Skip to main content
Erschienen in: Neural Computing and Applications 20/2022

17.08.2022 | Review

Computational AI models in VAT photopolymerization: a review, current trends, open issues, and future opportunities

verfasst von: Isha Sachdeva, Sivasubramani Ramesh, Utkarsh Chadha, Hruditha Punugoti, Senthil Kumaran Selvaraj

Erschienen in: Neural Computing and Applications | Ausgabe 20/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Artificial intelligence has played a potential role in present technological advancements. In terms of additive manufacturing or 3D printing techniques, computational AI models and algorithms such as artificial neural network, genetic algorithms, evolutionary algorithms, conventional machine learning techniques like decision tree, Naïve Bayes, K nearest neighbours, support vector machine, and ensemble methods including random forest, etc., has shown incredible results in the past few years. The applications of artificial intelligence in manufacturing are rapidly influencing most of the factors such as process optimization, material property prediction, determining the probability of product failure, real-time monitoring of processes, secure remote customer interactions, feature automation, material tuning, design feature recommendation, precise analysis, quality control/enhancement, or dynamic system modelling. Recent research in the field of VAT photopolymerization indicates that the creation of complex, versatile material systems with adaptable mechanical, chemical, and optical properties via the high-resolution processes includes a variety of 3D printing technologies, like stereolithography, digital illumination processing, and continuous liquid interface production. It has a compelling future in the last industrial revolution, Industry 4.0. This review compiles the evolution, current trends, open issues, and future computational AI models in 3D-printing VAT photopolymerization. Possibilities, prospects, and projects are well discussed to understand the significance of this technology.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Gibson I, Rosen D, & Stucker B (2015). Vat photopolymerization processes. In additive manufacturing technologies (pp. 63–106). Springer, New York, NY. Gibson I, Rosen D, & Stucker B (2015). Vat photopolymerization processes. In additive manufacturing technologies (pp. 63–106). Springer, New York, NY.
2.
Zurück zum Zitat Hyunjin C (2020). A study on the change of manufacturing design process due to the development of AI design and 3D printing. In IOP conference series: Materials Science and Engineering (Vol. 727, No. 1, p. 012010). IOP Publishing. Hyunjin C (2020). A study on the change of manufacturing design process due to the development of AI design and 3D printing. In IOP conference series: Materials Science and Engineering (Vol. 727, No. 1, p. 012010). IOP Publishing.
4.
Zurück zum Zitat Yang J, Chen Y, Huang W, & Li Y (2017). Survey on artificial intelligence for additive manufacturing. In 2017 23rd International Conference on Automation and Computing (ICAC) (pp. 1–6). IEEE. Yang J, Chen Y, Huang W, & Li Y (2017). Survey on artificial intelligence for additive manufacturing. In 2017 23rd International Conference on Automation and Computing (ICAC) (pp. 1–6). IEEE.
5.
Zurück zum Zitat Shen Z, Shang X, Zhao M, Dong X, Xiong G, Wang FY (2019) A learning-based framework for error compensation in 3D printing. IEEE trans cybern 49(11):4042–4050 Shen Z, Shang X, Zhao M, Dong X, Xiong G, Wang FY (2019) A learning-based framework for error compensation in 3D printing. IEEE trans cybern 49(11):4042–4050
6.
Zurück zum Zitat Paraskevoudis K, Karayannis P, Koumoulos EP (2020) Real-time 3D printing remote defect detection (stringing) with computer vision and artificial intelligence. Processes 8(11):1464 Paraskevoudis K, Karayannis P, Koumoulos EP (2020) Real-time 3D printing remote defect detection (stringing) with computer vision and artificial intelligence. Processes 8(11):1464
7.
Zurück zum Zitat Granizo Cuadrado, J. (2020). Design and Manufacturing with Additive Manufacturing Technologies of Electrically Controlled Forearm Prosthesis. Granizo Cuadrado, J. (2020). Design and Manufacturing with Additive Manufacturing Technologies of Electrically Controlled Forearm Prosthesis.
8.
Zurück zum Zitat Bailey, C., Stoyanov, S., Tilford, T., & Tourloukis, G. (2017). Multi-physics models and condition-based monitoring for 3D-Printing of electronic packages. In 2017 18th International conference on thermal, mechanical, and multi-physics simulation and experiments in microelectronics and microsystems (EuroSimE) (pp. 1–8). IEEE. Bailey, C., Stoyanov, S., Tilford, T., & Tourloukis, G. (2017). Multi-physics models and condition-based monitoring for 3D-Printing of electronic packages. In 2017 18th International conference on thermal, mechanical, and multi-physics simulation and experiments in microelectronics and microsystems (EuroSimE) (pp. 1–8). IEEE.
9.
Zurück zum Zitat Jawad, M. S., Bezbradica, M., Crane, M., & Alijel, M. K. (2019). AI Cloud-Based Smart Manufacturing and 3D Printing Techniques for Future In-House Production. In 2019 International Conference on Artificial Intelligence and Advanced Manufacturing (AIAM) (pp. 747–749). IEEE. Jawad, M. S., Bezbradica, M., Crane, M., & Alijel, M. K. (2019). AI Cloud-Based Smart Manufacturing and 3D Printing Techniques for Future In-House Production. In 2019 International Conference on Artificial Intelligence and Advanced Manufacturing (AIAM) (pp. 747–749). IEEE.
10.
