Skip to main content
Erschienen in: Rheologica Acta 2/2013

01.02.2013 | Original Contribution

Compression behaviors of magnetorheological fluids under nonuniform magnetic field

verfasst von: Chaoyang Guo, Xinglong Gong, Shouhu Xuan, Lijun Qin, Qifan Yan

Erschienen in: Rheologica Acta | Ausgabe 2/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This work is concerned with an experimental and theoretical study on compression properties of magnetorheological fluids under the nonuniform field. Experimental tests of unidirectional monotonic compression were firstly carried out under constant area operation using a commercial plate–plate magneto-rheometer where the magnetic field radial distribution was nonuniform. Normal forces increased with decreasing of the gap distance, and two regions were found through the normal force versus gap distance curves: elastic deformation and plastic flow. High normal forces could be obtained in the case of high magnetic field, high compression velocity, low initial gap distance, high volume fraction, and high medium viscosity. In the plastic flow region, the normal force with the gap distance could be fitted with a power law relation \(F_{\textrm {N}} \propto h^n\), and the index n was around well in the range (−3, −2). Taking nonuniform magnetic field into account, the theoretical modeling in the plastic flow was then developed to calculate the normal force under compression based on the continuum media theory. Compared to the uniform field, there existed a magnetic field gradient-induced normal force under nonuniform field. Considering the sealing and squeeze strengthening effect, the gap distance-dependent shear yield stress was proposed, and a good correspondence between the theoretical and experimental results was obtained.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Andablo-Reyes E, Hidalgo-Álvarez R, de Vicente J (2011) Controlling friction using magnetic nanofluids. Soft Matter 7:880–883CrossRef Andablo-Reyes E, Hidalgo-Álvarez R, de Vicente J (2011) Controlling friction using magnetic nanofluids. Soft Matter 7:880–883CrossRef
Zurück zum Zitat Ashour O, Rogers CA, Kordonsky W (1996) Magnetorheological fluids: materials, characterization, and devices. J Intell Mater Syst Struct 7:123–130CrossRef Ashour O, Rogers CA, Kordonsky W (1996) Magnetorheological fluids: materials, characterization, and devices. J Intell Mater Syst Struct 7:123–130CrossRef
Zurück zum Zitat Bossis G, Volkova O, Lacis S, Meunier A (2002) Magnetorheology: fluids, structures and rheology. Lecture notes in physics. Springer, Berlin Bossis G, Volkova O, Lacis S, Meunier A (2002) Magnetorheology: fluids, structures and rheology. Lecture notes in physics. Springer, Berlin
Zurück zum Zitat Carlson JD (2005) MR fluids and devices in the real world. Int J Mod Phys B 19:1463–1470CrossRef Carlson JD (2005) MR fluids and devices in the real world. Int J Mod Phys B 19:1463–1470CrossRef
Zurück zum Zitat Carlson JD, Jolly MR (2000) MR fluid, foam and elastomer devices. Mechatronics 10:555–569CrossRef Carlson JD, Jolly MR (2000) MR fluid, foam and elastomer devices. Mechatronics 10:555–569CrossRef
Zurück zum Zitat Chu SH, Lee SJ, Ahn KH (2000) An experimental study on the squeezing flow of electrorheological suspensions. J Rheol 44(1):105–120CrossRef Chu SH, Lee SJ, Ahn KH (2000) An experimental study on the squeezing flow of electrorheological suspensions. J Rheol 44(1):105–120CrossRef
