Skip to main content
Erschienen in: Journal of Computational Neuroscience 3/2010

01.12.2010

Computational modeling of GABAA receptor-mediated paired-pulse inhibition in the dentate gyrus

verfasst von: Peter Jedlicka, Thomas Deller, Stephan W. Schwarzacher

Erschienen in: Journal of Computational Neuroscience | Ausgabe 3/2010

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Paired-pulse inhibition (PPI) of the population spike observed in extracellular field recordings is widely used as a read-out of hippocampal network inhibition. PPI reflects GABAA receptor-mediated inhibition of principal neurons through local interneurons. However, because of its polysynaptic nature, it is difficult to assign PPI changes to precise synaptic mechanisms. Here we used a detailed network model of the dentate gyrus to simulate PPI of granule cell action potentials and analyze its network properties. Our computational analysis indicates that PPI results mainly from a combination of perisomatic feed-forward and feedback inhibition of granule cells by basket cells. Feed-forward inhibition mediated by basket cells appeared to be the most significant source of PPI. Our simulations suggest that PPI depends more on somatic than on dendritic inhibition of granule cells. Furthermore, PPI was modulated by changes in GABAA reversal potential (EGABA) and by alterations in intrinsic excitability of granule cells. In summary, computer modeling provides a useful tool for determining the role of synaptic and intrinsic cellular mechanisms in paired-pulse field potential responses.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Amaral, D. G., Scharfman, H. E., & Lavenex, P. (2007). The dentate gyrus: fundamental neuroanatomical organization (dentate gyrus for dummies). Progress in Brain Research, 163, 3–22.CrossRefPubMed Amaral, D. G., Scharfman, H. E., & Lavenex, P. (2007). The dentate gyrus: fundamental neuroanatomical organization (dentate gyrus for dummies). Progress in Brain Research, 163, 3–22.CrossRefPubMed
Zurück zum Zitat Andersen, P., Bliss, T. V., & Skrede, K. K. (1971). Unit analysis of hippocampal polulation spikes. Experimental Brain Research, 13(2), 208–221. Andersen, P., Bliss, T. V., & Skrede, K. K. (1971). Unit analysis of hippocampal polulation spikes. Experimental Brain Research, 13(2), 208–221.
Zurück zum Zitat Aponte, Y., Bischofberger, J., & Jonas, P. (2008). Efficient Ca2+ buffering in fast-spiking basket cells of rat hippocampus. Journal of Physiology, 586(8), 2061–2075.CrossRefPubMed Aponte, Y., Bischofberger, J., & Jonas, P. (2008). Efficient Ca2+ buffering in fast-spiking basket cells of rat hippocampus. Journal of Physiology, 586(8), 2061–2075.CrossRefPubMed
Zurück zum Zitat Aradi, I., & Holmes, W. R. (1999). Role of multiple calcium and calcium-dependent conductances in regulation of hippocampal dentate granule cell excitability. Journal of Computational Neuroscience, 6(3), 215–235.CrossRefPubMed Aradi, I., & Holmes, W. R. (1999). Role of multiple calcium and calcium-dependent conductances in regulation of hippocampal dentate granule cell excitability. Journal of Computational Neuroscience, 6(3), 215–235.CrossRefPubMed
Zurück zum Zitat Atallah, B. V., & Scanziani, M. (2009). Instantaneous modulation of gamma oscillation frequency by balancing excitation with inhibition. Neuron, 62(4), 566–577.CrossRefPubMed Atallah, B. V., & Scanziani, M. (2009). Instantaneous modulation of gamma oscillation frequency by balancing excitation with inhibition. Neuron, 62(4), 566–577.CrossRefPubMed
Zurück zum Zitat Benuskova, L., & Abraham, W. C. (2007). STDP rule endowed with the BCM sliding threshold accounts for hippocampal heterosynaptic plasticity. Journal of Computational Neuroscience, 22(2), 129–133.CrossRefPubMed Benuskova, L., & Abraham, W. C. (2007). STDP rule endowed with the BCM sliding threshold accounts for hippocampal heterosynaptic plasticity. Journal of Computational Neuroscience, 22(2), 129–133.CrossRefPubMed
Zurück zum Zitat Blaesse, P., Airaksinen, M. S., Rivera, C., & Kaila, K. (2009). Cation-chloride cotransporters and neuronal function. Neuron, 61(6), 820–838.CrossRefPubMed Blaesse, P., Airaksinen, M. S., Rivera, C., & Kaila, K. (2009). Cation-chloride cotransporters and neuronal function. Neuron, 61(6), 820–838.CrossRefPubMed
Zurück zum Zitat Bliss, T. V., Collinridge, G., & Morris, R. G. (2007). Synaptic plasticity in the hippocampus. In P. Andersen, R. G. Morris, D. G. Amaral, T. V. Bliss, & J. O’Keefe (Eds.), The hippocampus book (pp. 343–474). Oxford: Oxford University Press. Bliss, T. V., Collinridge, G., & Morris, R. G. (2007). Synaptic plasticity in the hippocampus. In P. Andersen, R. G. Morris, D. G. Amaral, T. V. Bliss, & J. O’Keefe (Eds.), The hippocampus book (pp. 343–474). Oxford: Oxford University Press.