Zurück zum Zitat Makagonov, N. G., Blinova, E. M., & Bezukladnikov, I. I. (2017). development of visual inspection systems for 3D printing. In 2017 IEEE conference of Russian young researchers in electrical and electronic engineering (EIConRus) (pp. 1463–1465). IEEE. Makagonov, N. G., Blinova, E. M., & Bezukladnikov, I. I. (2017). development of visual inspection systems for 3D printing. In 2017 IEEE conference of Russian young researchers in electrical and electronic engineering (EIConRus) (pp. 1463–1465). IEEE.
11.
Zurück zum Zitat He, H. (2019). Constrained Surface Design for Projection Stereolithography (Doctoral dissertation, University of Illinois at Chicago). He, H. (2019). Constrained Surface Design for Projection Stereolithography (Doctoral dissertation, University of Illinois at Chicago).
12.
Zurück zum Zitat Yu C, Schimelman J, Wang P, Miller KL, Ma X, You S, Chen S (2020) Photopolymerizable biomaterials and light-based 3D printing strategies for biomedical applications. Chem Rev 120(19):10695–10743 Yu C, Schimelman J, Wang P, Miller KL, Ma X, You S, Chen S (2020) Photopolymerizable biomaterials and light-based 3D printing strategies for biomedical applications. Chem Rev 120(19):10695–10743
13.
Zurück zum Zitat Hea, H., Yangc, Y., & Pana, Y. Machine Learning For Modeling Of Printing Speed In Continuous Projection Stereolithography. Hea, H., Yangc, Y., & Pana, Y. Machine Learning For Modeling Of Printing Speed In Continuous Projection Stereolithography.
14.
Zurück zum Zitat Attaran M (2017) The rise of 3-D printing: the advantages of additive manufacturing over traditional manufacturing. Bus Horiz 60(5):677–688 Attaran M (2017) The rise of 3-D printing: the advantages of additive manufacturing over traditional manufacturing. Bus Horiz 60(5):677–688
15.
Zurück zum Zitat Mehrpouya M, Dehghanghadikolaei A, Fotovvati B, Vosooghnia A, Emamian SS, Gisario A (2019) The potential of additive manufacturing in the smart factory industrial 4.0: a review. Appl Sci 9(18):3865 Mehrpouya M, Dehghanghadikolaei A, Fotovvati B, Vosooghnia A, Emamian SS, Gisario A (2019) The potential of additive manufacturing in the smart factory industrial 4.0: a review. Appl Sci 9(18):3865
16.
Zurück zum Zitat Jiang J, Ma Y (2020) Path planning strategies to optimize accuracy, quality, build time and material use in additive manufacturing: a review. Micromachines 11(7):633 Jiang J, Ma Y (2020) Path planning strategies to optimize accuracy, quality, build time and material use in additive manufacturing: a review. Micromachines 11(7):633
17.
Zurück zum Zitat Pushparaj, M., Ranganathan, R., & Ganesan, S. (2019). Design and development of drug delivery system for chronic wound using additive manufacturing. In 3D Printing and Additive Manufacturing Technologies (pp. 119–126). Springer, Singapore. Pushparaj, M., Ranganathan, R., & Ganesan, S. (2019). Design and development of drug delivery system for chronic wound using additive manufacturing. In 3D Printing and Additive Manufacturing Technologies (pp. 119–126). Springer, Singapore.
18.
Zurück zum Zitat Bose S, Ke D, Sahasrabudhe H, Bandyopadhyay A (2018) Additive manufacturing of biomaterials. Prog Mater Sci 93:45–111 Bose S, Ke D, Sahasrabudhe H, Bandyopadhyay A (2018) Additive manufacturing of biomaterials. Prog Mater Sci 93:45–111
19.
Zurück zum Zitat Raigar J, Sharma VS, Srivastava S, Chand R, Singh J (2020) A decision support system for the selection of an additive manufacturing process using a new hybrid MCDM technique. Sādhanā 45(1):1–14 Raigar J, Sharma VS, Srivastava S, Chand R, Singh J (2020) A decision support system for the selection of an additive manufacturing process using a new hybrid MCDM technique. Sādhanā 45(1):1–14
20.
Zurück zum Zitat Qin Y, Qi Q, Scott PJ, Jiang X (2020) An additive manufacturing process selection approach based on fuzzy Archimedean weighted power bonferroni aggregation operators. Robot Comput Integr Manuf 64:101926 Qin Y, Qi Q, Scott PJ, Jiang X (2020) An additive manufacturing process selection approach based on fuzzy Archimedean weighted power bonferroni aggregation operators. Robot Comput Integr Manuf 64:101926
21.
Zurück zum Zitat Pagac M, Hajnys J, Ma QP, Jancar L, Jansa J, Stefek P, Mesicek J (2021) A review of vat photopolymerization technology: materials, applications, challenges, and future trends of 3D printing. Polymers 13(4):598 Pagac M, Hajnys J, Ma QP, Jancar L, Jansa J, Stefek P, Mesicek J (2021) A review of vat photopolymerization technology: materials, applications, challenges, and future trends of 3D printing. Polymers 13(4):598
22.
Zurück zum Zitat Astm I (2015) ASTM52900-15 standard terminology for additive manufacturing—general principles—terminology. ASTM Int West Conshohocken PA 3(4):5 Astm I (2015) ASTM52900-15 standard terminology for additive manufacturing—general principles—terminology. ASTM Int West Conshohocken PA 3(4):5
23.
Zurück zum Zitat Schtickzelle, N., Laurent, E., & Morel-Journel, T. (2020). 3D printing for ecology and evolution: a hands-on guide to turn an idea into reality. Schtickzelle, N., Laurent, E., & Morel-Journel, T. (2020). 3D printing for ecology and evolution: a hands-on guide to turn an idea into reality.
24.