Zurück zum Zitat Covey GH, Stanmore BR (1981) Use of the parallel-plate plastometer for the characterization of viscous fluids with a yield stress. J Non-Newton Fluid Mech 8:249–260CrossRef Covey GH, Stanmore BR (1981) Use of the parallel-plate plastometer for the characterization of viscous fluids with a yield stress. J Non-Newton Fluid Mech 8:249–260CrossRef
Zurück zum Zitat de Vicente J, Klingenberg DJ, Hidalgo-Álvarez R (2011a) Magnetorheological fluids: a review. Soft Matter 7:3701–3710CrossRef de Vicente J, Klingenberg DJ, Hidalgo-Álvarez R (2011a) Magnetorheological fluids: a review. Soft Matter 7:3701–3710CrossRef
Zurück zum Zitat de Vicente J, Ruiz-López JA, Andablo-Reyes E, Segovia-Gutiérrez JP, Hidalgo-Álvarez R (2011b) Squeeze flow magnetorheology. J Rheol 55:753–779CrossRef de Vicente J, Ruiz-López JA, Andablo-Reyes E, Segovia-Gutiérrez JP, Hidalgo-Álvarez R (2011b) Squeeze flow magnetorheology. J Rheol 55:753–779CrossRef
Zurück zum Zitat Engmann J, Servais C, Burbidge AS (2005) Squeeze flow theory and applications to rheometry: a review. J Non-Newton Fluid Mech 132:1–27CrossRef Engmann J, Servais C, Burbidge AS (2005) Squeeze flow theory and applications to rheometry: a review. J Non-Newton Fluid Mech 132:1–27CrossRef
Zurück zum Zitat Farjoud A, Craft M, Burke W, Ahmadian M (2011) Experimental investigation of MR squeeze mounts. J Intell Mater Syst Struct 22:1645–1652CrossRef Farjoud A, Craft M, Burke W, Ahmadian M (2011) Experimental investigation of MR squeeze mounts. J Intell Mater Syst Struct 22:1645–1652CrossRef
Zurück zum Zitat Farjoud A, Mahmoodi N, Ahmadian M (2012) Nonlinear model of squeeze flow of fluids with yield stress using perturbation techniques. Mod Phys Lett B 1150040:26 Farjoud A, Mahmoodi N, Ahmadian M (2012) Nonlinear model of squeeze flow of fluids with yield stress using perturbation techniques. Mod Phys Lett B 1150040:26
Zurück zum Zitat Gartling DK, Phan-Thien N (1984) A numerical simulation of a plastic fluid in a parallel-plate plastometer. J Non-Newton Fluid Mech 14:347–360CrossRef Gartling DK, Phan-Thien N (1984) A numerical simulation of a plastic fluid in a parallel-plate plastometer. J Non-Newton Fluid Mech 14:347–360CrossRef
Zurück zum Zitat Ginder JM, Davis LC (1994) Shear stresses in magnetorheological fluids: role of magnetic saturation. Appl Phys Lett 65(26):3410–3412CrossRef Ginder JM, Davis LC (1994) Shear stresses in magnetorheological fluids: role of magnetic saturation. Appl Phys Lett 65(26):3410–3412CrossRef
Zurück zum Zitat Gong XL, Guo CY, Xuan SH, Liu TX, Zong LH, Peng C (2012) Oscillatory normal forces of magnetorheological fluids. Soft Matter 8:5256–5261CrossRef Gong XL, Guo CY, Xuan SH, Liu TX, Zong LH, Peng C (2012) Oscillatory normal forces of magnetorheological fluids. Soft Matter 8:5256–5261CrossRef
Zurück zum Zitat Gstöttenbauer N, Kainz A, Manhartsgruber B, Scheidl R (2008) Experimental and numerical studies of squeeze mode behaviour of magnetic fluid. Proc IMechE C 222:2395–2407 Gstöttenbauer N, Kainz A, Manhartsgruber B, Scheidl R (2008) Experimental and numerical studies of squeeze mode behaviour of magnetic fluid. Proc IMechE C 222:2395–2407
Zurück zum Zitat Havelka KO, Pialet JW (1996) Electrorheological technology: the future is now. Chemtech 36:36–45 Havelka KO, Pialet JW (1996) Electrorheological technology: the future is now. Chemtech 36:36–45