Zurück zum Zitat Brill, J., & Huguenard, J. R. (2009). Robust short-latency perisomatic inhibition onto neocortical pyramidal cells detected by laser-scanning photostimulation. Journal of Neuroscience, 29(23), 7413–7423.CrossRefPubMed Brill, J., & Huguenard, J. R. (2009). Robust short-latency perisomatic inhibition onto neocortical pyramidal cells detected by laser-scanning photostimulation. Journal of Neuroscience, 29(23), 7413–7423.CrossRefPubMed
Zurück zum Zitat Bronzino, J. D., Blaise, J. H., & Morgane, P. J. (1997). The paired-pulse index: a measure of hippocampal dentate granule cell modulation. Annals of Biomedical Engineering, 25(5), 870–873.CrossRefPubMed Bronzino, J. D., Blaise, J. H., & Morgane, P. J. (1997). The paired-pulse index: a measure of hippocampal dentate granule cell modulation. Annals of Biomedical Engineering, 25(5), 870–873.CrossRefPubMed
Zurück zum Zitat Bucurenciu, I., Kulik, A., Schwaller, B., Frotscher, M., & Jonas, P. (2008). Nanodomain coupling between Ca2+ channels and Ca2+ sensors promotes fast and efficient transmitter release at a cortical GABAergic synapse. Neuron, 57(4), 536–545.CrossRefPubMed Bucurenciu, I., Kulik, A., Schwaller, B., Frotscher, M., & Jonas, P. (2008). Nanodomain coupling between Ca2+ channels and Ca2+ sensors promotes fast and efficient transmitter release at a cortical GABAergic synapse. Neuron, 57(4), 536–545.CrossRefPubMed
Zurück zum Zitat Coulter, D. A., & Carlson, G. C. (2007). Functional regulation of the dentate gyrus by GABA-mediated inhibition. Progress in Brain Research, 163, 235–243.CrossRefPubMed Coulter, D. A., & Carlson, G. C. (2007). Functional regulation of the dentate gyrus by GABA-mediated inhibition. Progress in Brain Research, 163, 235–243.CrossRefPubMed
Zurück zum Zitat Davies, C. H., Starkey, S. J., Pozza, M. F., & Collingridge, G. L. (1991). GABA autoreceptors regulate the induction of LTP. Nature, 349(6310), 609–611.CrossRefPubMed Davies, C. H., Starkey, S. J., Pozza, M. F., & Collingridge, G. L. (1991). GABA autoreceptors regulate the induction of LTP. Nature, 349(6310), 609–611.CrossRefPubMed
Zurück zum Zitat Davison, A. P., Morse, T. M., Migliore, M., Shepherd, G. M., & Hines, M. L. (2004). Semi-automated population of an online database of neuronal models (ModelDB) with citation information, using PubMed for validation. Neuroinformatics, 2(3), 327–332.CrossRefPubMed Davison, A. P., Morse, T. M., Migliore, M., Shepherd, G. M., & Hines, M. L. (2004). Semi-automated population of an online database of neuronal models (ModelDB) with citation information, using PubMed for validation. Neuroinformatics, 2(3), 327–332.CrossRefPubMed
Zurück zum Zitat Doischer, D., Hosp, J. A., Yanagawa, Y., Obata, K., Jonas, P., Vida, I., et al. (2008). Postnatal differentiation of basket cells from slow to fast signaling devices. Journal of Neuroscience, 28(48), 12956–12968.CrossRefPubMed Doischer, D., Hosp, J. A., Yanagawa, Y., Obata, K., Jonas, P., Vida, I., et al. (2008). Postnatal differentiation of basket cells from slow to fast signaling devices. Journal of Neuroscience, 28(48), 12956–12968.CrossRefPubMed
Zurück zum Zitat Dyhrfjeld-Johnsen, J., Santhakumar, V., Morgan, R. J., Huerta, R., Tsimring, L., & Soltesz, I. (2007). Topological determinants of epileptogenesis in large-scale structural and functional models of the dentate gyrus derived from experimental data. Journal of Neurophysiology, 97(2), 1566–1587.CrossRefPubMed Dyhrfjeld-Johnsen, J., Santhakumar, V., Morgan, R. J., Huerta, R., Tsimring, L., & Soltesz, I. (2007). Topological determinants of epileptogenesis in large-scale structural and functional models of the dentate gyrus derived from experimental data. Journal of Neurophysiology, 97(2), 1566–1587.CrossRefPubMed
Zurück zum Zitat Farrant, M., & Kaila, K. (2007). The cellular, molecular and ionic basis of GABA(A) receptor signalling. Progress in Brain Research, 160, 59–87.CrossRefPubMed Farrant, M., & Kaila, K. (2007). The cellular, molecular and ionic basis of GABA(A) receptor signalling. Progress in Brain Research, 160, 59–87.CrossRefPubMed