Zurück zum Zitat Lee L, Burnett AM, Panos JG, Paudel P, Keys D, Ansari HM, Yu M (2020) 3-D printed spectacles: potential, challenges and the future. Clin Exp Optom 103(5):590–596 Lee L, Burnett AM, Panos JG, Paudel P, Keys D, Ansari HM, Yu M (2020) 3-D printed spectacles: potential, challenges and the future. Clin Exp Optom 103(5):590–596
25.
Zurück zum Zitat Wang C, Li S, Zeng D, Zhu X (2021) Quantification and compensation of thermal distortion in additive manufacturing: a computational statistics approach. Comput Methods Appl Mech Eng 375:113611MathSciNetMATH Wang C, Li S, Zeng D, Zhu X (2021) Quantification and compensation of thermal distortion in additive manufacturing: a computational statistics approach. Comput Methods Appl Mech Eng 375:113611MathSciNetMATH
32.
Zurück zum Zitat Fiedor P, Ortyl J (2020) A new approach to micromachining: high-precision and innovative additive manufacturing solutions based on photopolymerization technology. Materials 13(13):2951 Fiedor P, Ortyl J (2020) A new approach to micromachining: high-precision and innovative additive manufacturing solutions based on photopolymerization technology. Materials 13(13):2951
33.
Zurück zum Zitat Tumbleston JR, Shirvanyants D, Ermoshkin N, Janusziewicz R, Johnson AR, Kelly D, DeSimone JM (2015) Continuous liquid interface production of 3D objects. Science 347(6228):1349–1352 Tumbleston JR, Shirvanyants D, Ermoshkin N, Janusziewicz R, Johnson AR, Kelly D, DeSimone JM (2015) Continuous liquid interface production of 3D objects. Science 347(6228):1349–1352
34.
Zurück zum Zitat Huang B, Hu R, Xue Z, Zhao J, Li Q, Xia T, Lu C (2020) Continuous liquid interface production of alginate/polyacrylamide hydrogels with supramolecular shape memory properties. Carbohyd Polym 231:115736 Huang B, Hu R, Xue Z, Zhao J, Li Q, Xia T, Lu C (2020) Continuous liquid interface production of alginate/polyacrylamide hydrogels with supramolecular shape memory properties. Carbohyd Polym 231:115736
35.
Zurück zum Zitat Redwood, B., Schöffer, F., & Garret, B. (2017). The 3D printing handbook: technologies, design and applications. 3D Hubs. Redwood, B., Schöffer, F., & Garret, B. (2017). The 3D printing handbook: technologies, design and applications. 3D Hubs.
36.
Zurück zum Zitat Bártolo, P. J. (Ed.). (2011). Stereolithography: materials, processes and applications. Springer Science & Business Media. Bártolo, P. J. (Ed.). (2011). Stereolithography: materials, processes and applications. Springer Science & Business Media.
37.
Zurück zum Zitat Martinez, P. R., Basit, A. W., & Gaisford, S. (2018). The history, developments and opportunities of stereolithography. In 3D Printing of Pharmaceuticals (pp. 55–79). Springer, Cham. Martinez, P. R., Basit, A. W., & Gaisford, S. (2018). The history, developments and opportunities of stereolithography. In 3D Printing of Pharmaceuticals (pp. 55–79). Springer, Cham.
38.
Zurück zum Zitat Balakrishnan HK, Badar F, Doeven EH, Novak JI, Merenda A, Dumée LF, Guijt RM (2020) 3D printing: an alternative microfabrication approach with unprecedented opportunities in design. Anal Chem 93(1):350–366 Balakrishnan HK, Badar F, Doeven EH, Novak JI, Merenda A, Dumée LF, Guijt RM (2020) 3D printing: an alternative microfabrication approach with unprecedented opportunities in design. Anal Chem 93(1):350–366
39.
Zurück zum Zitat Bagheri A, Jin J (2019) Photopolymerization in 3D printing. ACS Appl Polym Mater 1(4):593–611 Bagheri A, Jin J (2019) Photopolymerization in 3D printing. ACS Appl Polym Mater 1(4):593–611
41.
Zurück zum Zitat Khadilkar A, Wang J, Rai R (2019) Deep learning–based stress prediction for bottom-up SLA 3D printing process. Int J Adv Manuf Technol 102(5):2555–2569 Khadilkar A, Wang J, Rai R (2019) Deep learning–based stress prediction for bottom-up SLA 3D printing process. Int J Adv Manuf Technol 102(5):2555–2569
42.
Zurück zum Zitat Janusziewicz R, Tumbleston JR, Quintanilla AL, Mecham SJ, DeSimone JM (2016) Layerless fabrication with continuous liquid interface production. Proc Natl Acad Sci 113(42):11703–11708 Janusziewicz R, Tumbleston JR, Quintanilla AL, Mecham SJ, DeSimone JM (2016) Layerless fabrication with continuous liquid interface production. Proc Natl Acad Sci 113(42):11703–11708
43.
Zurück zum Zitat Walker DA, Hedrick JL, Mirkin CA (2019) Rapid, large-volume, thermally controlled 3D printing using a mobile liquid interface. Science 366(6463):360–364 Walker DA, Hedrick JL, Mirkin CA (2019) Rapid, large-volume, thermally controlled 3D printing using a mobile liquid interface. Science 366(6463):360–364
45.
Zurück zum Zitat Hu G, Cao Z, Hopkins M, Hayes C, Daly M, Zhou H, Devine DM (2019) Optimizing the hardness of SLA printed objects by using the neural network and genetic algorithm. Procedia Manuf 38:117–124 Hu G, Cao Z, Hopkins M, Hayes C, Daly M, Zhou H, Devine DM (2019) Optimizing the hardness of SLA printed objects by using the neural network and genetic algorithm. Procedia Manuf 38:117–124
46.