Zurück zum Zitat Ismail I, Mazlan SA, Zamzuri1 H, Olabi AG (2012) Fluid-particle separation of magnetorheological fluid in squeeze mode. Jpn J Appl Phys 067301:51 Ismail I, Mazlan SA, Zamzuri1 H, Olabi AG (2012) Fluid-particle separation of magnetorheological fluid in squeeze mode. Jpn J Appl Phys 067301:51
Zurück zum Zitat Jonkkari I, Kostamo E, Kostamo J, Syrjala S, Pietola M (2012) Effect of the plate surface characteristics and gap height on yield stresses of a magnetorheological fluid. Smart Mater Struct 21:075030CrossRef Jonkkari I, Kostamo E, Kostamo J, Syrjala S, Pietola M (2012) Effect of the plate surface characteristics and gap height on yield stresses of a magnetorheological fluid. Smart Mater Struct 21:075030CrossRef
Zurück zum Zitat Kulkarni P, Ciocanel C, Vieira SL, Naganathan N (2003) Study of the behavior of MR fluids in squeeze, torsional and valve modes. J Intell Mater Syst Struct 14:99–104CrossRef Kulkarni P, Ciocanel C, Vieira SL, Naganathan N (2003) Study of the behavior of MR fluids in squeeze, torsional and valve modes. J Intell Mater Syst Struct 14:99–104CrossRef
Zurück zum Zitat Laeuger J, Wollny K, Stettin H, Huck S (2005) A new device for the full rheological characterization of magneto-rheological fluids. Int J Mod Phys B 19:1353–1359CrossRef Laeuger J, Wollny K, Stettin H, Huck S (2005) A new device for the full rheological characterization of magneto-rheological fluids. Int J Mod Phys B 19:1353–1359CrossRef
Zurück zum Zitat Laun HM, Schmidt G, Gabriel C (2008a) Reliable plate-plate MRF magnetorheometry based on validated radial magnetic flux density profile simulations. Rheol Acta 47:1049–1059CrossRef Laun HM, Schmidt G, Gabriel C (2008a) Reliable plate-plate MRF magnetorheometry based on validated radial magnetic flux density profile simulations. Rheol Acta 47:1049–1059CrossRef
Zurück zum Zitat Laun HM, Gabriel C, Schmidt G (2008b) Primary and secondary normal stress differences of a magnetorheological fluid (MRF) up to magnetic flux densities of 1 T. J Non-Newton Mech 148:47–56CrossRef Laun HM, Gabriel C, Schmidt G (2008b) Primary and secondary normal stress differences of a magnetorheological fluid (MRF) up to magnetic flux densities of 1 T. J Non-Newton Mech 148:47–56CrossRef
Zurück zum Zitat Lipscomb GG, Denn MM (1984) Flow of Bingham fluids in complex geometries. J Non-Newton Fluid Mech 14:337–346CrossRef Lipscomb GG, Denn MM (1984) Flow of Bingham fluids in complex geometries. J Non-Newton Fluid Mech 14:337–346CrossRef
Zurück zum Zitat López-López MT, Kuzhir P, Durán JDG, Bossis G (2010) Normal stresses in a shear flow of magnetorheological suspensions: viscoelastic versus Maxwell stresses. J Rheol 54:1119–1136CrossRef López-López MT, Kuzhir P, Durán JDG, Bossis G (2010) Normal stresses in a shear flow of magnetorheological suspensions: viscoelastic versus Maxwell stresses. J Rheol 54:1119–1136CrossRef
Zurück zum Zitat Lukkarinen A, Kaski K (1998) Simulation studies of electrorheological fluids under shear, compression, and elongation loading. J Appl Phys 83:1717–1725CrossRef Lukkarinen A, Kaski K (1998) Simulation studies of electrorheological fluids under shear, compression, and elongation loading. J Appl Phys 83:1717–1725CrossRef
Zurück zum Zitat Lynch R, Meng Y, Filisko FE (2006) Compression of dispersions to high stress under electric fields: effects of concentration and dispersing oil. J Colloid Interface Sci 297:322–328CrossRef Lynch R, Meng Y, Filisko FE (2006) Compression of dispersions to high stress under electric fields: effects of concentration and dispersing oil. J Colloid Interface Sci 297:322–328CrossRef