Zurück zum Zitat Ferrante, M., Migliore, M., & Ascoli, G. A. (2009). Feed-forward inhibition as a buffer of the neuronal input-output relation. Proceedings of the National Academy of Sciences of the United States of America, 106(42), 18004–18009.CrossRefPubMed Ferrante, M., Migliore, M., & Ascoli, G. A. (2009). Feed-forward inhibition as a buffer of the neuronal input-output relation. Proceedings of the National Academy of Sciences of the United States of America, 106(42), 18004–18009.CrossRefPubMed
Zurück zum Zitat Freund, T. F., & Buzsáki, G. (1996). Interneurons of the hippocampus. Hippocampus, 6(4), 347–470.CrossRefPubMed Freund, T. F., & Buzsáki, G. (1996). Interneurons of the hippocampus. Hippocampus, 6(4), 347–470.CrossRefPubMed
Zurück zum Zitat Fritschy, J. M. (2008). Epilepsy, E/I Balance and GABA(A) Receptor Plasticity. Frontiers in Molecular Neuroscience, 1, 5.CrossRefPubMed Fritschy, J. M. (2008). Epilepsy, E/I Balance and GABA(A) Receptor Plasticity. Frontiers in Molecular Neuroscience, 1, 5.CrossRefPubMed
Zurück zum Zitat Fuchs, E. C., Zivkovic, A. R., Cunningham, M. O., Middleton, S., LeBeau, F. E., Bannerman, D. M., et al. (2007). Recruitment of parvalbumin-positive interneurons determines hippocampal function and associated behavior. Neuron, 53(4), 591–604.CrossRefPubMed Fuchs, E. C., Zivkovic, A. R., Cunningham, M. O., Middleton, S., LeBeau, F. E., Bannerman, D. M., et al. (2007). Recruitment of parvalbumin-positive interneurons determines hippocampal function and associated behavior. Neuron, 53(4), 591–604.CrossRefPubMed
Zurück zum Zitat Glickfeld, L. L., & Scanziani, M. (2006). Distinct timing in the activity of cannabinoid-sensitive and cannabinoid-insensitive basket cells. Nature Neuroscience, 9(6), 807–815.CrossRefPubMed Glickfeld, L. L., & Scanziani, M. (2006). Distinct timing in the activity of cannabinoid-sensitive and cannabinoid-insensitive basket cells. Nature Neuroscience, 9(6), 807–815.CrossRefPubMed
Zurück zum Zitat Gold, C., Henze, D. A., Koch, C., & Buzsaki, G. (2006). On the origin of the extracellular action potential waveform: a modeling study. Journal of Neurophysiology, 95(5), 3113–3128.CrossRefPubMed Gold, C., Henze, D. A., Koch, C., & Buzsaki, G. (2006). On the origin of the extracellular action potential waveform: a modeling study. Journal of Neurophysiology, 95(5), 3113–3128.CrossRefPubMed
Zurück zum Zitat Hines, M. L., & Carnevale, N. T. (1997). The NEURON simulation environment. Neural Computation, 9(6), 1179–1209.CrossRefPubMed Hines, M. L., & Carnevale, N. T. (1997). The NEURON simulation environment. Neural Computation, 9(6), 1179–1209.CrossRefPubMed
Zurück zum Zitat Hines, M. L., Morse, T., Migliore, M., Carnevale, N. T., & Shepherd, G. M. (2004). ModelDB: a database to support computational neuroscience. Journal of Computational Neuroscience, 17(1), 7–11.CrossRefPubMed Hines, M. L., Morse, T., Migliore, M., Carnevale, N. T., & Shepherd, G. M. (2004). ModelDB: a database to support computational neuroscience. Journal of Computational Neuroscience, 17(1), 7–11.CrossRefPubMed
Zurück zum Zitat Howard, A., Tamas, G., & Soltesz, I. (2005). Lighting the chandelier: new vistas for axo-axonic cells. Trends in Neurosciences, 28(6), 310–316.CrossRefPubMed Howard, A., Tamas, G., & Soltesz, I. (2005). Lighting the chandelier: new vistas for axo-axonic cells. Trends in Neurosciences, 28(6), 310–316.CrossRefPubMed
Zurück zum Zitat Houser, C. R. (2007). Interneurons of the dentate gyrus: an overview of cell types, terminal fields and neurochemical identity. Progress in Brain Research, 163, 217–232.CrossRefPubMed Houser, C. R. (2007). Interneurons of the dentate gyrus: an overview of cell types, terminal fields and neurochemical identity. Progress in Brain Research, 163, 217–232.CrossRefPubMed
Zurück zum Zitat Hu, H., Martina, M., & Jonas, P. (2009). Dendritic mechanisms underlying rapid synaptic activation of fast-spiking hippocampal interneurons. Science. doi:10.1126/science.1177876. Hu, H., Martina, M., & Jonas, P. (2009). Dendritic mechanisms underlying rapid synaptic activation of fast-spiking hippocampal interneurons. Science. doi:10.​1126/​science.​1177876.