Zurück zum Zitat Yu, C., & Jiang, J. (2020). A perspective on using machine learning in 3D bioprinting. International Journal of Bioprinting, 6(1). Yu, C., & Jiang, J. (2020). A perspective on using machine learning in 3D bioprinting. International Journal of Bioprinting, 6(1).
47.
Zurück zum Zitat Delli U, Chang S (2018) Automated process monitoring in 3D printing using supervised machine learning. Procedia Manuf 26:865–870 Delli U, Chang S (2018) Automated process monitoring in 3D printing using supervised machine learning. Procedia Manuf 26:865–870
48.
Zurück zum Zitat Barrios JM, Romero PE (2019) Decision tree methods for predicting surface roughness in fused deposition modeling parts. Materials 12(16):2574 Barrios JM, Romero PE (2019) Decision tree methods for predicting surface roughness in fused deposition modeling parts. Materials 12(16):2574
49.
Zurück zum Zitat Xu, H., Liu, Q., Casillas, J., Mcanally, M., Mubtasim, N., Gollahon, L. S., ... & Xu, C. (2020). Prediction of cell viability in dynamic optical projection stereolithography-based bioprinting using machine learning. Journal of Intelligent Manufacturing, 1–11. Xu, H., Liu, Q., Casillas, J., Mcanally, M., Mubtasim, N., Gollahon, L. S., ... & Xu, C. (2020). Prediction of cell viability in dynamic optical projection stereolithography-based bioprinting using machine learning. Journal of Intelligent Manufacturing, 1–11.
50.
Zurück zum Zitat Li Z, Zhang Z, Shi J, Wu D (2019) Prediction of surface roughness in extrusion-based additive manufacturing with machine learning. Robot Comput Integr Manuf 57:488–495 Li Z, Zhang Z, Shi J, Wu D (2019) Prediction of surface roughness in extrusion-based additive manufacturing with machine learning. Robot Comput Integr Manuf 57:488–495
51.
Zurück zum Zitat Jin, S., Iquebal, A., Bukkapatnam, S., Gaynor, A., & Ding, Y. (2020). A Gaussian Process Model-Guided Surface Polishing Process in Additive Manufacturing. Journal of Manufacturing Science and Engineering, 142(1). Jin, S., Iquebal, A., Bukkapatnam, S., Gaynor, A., & Ding, Y. (2020). A Gaussian Process Model-Guided Surface Polishing Process in Additive Manufacturing. Journal of Manufacturing Science and Engineering, 142(1).
52.
Zurück zum Zitat Tapia G, Elwany AH, Sang H (2016) Prediction of porosity in metal-based additive manufacturing using spatial Gaussian process models. Addit Manuf 12:282–290 Tapia G, Elwany AH, Sang H (2016) Prediction of porosity in metal-based additive manufacturing using spatial Gaussian process models. Addit Manuf 12:282–290
53.
Zurück zum Zitat Bacha, A., Sabry, A. H., & Benhra, J. (2019). Fault Diagnosis in the Field of Additive Manufacturing (3D Printing) Using Bayesian Networks. International Journal of Online & Biomedical Engineering, 15(3). Bacha, A., Sabry, A. H., & Benhra, J. (2019). Fault Diagnosis in the Field of Additive Manufacturing (3D Printing) Using Bayesian Networks. International Journal of Online & Biomedical Engineering, 15(3).
54.
Zurück zum Zitat Wu, M., Phoha, V. V., Moon, Y. B., & Belman, A. K. (2016, November). Detecting malicious defects in 3d printing process using machine learning and image classification. In ASME International Mechanical Engineering Congress and Exposition (Vol. 50688, p. V014T07A004). American Society of Mechanical Engineers. Wu, M., Phoha, V. V., Moon, Y. B., & Belman, A. K. (2016, November). Detecting malicious defects in 3d printing process using machine learning and image classification. In ASME International Mechanical Engineering Congress and Exposition (Vol. 50688, p. V014T07A004). American Society of Mechanical Engineers.
55.
Zurück zum Zitat Leirmo TS, Martinsen K (2019) Evolutionary algorithms in additive manufacturing systems: discussion of future prospects. Procedia CIRP 81:671–676 Leirmo TS, Martinsen K (2019) Evolutionary algorithms in additive manufacturing systems: discussion of future prospects. Procedia CIRP 81:671–676
56.
Zurück zum Zitat Hussein AF, Al-Hashimi AF, Habbash QA (2020) 3D printing in biomedical applications: current technologies, trends, and future directions. J Global Sci Res 8:735–753 Hussein AF, Al-Hashimi AF, Habbash QA (2020) 3D printing in biomedical applications: current technologies, trends, and future directions. J Global Sci Res 8:735–753
57.
Zurück zum Zitat Tijing LD, Dizon JRC, Ibrahim I, Nisay ARN, Shon HK, Advincula RC (2020) 3D printing for membrane separation, desalination and water treatment. Appl Mater Today 18:100486 Tijing LD, Dizon JRC, Ibrahim I, Nisay ARN, Shon HK, Advincula RC (2020) 3D printing for membrane separation, desalination and water treatment. Appl Mater Today 18:100486
58.
Zurück zum Zitat Islam R, Sadhukhan P (2020) An insight of 3d printing technology in pharmaceutical development and application: an updated review. Current Trends in Pharm Res 7(2):56–80 Islam R, Sadhukhan P (2020) An insight of 3d printing technology in pharmaceutical development and application: an updated review. Current Trends in Pharm Res 7(2):56–80
59.
