell T, Malik J (2016) Region-based convolutional networks for accurate object detection and segmentation. IEEE Trans Pattern Anal Mach Intell 38(1):142–158CrossRef Girshick R, Donahue J, Darrell T, Malik J (2016) Region-based convolutional networks for accurate object detection and segmentation. IEEE Trans Pattern Anal Mach Intell 38(1):142–158CrossRef
8.
Zurück zum Zitat Kohonen T (1995) Learning vector quantization. In: Self-organizing maps. Springer, pp 175–189 Kohonen T (1995) Learning vector quantization. In: Self-organizing maps. Springer, pp 175–189
9.
Zurück zum Zitat Kohonen T, Hynninen J, Kangas J, Laaksonen J, Torkkola K (1996) Lvq pak: the learning vector quantization program package. Tech. rep., Technical report, Laboratory of Computer and Information Science Rakentajanaukio 2 C, 1991–1992 Kohonen T, Hynninen J, Kangas J, Laaksonen J, Torkkola K (1996) Lvq pak: the learning vector quantization program package. Tech. rep., Technical report, Laboratory of Computer and Information Science Rakentajanaukio 2 C, 1991–1992
10.
Zurück zum Zitat Martín-del Brío B (1996) A dot product neuron for hardware implementation of competitive networks. IEEE Trans Neural Netw 7(2):529–532CrossRef Martín-del Brío B (1996) A dot product neuron for hardware implementation of competitive networks. IEEE Trans Neural Netw 7(2):529–532CrossRef
11.
Zurück zum Zitat Medin DL, Schwanenflugel PJ (1981) Linear separability in classification learning. J Exp Psychol Hum Learn Mem 7(5):355CrossRef Medin DL, Schwanenflugel PJ (1981) Linear separability in classification learning. J Exp Psychol Hum Learn Mem 7(5):355CrossRef
12.
Zurück zum Zitat Mensink T, Verbeek J, Perronnin F, Csurka G (2013) Distance-based image classification: generalizing to new classes at near-zero cost. IEEE Trans Pattern Anal Mach Intell 35(11):2624–2637CrossRef Mensink T, Verbeek J, Perronnin F, Csurka G (2013) Distance-based image classification: generalizing to new classes at near-zero cost. IEEE Trans Pattern Anal Mach Intell 35(11):2624–2637CrossRef
13.
Zurück zum Zitat Minsky M, Papert S (1969) Perceptrons. MIT Press, CambridgeMATH Minsky M, Papert S (1969) Perceptrons. MIT Press, CambridgeMATH
14.
Zurück zum Zitat Rosasco L, De Vito E, Caponnetto A, Piana M, Verri A (2004) Are loss functions all the same? Neural Comput 16(5):1063–1076CrossRef Rosasco L, De Vito E, Caponnetto A, Piana M, Verri A (2004) Are loss functions all the same? Neural Comput 16(5):1063–1076CrossRef
15.
Zurück zum Zitat Rosenblatt F (1958) The perceptron: a probabilistic model for information storage and organization in the brain. Psychol Rev 65(6):386CrossRef Rosenblatt F (1958) The perceptron: a probabilistic model for information storage and organization in the brain. Psychol Rev 65(6):386CrossRef
16.
Zurück zum Zitat Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by back-propagating errors. Nature 323(6088):533–538CrossRef Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by back-propagating errors. Nature 323(6088):533–538CrossRef
17.
18.
Zurück zum Zitat Urcid G, Ritter GX, Iancu L (2004) Single layer morphological perceptron solution to the n-bit parity problem. In: Iberoamerican congress on pattern recognition, Springer, pp 171–178 Urcid G, Ritter GX, Iancu L (2004) Single layer morphological perceptron solution to the n-bit parity problem. In: Iberoamerican congress on pattern recognition, Springer, pp 171–178
19.
Zurück zum Zitat Zhu G, Lin L, Jiang Y (2017) Resolve xor problem in a single layer neural network. In: IWACIII 2017-5th international workshop on advanced computational intelligence and intelligent informatics, Fuji Technology Press Ltd Zhu G, Lin L, Jiang Y (2017) Resolve xor problem in a single layer neural network. In: IWACIII 2017-5th international workshop on advanced computational intelligence and intelligent informatics, Fuji Technology Press Ltd
Metadaten
Titel
Competitive Cross-Entropy Loss: A Study on Training Single-Layer Neural Networks for Solving Nonlinearly Separable Classification Problems
verfasst von
Kamaledin Ghiasi-Shirazi
Publikationsdatum
23.08.2018
Verlag
Springer US
Erschienen in
Neural Processing Letters / Ausgabe 2/2019
Print ISSN: 1370-4621
Elektronische ISSN: 1573-773X
DOI
https://doi.org/10.1007/s11063-018-9906-5

Weitere Artikel der Ausgabe 2/2019

Neural Processing Letters 2/2019 Zur Ausgabe

Neuer Inhalt