Zurück zum Zitat Jalil, S., Grigull, J., & Skinner, F. K. (2004). Novel bursting patterns emerging from model inhibitory networks with synaptic depression. Journal of Computational Neuroscience, 17(1), 31–45.CrossRefPubMed Jalil, S., Grigull, J., & Skinner, F. K. (2004). Novel bursting patterns emerging from model inhibitory networks with synaptic depression. Journal of Computational Neuroscience, 17(1), 31–45.CrossRefPubMed
Zurück zum Zitat Jedlicka, P., & Backus, K. H. (2006). Inhibitory transmission, activity-dependent ionic changes and neuronal network oscillations. Physiological Research, 55(2), 139–149.PubMed Jedlicka, P., & Backus, K. H. (2006). Inhibitory transmission, activity-dependent ionic changes and neuronal network oscillations. Physiological Research, 55(2), 139–149.PubMed
Zurück zum Zitat Jedlicka, P., Schwarzacher, S. W., Winkels, R., Kienzler, F., Frotscher, M., Bramham, C. R., et al. (2009a). Impairment of in vivo theta-burst long-term potentiation and network excitability in the dentate gyrus of synaptopodin-deficient mice lacking the spine apparatus and the cisternal organelle. Hippocampus, 19(2), 130–140.CrossRef Jedlicka, P., Schwarzacher, S. W., Winkels, R., Kienzler, F., Frotscher, M., Bramham, C. R., et al. (2009a). Impairment of in vivo theta-burst long-term potentiation and network excitability in the dentate gyrus of synaptopodin-deficient mice lacking the spine apparatus and the cisternal organelle. Hippocampus, 19(2), 130–140.CrossRef
Zurück zum Zitat Jedlicka, P., Papadopoulos, T., Deller, T., Betz, H., & Schwarzacher, S. W. (2009b). Increased network excitability and impaired induction of long-term potentiation in the dentate gyrus of collybistin-deficient mice in vivo. Molecular and Cellular Neuroscience, 41(1), 94–100.CrossRef Jedlicka, P., Papadopoulos, T., Deller, T., Betz, H., & Schwarzacher, S. W. (2009b). Increased network excitability and impaired induction of long-term potentiation in the dentate gyrus of collybistin-deficient mice in vivo. Molecular and Cellular Neuroscience, 41(1), 94–100.CrossRef
Zurück zum Zitat Jonas, P., Bischofberger, J., Fricker, D., & Miles, R. (2004). Interneuron diversity series: fast in, fast out-temporal and spatial signal processing in hippocampal interneurons. Trends in Neurosciences, 27(1), 30–40.CrossRefPubMed Jonas, P., Bischofberger, J., Fricker, D., & Miles, R. (2004). Interneuron diversity series: fast in, fast out-temporal and spatial signal processing in hippocampal interneurons. Trends in Neurosciences, 27(1), 30–40.CrossRefPubMed
Zurück zum Zitat Jones, M. W., Errington, M. L., French, P. J., Fine, A., Bliss, T. V. P., Garel, S., et al. (2001). A requirement for the immediate early gene Zif268 in the expression of late LTP and long-term memories. Nature Neuroscience, 4(3), 289–296.CrossRefPubMed Jones, M. W., Errington, M. L., French, P. J., Fine, A., Bliss, T. V. P., Garel, S., et al. (2001). A requirement for the immediate early gene Zif268 in the expression of late LTP and long-term memories. Nature Neuroscience, 4(3), 289–296.CrossRefPubMed
Zurück zum Zitat Kang, T. C., Kim, D. S., Kim, J. E., Kwak, S. E., Yoo, K. Y., Hwang, I. K., et al. (2006). Altered expression of K + -Cl- cotransporters affects fast paired-pulse inhibition during GABA receptor activation in the gerbil hippocampus. Brain Research, 1072(1), 8–14.CrossRefPubMed Kang, T. C., Kim, D. S., Kim, J. E., Kwak, S. E., Yoo, K. Y., Hwang, I. K., et al. (2006). Altered expression of K + -Cl- cotransporters affects fast paired-pulse inhibition during GABA receptor activation in the gerbil hippocampus. Brain Research, 1072(1), 8–14.CrossRefPubMed