Zurück zum Zitat Xu, X., Awad, A., Martinez, P. R., Gaisford, S., Goyanes, A., & Basit, A. W. (2020). Vat photopolymerization 3D printing for advanced drug delivery and medical device applications. Journal of Controlled Release. Xu, X., Awad, A., Martinez, P. R., Gaisford, S., Goyanes, A., & Basit, A. W. (2020). Vat photopolymerization 3D printing for advanced drug delivery and medical device applications. Journal of Controlled Release.
60.
Zurück zum Zitat Trenfield SJ, Awad A, Madla CM, Hatton GB, Firth J, Goyanes A, Basit AW (2019) Shaping the future: recent advances of 3D printing in drug delivery and healthcare. Expert Opin Drug Deliv 16(10):1081–1094 Trenfield SJ, Awad A, Madla CM, Hatton GB, Firth J, Goyanes A, Basit AW (2019) Shaping the future: recent advances of 3D printing in drug delivery and healthcare. Expert Opin Drug Deliv 16(10):1081–1094
61.
Zurück zum Zitat Ng WL, Chan A, Ong YS, Chua CK (2020) Deep learning for fabrication and maturation of 3D bioprinted tissues and organs. Virtual and Phys Prototyp 15(3):340–358 Ng WL, Chan A, Ong YS, Chua CK (2020) Deep learning for fabrication and maturation of 3D bioprinted tissues and organs. Virtual and Phys Prototyp 15(3):340–358
62.
Zurück zum Zitat Bloomquist CJ, Mecham MB, Paradzinsky MD, Janusziewicz R, Warner SB, Luft JC, DeSimone JM (2018) Controlling release from 3D printed medical devices using CLIP and drug-loaded liquid resins. J Control Release 278:9–23 Bloomquist CJ, Mecham MB, Paradzinsky MD, Janusziewicz R, Warner SB, Luft JC, DeSimone JM (2018) Controlling release from 3D printed medical devices using CLIP and drug-loaded liquid resins. J Control Release 278:9–23
63.
Zurück zum Zitat Banks J (2013) Adding value in additive manufacturing: researchers in the United Kingdom and Europe look to 3D printing for customization. IEEE Pulse 4(6):22–26 Banks J (2013) Adding value in additive manufacturing: researchers in the United Kingdom and Europe look to 3D printing for customization. IEEE Pulse 4(6):22–26
64.
Zurück zum Zitat Kuang X, Roach DJ, Wu J, Hamel CM, Ding Z, Wang T, Qi HJ (2019) Advances in 4D printing: materials and applications. Adv Func Mater 29(2):1805290 Kuang X, Roach DJ, Wu J, Hamel CM, Ding Z, Wang T, Qi HJ (2019) Advances in 4D printing: materials and applications. Adv Func Mater 29(2):1805290
65.
Zurück zum Zitat Mahmood MA, Visan AI, Ristoscu C, Mihailescu IN (2021) Artificial neural network algorithms for 3D printing. Materials 14(1):163 Mahmood MA, Visan AI, Ristoscu C, Mihailescu IN (2021) Artificial neural network algorithms for 3D printing. Materials 14(1):163
66.
Zurück zum Zitat Alifui-Segbaya F, Varma S, Lieschke GJ, George R (2017) Biocompatibility of photopolymers in 3D printing. 3D Print Addit Manuf 4(4):185–191 Alifui-Segbaya F, Varma S, Lieschke GJ, George R (2017) Biocompatibility of photopolymers in 3D printing. 3D Print Addit Manuf 4(4):185–191
67.
Zurück zum Zitat Dutta, S., Dasgupta, S., & Chimata, G. (2020). Engineering and Economic Aspects of Additive Manufacturing in Energy Related Industries. Dutta, S., Dasgupta, S., & Chimata, G. (2020). Engineering and Economic Aspects of Additive Manufacturing in Energy Related Industries.
68.
Zurück zum Zitat Ng WL, Lee JM, Zhou M, Chen YW, Lee KXA, Yeong WY, Shen YF (2020) Vat polymerization-based bioprinting—process, materials, applications and regulatory challenges. Biofabrication 12(2):022001 Ng WL, Lee JM, Zhou M, Chen YW, Lee KXA, Yeong WY, Shen YF (2020) Vat polymerization-based bioprinting—process, materials, applications and regulatory challenges. Biofabrication 12(2):022001
69.
Zurück zum Zitat Tsioukas, V., Karolos, I. A., Tsoulfas, G., Suri, J. S., & Pikridas, C. (2020). The long and winding road from CT and MRI images to 3D models. In 3D Printing: Applications in Medicine and Surgery (pp. 7–20). Elsevier. Tsioukas, V., Karolos, I. A., Tsoulfas, G., Suri, J. S., & Pikridas, C. (2020). The long and winding road from CT and MRI images to 3D models. In 3D Printing: Applications in Medicine and Surgery (pp. 7–20). Elsevier.
70.
Zurück zum Zitat Garot, C., Bettega, G., & Picart, C. (2020). Additive manufacturing of material Scaffolds for bone regeneration: toward application in the clinics. Advanced Functional Materials, 2006967. Garot, C., Bettega, G., & Picart, C. (2020). Additive manufacturing of material Scaffolds for bone regeneration: toward application in the clinics. Advanced Functional Materials, 2006967.
71.
Zurück zum Zitat Yap, Y. L., Sing, S. L., & Yeong, W. Y. (2020). A review of 3D printing processes and materials for soft robotics. Rapid Prototyping Journal. Yap, Y. L., Sing, S. L., & Yeong, W. Y. (2020). A review of 3D printing processes and materials for soft robotics. Rapid Prototyping Journal.