Zurück zum Zitat Mazlan SA, Ekreem NB, Olabi AG (2007) The performance of magnetorheological fluid in squeeze mode. Smart Mater Struct 16:1678–1682CrossRef Mazlan SA, Ekreem NB, Olabi AG (2007) The performance of magnetorheological fluid in squeeze mode. Smart Mater Struct 16:1678–1682CrossRef
Zurück zum Zitat Mazlan SA, Ekreem NB, Olabi AG (2008) An investigation of the behaviour of magnetorheological fluids in compression mode. J Mater Process Technol 201:780–785CrossRef Mazlan SA, Ekreem NB, Olabi AG (2008) An investigation of the behaviour of magnetorheological fluids in compression mode. J Mater Process Technol 201:780–785CrossRef
Zurück zum Zitat McIntyre EC, Filisko FE (2010) Filtration in electrorheological suspensions related to the Peclet number. J Rheol 54(3):591–603CrossRef McIntyre EC, Filisko FE (2010) Filtration in electrorheological suspensions related to the Peclet number. J Rheol 54(3):591–603CrossRef
Zurück zum Zitat Meng Y, Filisko FE (2005) Unidirectional compression of electrorheological fluids in electric fields. J Appl Phys 98:074901CrossRef Meng Y, Filisko FE (2005) Unidirectional compression of electrorheological fluids in electric fields. J Appl Phys 98:074901CrossRef
Zurück zum Zitat Park BJ, Fang FF, Choi HJ (2010) Magnetorheology: materials and application. Soft Matter 6:5246–5253CrossRef Park BJ, Fang FF, Choi HJ (2010) Magnetorheology: materials and application. Soft Matter 6:5246–5253CrossRef
Zurück zum Zitat Rosenweig RE (1997) Ferrohydrodynamics. Dover, New York Rosenweig RE (1997) Ferrohydrodynamics. Dover, New York
Zurück zum Zitat Ruiz-López JA, Hidalgo-Alvarez R, de Vicente J (2012) On the validity of continuous media theory for plastic materials in magnetorheological fluids under slow compression. Rheol Acta 51:595–852CrossRef Ruiz-López JA, Hidalgo-Alvarez R, de Vicente J (2012) On the validity of continuous media theory for plastic materials in magnetorheological fluids under slow compression. Rheol Acta 51:595–852CrossRef
Zurück zum Zitat See H (2003a) Field dependence of the response of a magnetorheological suspension under steady shear flow and squeezing flow. Rheol Acta 42:86–92CrossRef See H (2003a) Field dependence of the response of a magnetorheological suspension under steady shear flow and squeezing flow. Rheol Acta 42:86–92CrossRef
Zurück zum Zitat See H, Tanner R (2003b) Shear rate dependence of the normal force of a magnetorheological suspension. Rheol Acta 42:166–170CrossRef See H, Tanner R (2003b) Shear rate dependence of the normal force of a magnetorheological suspension. Rheol Acta 42:166–170CrossRef
Zurück zum Zitat Shulman ZP, Kordonsky VI, Zaltsgendler EA, Prokhorov IV, Khusid BM, Demchuk SA (1986) Structure, physical properties and dynamics of magnetorheological suspensions. Int J Multiph Flow 12:935–955CrossRef Shulman ZP, Kordonsky VI, Zaltsgendler EA, Prokhorov IV, Khusid BM, Demchuk SA (1986) Structure, physical properties and dynamics of magnetorheological suspensions. Int J Multiph Flow 12:935–955CrossRef
Zurück zum Zitat Scott JR (1929). Trans Inst Rubber Ind 4:347–347 Scott JR (1929). Trans Inst Rubber Ind 4:347–347
Zurück zum Zitat Tang X, Zhang X, Tao R, Rong Y (2000) Structure-enhanced yield stress of magnetorheological fluids. J Appl Phys 87(5):2634–2638CrossRef Tang X, Zhang X, Tao R, Rong Y (2000) Structure-enhanced yield stress of magnetorheological fluids. J Appl Phys 87(5):2634–2638CrossRef