Zurück zum Zitat Klausberger, T., & Somogyi, P. (2008). Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science, 321(5885), 53–57.CrossRefPubMed Klausberger, T., & Somogyi, P. (2008). Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science, 321(5885), 53–57.CrossRefPubMed
Zurück zum Zitat Kleschevnikov, A. M., Belichenko, P. V., Villar, A. J., Epstein, C. J., Malenka, R. C., & Mobley, W. C. (2004). Hippocampal long-term potentiation suppressed by increased inhibition in the Ts65Dn mouse, a genetic model of Down syndrome. Journal of Neuroscience, 24(37), 8153–8160.CrossRefPubMed Kleschevnikov, A. M., Belichenko, P. V., Villar, A. J., Epstein, C. J., Malenka, R. C., & Mobley, W. C. (2004). Hippocampal long-term potentiation suppressed by increased inhibition in the Ts65Dn mouse, a genetic model of Down syndrome. Journal of Neuroscience, 24(37), 8153–8160.CrossRefPubMed
Zurück zum Zitat Kraushaar, U., & Jonas, P. (2000). Efficacy and stability of quantal GABA release at a hippocampal interneuron-principal neuron synapse. Journal of Neuroscience, 20(15), 5594–5607.PubMed Kraushaar, U., & Jonas, P. (2000). Efficacy and stability of quantal GABA release at a hippocampal interneuron-principal neuron synapse. Journal of Neuroscience, 20(15), 5594–5607.PubMed
Zurück zum Zitat Kullmann, D. M., & Lamsa, K. P. (2007). Long-term synaptic plasticity in hippocampal interneurons. Nature Reviews. Neuroscience, 8(9), 687–699.CrossRefPubMed Kullmann, D. M., & Lamsa, K. P. (2007). Long-term synaptic plasticity in hippocampal interneurons. Nature Reviews. Neuroscience, 8(9), 687–699.CrossRefPubMed
Zurück zum Zitat Kwak, S. E., Kim, J. E., Kim, D. S., Won, M. H., Lee, H. J., Choi, S. Y., et al. (2006). Differential paired-pulse responses between the CA1 region and the dentate gyrus are related to altered CLC-2 immunoreactivity in the pilocarpine-induced rat epilepsy model. Brain Research, 1115(1), 162–168.CrossRefPubMed Kwak, S. E., Kim, J. E., Kim, D. S., Won, M. H., Lee, H. J., Choi, S. Y., et al. (2006). Differential paired-pulse responses between the CA1 region and the dentate gyrus are related to altered CLC-2 immunoreactivity in the pilocarpine-induced rat epilepsy model. Brain Research, 1115(1), 162–168.CrossRefPubMed
Zurück zum Zitat Lamsa, K., Heeroma, J. H., & Kullmann, D. M. (2005). Hebbian LTP in feed-forward inhibitory interneurons and the temporal fidelity of input discrimination. Nature Neuroscience, 8(7), 916–924.PubMed Lamsa, K., Heeroma, J. H., & Kullmann, D. M. (2005). Hebbian LTP in feed-forward inhibitory interneurons and the temporal fidelity of input discrimination. Nature Neuroscience, 8(7), 916–924.PubMed
Zurück zum Zitat Lamsa, K., Irvine, E. E., Giese, K. P., & Kullmann, D. M. (2007a). NMDA receptor-dependent long-term potentiation in mouse hippocampal interneurons shows a unique dependence on Ca(2+)/calmodulin-dependent kinases. Journal of Neurophysiology, 584(Pt 3), 885–894. Lamsa, K., Irvine, E. E., Giese, K. P., & Kullmann, D. M. (2007a). NMDA receptor-dependent long-term potentiation in mouse hippocampal interneurons shows a unique dependence on Ca(2+)/calmodulin-dependent kinases. Journal of Neurophysiology, 584(Pt 3), 885–894.