72.
Zurück zum Zitat Dhage, P. (2020). Predicting Porosity and Microstructure of 3D Printed Part Using Machine Learning. Dhage, P. (2020). Predicting Porosity and Microstructure of 3D Printed Part Using Machine Learning.
73.
Zurück zum Zitat Ahlawat, A. Thermoplastic Composite Waste Recycling and Utilization of Materials for Sustainable 3D Printing. algorithms, 62, 67. Ahlawat, A. Thermoplastic Composite Waste Recycling and Utilization of Materials for Sustainable 3D Printing. algorithms, 62, 67.
74.
Zurück zum Zitat Butt J (2020) Exploring the interrelationship between additive manufacturing and Industry 4.0. Designs 4(2):13MathSciNet Butt J (2020) Exploring the interrelationship between additive manufacturing and Industry 4.0. Designs 4(2):13MathSciNet
75.
Zurück zum Zitat Mancilla-De-La-Cruz J, Rodriguez-Salvador M, Ruiz-Cantu L (2020) The next pharmaceutical path: determining technology evolution in drug delivery products fabricated with additive manufacturing. Фopcaйт 14(3eng):55–70 Mancilla-De-La-Cruz J, Rodriguez-Salvador M, Ruiz-Cantu L (2020) The next pharmaceutical path: determining technology evolution in drug delivery products fabricated with additive manufacturing. Фopcaйт 14(3eng):55–70
76.
Zurück zum Zitat Molnar I, Michal D, Simon S, Morovic L, Kostal P (2019) Design and manufacture of life size human model using material extrusion and vat photopolymerization additive processes. In MATEC Web Conf 299:01010 Molnar I, Michal D, Simon S, Morovic L, Kostal P (2019) Design and manufacture of life size human model using material extrusion and vat photopolymerization additive processes. In MATEC Web Conf 299:01010
77.
Zurück zum Zitat Rojek I, Mikołajewski D, Dostatni E, Macko M (2020) AI-optimized technological aspects of the material used in 3D printing processes for selected medical applications. Materials 13(23):5437 Rojek I, Mikołajewski D, Dostatni E, Macko M (2020) AI-optimized technological aspects of the material used in 3D printing processes for selected medical applications. Materials 13(23):5437
78.
Zurück zum Zitat Banadaki, Y., Razaviarab, N., Fekrmandi, H., & Sharifi, S. (2020). Toward enabling a reliable quality monitoring system for additive manufacturing process using deep convolutional neural networks. arXiv preprint arXiv:2003.08749. Banadaki, Y., Razaviarab, N., Fekrmandi, H., & Sharifi, S. (2020). Toward enabling a reliable quality monitoring system for additive manufacturing process using deep convolutional neural networks. arXiv preprint arXiv:​2003.​08749.
79.
Zurück zum Zitat Elbadawi M, Castro BM, Gavins FK, Ong JJ, Gaisford S, Pérez G, Goyanes A (2020) M3DISEEN: a novel machine learning approach for predicting the 3D printability of medicines. Int J Pharm 590:119837 Elbadawi M, Castro BM, Gavins FK, Ong JJ, Gaisford S, Pérez G, Goyanes A (2020) M3DISEEN: a novel machine learning approach for predicting the 3D printability of medicines. Int J Pharm 590:119837
80.
Zurück zum Zitat Tan K (2018) The framework of combining artificial intelligence and construction 3D printing in civil engineering. In MATEC web conf 206:01008 Tan K (2018) The framework of combining artificial intelligence and construction 3D printing in civil engineering. In MATEC web conf 206:01008
81.
Zurück zum Zitat Rodríguez-Espíndola O, Chowdhury S, Beltagui A, Albores P (2020) The potential of emergent disruptive technologies for humanitarian supply chains: the integration of blockchain, artificial intelligence and 3D printing. Int J Prod Res 58(15):4610–4630 Rodríguez-Espíndola O, Chowdhury S, Beltagui A, Albores P (2020) The potential of emergent disruptive technologies for humanitarian supply chains: the integration of blockchain, artificial intelligence and 3D printing. Int J Prod Res 58(15):4610–4630
82.
Zurück zum Zitat Ghilan A, Chiriac AP, Nita LE, Rusu AG, Neamtu I, Chiriac VM (2020) Trends in 3D printing processes for biomedical field: opportunities and challenges. J Polym Environ 28(5):1345–1367 Ghilan A, Chiriac AP, Nita LE, Rusu AG, Neamtu I, Chiriac VM (2020) Trends in 3D printing processes for biomedical field: opportunities and challenges. J Polym Environ 28(5):1345–1367
83.
Zurück zum Zitat Huang Q, Wang Y, Lyu M, Lin W (2020) Shape deviation generator—a convolution framework for learning and predicting 3-D printing shape accuracy. IEEE Trans Autom Sci Eng 17(3):1486–1500 Huang Q, Wang Y, Lyu M, Lin W (2020) Shape deviation generator—a convolution framework for learning and predicting 3-D printing shape accuracy. IEEE Trans Autom Sci Eng 17(3):1486–1500
84.
Zurück zum Zitat Noguerol TM, Paulano-Godino F, Martín-Valdivia MT, Menias CO, Luna A (2019) Strengths, weaknesses, opportunities, and threats analysis of artificial intelligence and machine learning applications in radiology. J Am Coll Radiol 16(9):1239–1247 Noguerol TM, Paulano-Godino F, Martín-Valdivia MT, Menias CO, Luna A (2019) Strengths, weaknesses, opportunities, and threats analysis of artificial intelligence and machine learning applications in radiology. J Am Coll Radiol 16(9):1239–1247
85.