Zurück zum Zitat Tian Y, Meng Y, Mao H, Wen S (2002a) Electrorheological fluid under elongation, compression, and shearing. Phys Rev E 65:031507CrossRef Tian Y, Meng Y, Mao H, Wen S (2002a) Electrorheological fluid under elongation, compression, and shearing. Phys Rev E 65:031507CrossRef
Zurück zum Zitat Tian Y, Meng Y, Mao H, Wen S (2002b) Mechanical property of electrorheological fluid under step compression. J Appl Phys 92:6875–6879CrossRef Tian Y, Meng Y, Mao H, Wen S (2002b) Mechanical property of electrorheological fluid under step compression. J Appl Phys 92:6875–6879CrossRef
Zurück zum Zitat Tian Y, Wen S, Meng Y (2003) Compressions of electrorheological fluids under different initial gap distances. Phys Rev E 67:051501CrossRef Tian Y, Wen S, Meng Y (2003) Compressions of electrorheological fluids under different initial gap distances. Phys Rev E 67:051501CrossRef
Zurück zum Zitat Timoshenko S, Young DH (1968) Elements of strength of materials. D Van Nostrand, Princeton Timoshenko S, Young DH (1968) Elements of strength of materials. D Van Nostrand, Princeton
Zurück zum Zitat Vieira SL, Ciocanel C, Kulkarni P, Agrawal A, Naganathan N (2003) Behaviour of MR fluids in squeeze mode. Int J Veh Des 33:36–49CrossRef Vieira SL, Ciocanel C, Kulkarni P, Agrawal A, Naganathan N (2003) Behaviour of MR fluids in squeeze mode. Int J Veh Des 33:36–49CrossRef
Zurück zum Zitat Wang H, Bi C, Kan J, Gao C, Xiao W (2011) The mechanical property of magnetorheological fluid under compression, elongation, and shearing. J Intell Mater Syst Struct 22:811–816CrossRef Wang H, Bi C, Kan J, Gao C, Xiao W (2011) The mechanical property of magnetorheological fluid under compression, elongation, and shearing. J Intell Mater Syst Struct 22:811–816CrossRef
Zurück zum Zitat Williams EW, Rigby SG, Sproston JL, Stanway R (1993) Electrorheological fluids applied to an automotive engine mount. J Non-Newton Fluid Mech 47:221–238CrossRef Williams EW, Rigby SG, Sproston JL, Stanway R (1993) Electrorheological fluids applied to an automotive engine mount. J Non-Newton Fluid Mech 47:221–238CrossRef
Zurück zum Zitat Zhang XJ, Farjoud A, Ahmadian M, Guo KH, Craft M (2011) Dynamic testing and modeling of an MR squeeze mount. J Intell Mater Syst Struct 22:1717–1728CrossRef Zhang XJ, Farjoud A, Ahmadian M, Guo KH, Craft M (2011) Dynamic testing and modeling of an MR squeeze mount. J Intell Mater Syst Struct 22:1717–1728CrossRef
Zurück zum Zitat Zhang XZ, Gong XL, Zhang PQ, Wang QM (2004) Study on the mechanism of the squeeze-strengthen effect in magnetorheological fluids. J Appl Phys 96(4):2359–2364CrossRef Zhang XZ, Gong XL, Zhang PQ, Wang QM (2004) Study on the mechanism of the squeeze-strengthen effect in magnetorheological fluids. J Appl Phys 96(4):2359–2364CrossRef
Zurück zum Zitat Zhou L, Wen W, Sheng P (1998) Ground states of magnetorheological fluids. Phys Rev Lett 81:1509–1512CrossRef Zhou L, Wen W, Sheng P (1998) Ground states of magnetorheological fluids. Phys Rev Lett 81:1509–1512CrossRef
Metadaten
Titel
Compression behaviors of magnetorheological fluids under nonuniform magnetic field
verfasst von
Chaoyang Guo
Xinglong Gong
Shouhu Xuan
Lijun Qin
Qifan Yan
Publikationsdatum
01.02.2013
Verlag
Springer-Verlag
Erschienen in
Rheologica Acta / Ausgabe 2/2013
Print ISSN: 0035-4511
Elektronische ISSN: 1435-1528
DOI
https://doi.org/10.1007/s00397-013-0678-6

Weitere Artikel der Ausgabe 2/2013

Rheologica Acta 2/2013 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.