Zurück zum Zitat Lamsa, K. P., Heeroma, J. H., Somogyi, P., Rusakov, D. A., & Kullmann, D. M. (2007b). Anti-Hebbian long-term potentiation in the hippocampal feedback inhibitory circuit. Science, 315(5816), 1262–1266.CrossRef Lamsa, K. P., Heeroma, J. H., Somogyi, P., Rusakov, D. A., & Kullmann, D. M. (2007b). Anti-Hebbian long-term potentiation in the hippocampal feedback inhibitory circuit. Science, 315(5816), 1262–1266.CrossRef
Zurück zum Zitat Lomo, T. (2009). Excitability changes within transverse lamellae of dentate granule cells and their longitudinal spread following orthodromic or antidromic activation. Hippocampus, 19(7), 633–48.CrossRefPubMed Lomo, T. (2009). Excitability changes within transverse lamellae of dentate granule cells and their longitudinal spread following orthodromic or antidromic activation. Hippocampus, 19(7), 633–48.CrossRefPubMed
Zurück zum Zitat Lytton, W. W., Hellman, K. M., & Sutula, T. P. (1998). Computer models of hippocampal circuit changes of the kindling model of epilepsy. Artificial Intelligence in Medicine, 13(1–2), 81–97.CrossRefPubMed Lytton, W. W., Hellman, K. M., & Sutula, T. P. (1998). Computer models of hippocampal circuit changes of the kindling model of epilepsy. Artificial Intelligence in Medicine, 13(1–2), 81–97.CrossRefPubMed
Zurück zum Zitat Lytton, W. W. (2008). Computer modelling of epilepsy. Nature Reviews. Neuroscience, 9(8), 626–637.CrossRefPubMed Lytton, W. W. (2008). Computer modelling of epilepsy. Nature Reviews. Neuroscience, 9(8), 626–637.CrossRefPubMed
Zurück zum Zitat Magloczky, Z., & Freund, T. F. (2005). Impaired and repaired inhibitory circuits in the epileptic human hippocampus. Trends in Neurosciences, 28(6), 334–340.CrossRefPubMed Magloczky, Z., & Freund, T. F. (2005). Impaired and repaired inhibitory circuits in the epileptic human hippocampus. Trends in Neurosciences, 28(6), 334–340.CrossRefPubMed
Zurück zum Zitat Miles, R., Toth, K., Gulyas, A. I., Hajos, N., & Freund, T. F. (1996). Differences between somatic and dendritic inhibition in the hippocampus. Neuron, 16(4), 815–823.CrossRefPubMed Miles, R., Toth, K., Gulyas, A. I., Hajos, N., & Freund, T. F. (1996). Differences between somatic and dendritic inhibition in the hippocampus. Neuron, 16(4), 815–823.CrossRefPubMed
Zurück zum Zitat Morgan, R. J., Santhakumar, V., & Soltesz, I. (2007). Modeling the dentate gyrus. Progress in Brain Research, 163, 639–658.CrossRefPubMed Morgan, R. J., Santhakumar, V., & Soltesz, I. (2007). Modeling the dentate gyrus. Progress in Brain Research, 163, 639–658.CrossRefPubMed
Zurück zum Zitat Morgan, R. J., & Soltesz, I. (2008). Nonrandom connectivity of the epileptic dentate gyrus predicts a major role for neuronal hubs in seizures. Proceedings of the National Academy of Sciences of the United States of America, 105(16), 6179–6184.CrossRefPubMed Morgan, R. J., & Soltesz, I. (2008). Nonrandom connectivity of the epileptic dentate gyrus predicts a major role for neuronal hubs in seizures. Proceedings of the National Academy of Sciences of the United States of America, 105(16), 6179–6184.CrossRefPubMed
Zurück zum Zitat Moser, E. I. (1996). Altered inhibition of dentate granule cells during spatial learning in an exploration task. Journal of Neuroscience, 16(3), 1247–1259.PubMed Moser, E. I. (1996). Altered inhibition of dentate granule cells during spatial learning in an exploration task. Journal of Neuroscience, 16(3), 1247–1259.PubMed
Zurück zum Zitat Naylor, D. E., & Wasterlain, C. G. (2005). GABA synapses and the rapid loss of inhibition to dentate gyrus granule cells after brief perforant-path stimulation. Epilepsia, 46(Suppl 5), 142–147.CrossRefPubMed Naylor, D. E., & Wasterlain, C. G. (2005). GABA synapses and the rapid loss of inhibition to dentate gyrus granule cells after brief perforant-path stimulation. Epilepsia, 46(Suppl 5), 142–147.CrossRefPubMed
Zurück zum Zitat Naylor, D. E., Liu, H., & Wasterlain, C. G. (2005). Trafficking of GABA(A) receptors, loss of inhibition, and a mechanism for pharmacoresistance in status epilepticus. Journal of Neuroscience, 25(34), 7724–7733.CrossRefPubMed Naylor, D. E., Liu, H., & Wasterlain, C. G. (2005). Trafficking of GABA(A) receptors, loss of inhibition, and a mechanism for pharmacoresistance in status epilepticus. Journal of Neuroscience, 25(34), 7724–7733.CrossRefPubMed