Zurück zum Zitat Wang DD, Qian Z, Vukicevic M, Engelhardt S, Kheradvar A, Zhang C, Vannan MA (2020) 3D printing, computational modeling, and artificial intelligence for structural heart disease. JACC Cardiovas Imaging 14(1):41–60 Wang DD, Qian Z, Vukicevic M, Engelhardt S, Kheradvar A, Zhang C, Vannan MA (2020) 3D printing, computational modeling, and artificial intelligence for structural heart disease. JACC Cardiovas Imaging 14(1):41–60
86.
Zurück zum Zitat Huff TJ, Ludwig PE, Zuniga JM (2018) The potential for machine learning algorithms to improve and reduce the cost of 3-dimensional printing for surgical planning. Expert Rev Med Devices 15(5):349–356 Huff TJ, Ludwig PE, Zuniga JM (2018) The potential for machine learning algorithms to improve and reduce the cost of 3-dimensional printing for surgical planning. Expert Rev Med Devices 15(5):349–356
87.
Zurück zum Zitat Conev A, Litsa EE, Perez MR, Diba M, Mikos AG, Kavraki LE (2020) Machine learning-guided three-dimensional printing of tissue engineering scaffolds. Tissue Eng Part A 26(23):1359–1368 Conev A, Litsa EE, Perez MR, Diba M, Mikos AG, Kavraki LE (2020) Machine learning-guided three-dimensional printing of tissue engineering scaffolds. Tissue Eng Part A 26(23):1359–1368
88.
Zurück zum Zitat Zhu, Z., Ng, D. W. H., Park, H. S., & McAlpine, M. C. (2020). 3D-printed multifunctional materials enabled by artificial-intelligence-assisted fabrication technologies. Nature Reviews Materials, 1–21. Zhu, Z., Ng, D. W. H., Park, H. S., & McAlpine, M. C. (2020). 3D-printed multifunctional materials enabled by artificial-intelligence-assisted fabrication technologies. Nature Reviews Materials, 1–21.
89.
Zurück zum Zitat Chen, D., Luo, D., Xu, W., Luo, C., Shen, L., Yan, X., & Wang, T. (2019). Re-perceive 3D printing with Artificial Intelligence. Chen, D., Luo, D., Xu, W., Luo, C., Shen, L., Yan, X., & Wang, T. (2019). Re-perceive 3D printing with Artificial Intelligence.
90.
Zurück zum Zitat Elhoone H, Zhang T, Anwar M, Desai S (2020) Cyber-based design for additive manufacturing using artificial neural networks for Industry 4.0. Int J Prod Res 58(9):2841–2861 Elhoone H, Zhang T, Anwar M, Desai S (2020) Cyber-based design for additive manufacturing using artificial neural networks for Industry 4.0. Int J Prod Res 58(9):2841–2861
92.
Zurück zum Zitat Baumann FW, Sekulla A, Hassler M, Himpel B, Pfeil M (2018) Trends of machine learning in additive manufacturing. Int J Rapid Manuf 7(4):310–336 Baumann FW, Sekulla A, Hassler M, Himpel B, Pfeil M (2018) Trends of machine learning in additive manufacturing. Int J Rapid Manuf 7(4):310–336
93.
Zurück zum Zitat Opait G (2019) The statistical force in the worldwide performance of the healthcare applications, concerning 3D printing and the artificial intelligence. Econ Appl Inform 1:174–188 Opait G (2019) The statistical force in the worldwide performance of the healthcare applications, concerning 3D printing and the artificial intelligence. Econ Appl Inform 1:174–188
94.
Zurück zum Zitat Goh, G. D., Sing, S. L., & Yeong, W. Y. (2020). A review on machine learning in 3D printing: Applications, potential, and challenges. Artificial Intelligence Review, 1–32. Goh, G. D., Sing, S. L., & Yeong, W. Y. (2020). A review on machine learning in 3D printing: Applications, potential, and challenges. Artificial Intelligence Review, 1–32.
95.
Zurück zum Zitat Wang Y, Zheng P, Peng T, Yang H, Zou J (2020) Smart additive manufacturing: Current artificial intelligence-enabled methods and future perspectives. Sc China Technol Sci 63:1600–1611 Wang Y, Zheng P, Peng T, Yang H, Zou J (2020) Smart additive manufacturing: Current artificial intelligence-enabled methods and future perspectives. Sc China Technol Sci 63:1600–1611
96.
Zurück zum Zitat Li BH, Hou BC, Yu WT, Lu XB, Yang CW (2017) Applications of artificial intelligence in intelligent manufacturing: a review. Front Inf Technol Electron Eng 18(1):86–96 Li BH, Hou BC, Yu WT, Lu XB, Yang CW (2017) Applications of artificial intelligence in intelligent manufacturing: a review. Front Inf Technol Electron Eng 18(1):86–96
97.
Zurück zum Zitat Lee SH, Park WS, Cho HS, Zhang W, Leu MC (2001) A neural network approach to the modelling and analysis of stereolithography processes. Proc Inst Mech Eng Part B: J Eng Manuf 215(12):1719–1733 Lee SH, Park WS, Cho HS, Zhang W, Leu MC (2001) A neural network approach to the modelling and analysis of stereolithography processes. Proc Inst Mech Eng Part B: J Eng Manuf 215(12):1719–1733
98.
Zurück zum Zitat Duvenaud, D. (2014). Automatic model construction with Gaussian processes (Doctoral dissertation, University of Cambridge). Duvenaud, D. (2014). Automatic model construction with Gaussian processes (Doctoral dissertation, University of Cambridge).
99.
Zurück zum Zitat North, M. J., Sydelko, P., & Martinez-Moyano, I. (2015, December). Applying 3D printing and genetic algorithm-generated anticipatory system dynamics models to a homeland security challenge. In 2015 Winter Simulation Conference (WSC) (pp. 2511–2522). IEEE. North, M. J., Sydelko, P., & Martinez-Moyano, I. (2015, December). Applying 3D printing and genetic algorithm-generated anticipatory system dynamics models to a homeland security challenge. In 2015 Winter Simulation Conference (WSC) (pp. 2511–2522). IEEE.
100.
Zurück zum Zitat Mahdaoui, A., & Sbai, E. H. (2020). 3D point cloud simplification based on k-nearest neighbor and clustering. Advances in Multimedia, 2020. Mahdaoui, A., & Sbai, E. H. (2020). 3D point cloud simplification based on k-nearest neighbor and clustering. Advances in Multimedia, 2020.
101.
Zurück zum Zitat Ghimire, T., Joshi, A., Sen, S., Kapruan, C., Chadha, U., & Selvaraj, S. K. (2021). Blockchain in additive manufacturing processes: recent trends & its future possibilities. Materials Today: Proceedings. Ghimire, T., Joshi, A., Sen, S., Kapruan, C., Chadha, U., & Selvaraj, S. K. (2021). Blockchain in additive manufacturing processes: recent trends & its future possibilities. Materials Today: Proceedings.
105.
Zurück zum Zitat Chadha U, Selvaraj SK, Pant H, Arora A, Shukla D, Sancheti I, Chadha A, Srivastava D, Khanna M, Ram Kishore S, Paramasivam V (2022) Phase change materials in metal casting processes: a critical review and future possibilities. Adv Mater Sci Eng 2022:7520308. https://doi.org/10.1155/2022/7520308CrossRef Chadha U, Selvaraj SK, Pant H, Arora A, Shukla D, Sancheti I, Chadha A, Srivastava D, Khanna M, Ram Kishore S, Paramasivam V (2022) Phase change materials in metal casting processes: a critical review and future possibilities. Adv Mater Sci Eng 2022:7520308. https://​doi.​org/​10.​1155/​2022/​7520308CrossRef
106.
Zurück zum Zitat Sivasubramani R, Verma A, Rithvik G, Chadha U, Kumaran SS (2021) Influence on nonhomogeneous microstructure formation and its role on tensile and fatigue performance of duplex stainless steel by a solid-state welding process. Mater Today Proc 46:7284–7296 Sivasubramani R, Verma A, Rithvik G, Chadha U, Kumaran SS (2021) Influence on nonhomogeneous microstructure formation and its role on tensile and fatigue performance of duplex stainless steel by a solid-state welding process. Mater Today Proc 46:7284–7296
107.
Zurück zum Zitat Patel SS, Shiva MS, Kataray T, Srivastava D, Maji S, Kapruan C, Selvaraj SK et al (2022) Trends in tribological behaviour of materials for compressors. J Phys Conf Ser 2272(1):012023 Patel SS, Shiva MS, Kataray T, Srivastava D, Maji S, Kapruan C, Selvaraj SK et al (2022) Trends in tribological behaviour of materials for compressors. J Phys Conf Ser 2272(1):012023
108.
Zurück zum Zitat Chadha U, Selvaraj SK, Gunreddy N, Sanjay Babu S, Mishra S, Padala D, Shashank M, Mathew RM, Kishore SR, Panigrahi S, Nagalakshmi R, Lokesh Kumar R, Adefris A (2022) A survey of machine learning in friction stir welding, including unresolved issues and future research directions. Mater Des Process Commun 2022:2568347. https://doi.org/10.1155/2022/2568347CrossRef Chadha U, Selvaraj SK, Gunreddy N, Sanjay Babu S, Mishra S, Padala D, Shashank M, Mathew RM, Kishore SR, Panigrahi S, Nagalakshmi R, Lokesh Kumar R, Adefris A (2022) A survey of machine learning in friction stir welding, including unresolved issues and future research directions. Mater Des Process Commun 2022:2568347. https://​doi.​org/​10.​1155/​2022/​2568347CrossRef
110.
Zurück zum Zitat Chadha U, Selvaraj SK, Raj A, Mahanth T, Vignesh P, Lakshmi PJ, Samanta K, Reddy NB, Adefris A (2022) AI-driven techniques for controlling the metal melting production: a review, processes, enabling technologies, solutions, and research challenges. Mater Res Express 9(7):072001. https://doi.org/10.1088/2053-1591/ac7b70CrossRef Chadha U, Selvaraj SK, Raj A, Mahanth T, Vignesh P, Lakshmi PJ, Samanta K, Reddy NB, Adefris A (2022) AI-driven techniques for controlling the metal melting production: a review, processes, enabling technologies, solutions, and research challenges. Mater Res Express 9(7):072001. https://​doi.​org/​10.​1088/​2053-1591/​ac7b70CrossRef
111.
Metadaten
Titel
Computational AI models in VAT photopolymerization: a review, current trends, open issues, and future opportunities
verfasst von
Isha Sachdeva
Sivasubramani Ramesh
Utkarsh Chadha
Hruditha Punugoti
Senthil Kumaran Selvaraj
Publikationsdatum
17.08.2022
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 20/2022
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-022-07694-4

Weitere Artikel der Ausgabe 20/2022

Neural Computing and Applications 20/2022 Zur Ausgabe

Premium Partner