Zurück zum Zitat Oliver, M. W., & Miller, J. J. (1985). Alterations of inhibitory processes in the dentate gyrus following kindling-induced epilepsy. Experimental Brain Research, 57(3), 443–447.CrossRef Oliver, M. W., & Miller, J. J. (1985). Alterations of inhibitory processes in the dentate gyrus following kindling-induced epilepsy. Experimental Brain Research, 57(3), 443–447.CrossRef
Zurück zum Zitat Pouille, F., & Scanziani, M. (2001). Enforcement of temporal fidelity in pyramidal cells by somatic feed- forward inhibition. Science, 293(5532), 1159–1163.CrossRefPubMed Pouille, F., & Scanziani, M. (2001). Enforcement of temporal fidelity in pyramidal cells by somatic feed- forward inhibition. Science, 293(5532), 1159–1163.CrossRefPubMed
Zurück zum Zitat Pouille, F., & Scanziani, M. (2004). Routing of spike series by dynamic circuits in the hippocampus. Nature, 429(6993), 717–723.CrossRefPubMed Pouille, F., & Scanziani, M. (2004). Routing of spike series by dynamic circuits in the hippocampus. Nature, 429(6993), 717–723.CrossRefPubMed
Zurück zum Zitat Pouille, F., Marin-Burgin, A., Adesnik, H., Atallah, B. V., & Scanziani, M. (2009). Input normalization by global feedforward inhibition expands cortical dynamic range. Nature Neuroscience, 12(12), 1577–1585.CrossRefPubMed Pouille, F., Marin-Burgin, A., Adesnik, H., Atallah, B. V., & Scanziani, M. (2009). Input normalization by global feedforward inhibition expands cortical dynamic range. Nature Neuroscience, 12(12), 1577–1585.CrossRefPubMed
Zurück zum Zitat Prescott, S. A., Sejnowski, T. J., & De, K. Y. (2006). Reduction of anion reversal potential subverts the inhibitory control of firing rate in spinal lamina I neurons: towards a biophysical basis for neuropathic pain. Molecular Pain, 2, 32.CrossRefPubMed Prescott, S. A., Sejnowski, T. J., & De, K. Y. (2006). Reduction of anion reversal potential subverts the inhibitory control of firing rate in spinal lamina I neurons: towards a biophysical basis for neuropathic pain. Molecular Pain, 2, 32.CrossRefPubMed
Zurück zum Zitat Prinz, A. A. (2008). Understanding epilepsy through network modeling. Proceedings of the National Academy of Sciences of the United States of America, 105(16), 5953–5954.CrossRefPubMed Prinz, A. A. (2008). Understanding epilepsy through network modeling. Proceedings of the National Academy of Sciences of the United States of America, 105(16), 5953–5954.CrossRefPubMed
Zurück zum Zitat Racz, A., Ponomarenko, A. A., Fuchs, E. C., & Monyer, H. (2009). Augmented hippocampal ripple oscillations in mice with reduced fast excitation onto parvalbumin-positive cells. Journal of Neuroscience, 29(8), 2563–2568.CrossRefPubMed Racz, A., Ponomarenko, A. A., Fuchs, E. C., & Monyer, H. (2009). Augmented hippocampal ripple oscillations in mice with reduced fast excitation onto parvalbumin-positive cells. Journal of Neuroscience, 29(8), 2563–2568.CrossRefPubMed
Zurück zum Zitat Ribak, C. E., & Shapiro, L. A. (2007). Ultrastructure and synaptic connectivity of cell types in the adult rat dentate gyrus. Progress in Brain Research, 163, 155–166.CrossRefPubMed Ribak, C. E., & Shapiro, L. A. (2007). Ultrastructure and synaptic connectivity of cell types in the adult rat dentate gyrus. Progress in Brain Research, 163, 155–166.CrossRefPubMed
Zurück zum Zitat Rich-Bennett, E., Dahl, D., & Lecompte, B. B., III. (1993). Modulation of paired-pulse activation in the hippocampal dentate gyrus by cholecystokinin, baclofen and bicuculline. Neuropeptides, 24(5), 263–270.CrossRefPubMed Rich-Bennett, E., Dahl, D., & Lecompte, B. B., III. (1993). Modulation of paired-pulse activation in the hippocampal dentate gyrus by cholecystokinin, baclofen and bicuculline. Neuropeptides, 24(5), 263–270.CrossRefPubMed
Zurück zum Zitat Santhakumar, V., Aradi, I., & Soltesz, I. (2005). Role of mossy fiber sprouting and mossy cell loss in hyperexcitability: a network model of the dentate gyrus incorporating cell types and axonal topography. Journal of Neurophysiology, 93(1), 437–453.CrossRefPubMed Santhakumar, V., Aradi, I., & Soltesz, I. (2005). Role of mossy fiber sprouting and mossy cell loss in hyperexcitability: a network model of the dentate gyrus incorporating cell types and axonal topography. Journal of Neurophysiology, 93(1), 437–453.CrossRefPubMed
Zurück zum Zitat Sayin, U., Osting, S., Hagen, J., Rutecki, P., & Sutula, T. (2003). Spontaneous seizures and loss of axo-axonic and axo-somatic inhibition induced by repeated brief seizures in kindled rats. Journal of Neuroscience, 23(7), 2759–2768.PubMed Sayin, U., Osting, S., Hagen, J., Rutecki, P., & Sutula, T. (2003). Spontaneous seizures and loss of axo-axonic and axo-somatic inhibition induced by repeated brief seizures in kindled rats. Journal of Neuroscience, 23(7), 2759–2768.PubMed
Zurück zum Zitat Sloviter, R. S. (1991). Feedforward and feedback inhibition of hippocampal principal cell activity evoked by perforant path stimulation: GABA-mediated mechanisms that regulate excitability in vivo. Hippocampus, 1(1), 31–40.CrossRefPubMed Sloviter, R. S. (1991). Feedforward and feedback inhibition of hippocampal principal cell activity evoked by perforant path stimulation: GABA-mediated mechanisms that regulate excitability in vivo. Hippocampus, 1(1), 31–40.CrossRefPubMed
Zurück zum Zitat Steffensen, S. C., & Henriksen, S. J. (1991). Effects of baclofen and bicuculline on inhibition in the fascia dentata and hippocampus regio superior. Brain Research, 538(1), 46–53.CrossRefPubMed Steffensen, S. C., & Henriksen, S. J. (1991). Effects of baclofen and bicuculline on inhibition in the fascia dentata and hippocampus regio superior. Brain Research, 538(1), 46–53.CrossRefPubMed
Zurück zum Zitat Stoenica, L., Senkov, O., Gerardy-Schahn, R., Weinhold, B., Schachner, M., & Dityatev, A. (2006). In vivo synaptic plasticity in the dentate gyrus of mice deficient in the neural cell adhesion molecule NCAM or its polysialic acid. European Journal of Neuroscience, 23(9), 2255–2264.CrossRefPubMed Stoenica, L., Senkov, O., Gerardy-Schahn, R., Weinhold, B., Schachner, M., & Dityatev, A. (2006). In vivo synaptic plasticity in the dentate gyrus of mice deficient in the neural cell adhesion molecule NCAM or its polysialic acid. European Journal of Neuroscience, 23(9), 2255–2264.CrossRefPubMed
Zurück zum Zitat Thomas, M. J., Mameli, M., Carta, M., Valenzuela, C. F., Li, P. K., & Partridge, L. D. (2005). Neurosteroid paradoxical enhancement of paired-pulse inhibition through paired-pulse facilitation of inhibitory circuits in dentate granule cells. Neuropharmacology, 48(4), 584–596.CrossRefPubMed Thomas, M. J., Mameli, M., Carta, M., Valenzuela, C. F., Li, P. K., & Partridge, L. D. (2005). Neurosteroid paradoxical enhancement of paired-pulse inhibition through paired-pulse facilitation of inhibitory circuits in dentate granule cells. Neuropharmacology, 48(4), 584–596.CrossRefPubMed
Zurück zum Zitat Tuff, L. P., Racine, R. J., & Adamec, R. (1983). The effects of kindling on GABA-mediated inhibition in the dentate gyrus of the rat. I. Paired-pulse depression. Brain Research, 277(1), 79–90.CrossRefPubMed Tuff, L. P., Racine, R. J., & Adamec, R. (1983). The effects of kindling on GABA-mediated inhibition in the dentate gyrus of the rat. I. Paired-pulse depression. Brain Research, 277(1), 79–90.CrossRefPubMed
Zurück zum Zitat Varona, P., Ibarz, J. M., Lopez-Aguado, L., & Herreras, O. (2000). Macroscopic and subcellular factors shaping population spikes. Journal of Neurophysiology, 83(4), 2192–2208.PubMed Varona, P., Ibarz, J. M., Lopez-Aguado, L., & Herreras, O. (2000). Macroscopic and subcellular factors shaping population spikes. Journal of Neurophysiology, 83(4), 2192–2208.PubMed
Zurück zum Zitat Winkels, R., Jedlicka, P., Weise, F. K., Schultz, C., Deller, T., & Schwarzacher, S. W. (2009). Reduced excitability in the dentate gyrus network of betaIV-spectrin mutant mice in vivo. Hippocampus, 19(7), 677–686.CrossRefPubMed Winkels, R., Jedlicka, P., Weise, F. K., Schultz, C., Deller, T., & Schwarzacher, S. W. (2009). Reduced excitability in the dentate gyrus network of betaIV-spectrin mutant mice in vivo. Hippocampus, 19(7), 677–686.CrossRefPubMed
Zurück zum Zitat Zappone, C. A., & Sloviter, R. S. (2004). Translamellar disinhibition in the rat hippocampal dentate gyrus after seizure-induced degeneration of vulnerable hilar neurons. Journal of Neuroscience, 24(4), 853–864.CrossRefPubMed Zappone, C. A., & Sloviter, R. S. (2004). Translamellar disinhibition in the rat hippocampal dentate gyrus after seizure-induced degeneration of vulnerable hilar neurons. Journal of Neuroscience, 24(4), 853–864.CrossRefPubMed
Metadaten
Titel
Computational modeling of GABAA receptor-mediated paired-pulse inhibition in the dentate gyrus
verfasst von
Peter Jedlicka
Thomas Deller
Stephan W. Schwarzacher
Publikationsdatum
01.12.2010
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 3/2010
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-010-0214-y

Weitere Artikel der Ausgabe 3/2010

Journal of Computational Neuroscience 3/2010 Zur Ausgabe

Premium Partner