Skip to main content

2023 | OriginalPaper | Buchkapitel

Computational Study of Conformational Changes in Intrinsically Disordered Regions During Protein-Protein Complex Formation

verfasst von : Madhabendra Mohon Kar, Prachi Bhargava, Amita Barik

Erschienen in: Bioinformatics and Biomedical Engineering

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Intrinsically Disordered Regions (IDRs) even though they cannot form a defined three-dimensional structure play a pivotal role in modulating cellular processes and signalling pathways. In the present study, we analyse the conformational changes in IDRs upon complex formation using a non-redundant dataset of binary, X-ray solved 356 protein-protein (P-P) complexes and their corresponding unbound forms. IDRs are prevalent in both unbound and complex proteins and after comparing them in both groups they were categorised into three classes: (a) Disordered-Ordered (D-O), where IDRs present in first group were observed to be ordered in the second group (b) Disordered-Partial Ordered (D-PO), where IDRs present in the first group were found to be partially ordered in the second group and (c) Disordered-Disordered (D-D), where IDRs present in one group remained disordered in the other group. The study of secondary structures of residues in the D-O category reveals that majority of IDRs upon complexation form coils followed by helices and strands. Though majority of residues of IDRs in the D-O class are located at the surface of P-P complexes, we observe a significant number of residues form the interface suggesting that they contribute to the stability of the complexes. Amino acids of IDRs under the D-O category are also involved in polar interactions making hydrogen bonds with other residues as well as water. There are some structured and partially structured regions in the unbound proteins which upon complexation become completely disordered. These findings provide fundamental insights into the underlying principles of molecular recognition by disordered regions in P-P complexes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Babu, M.M.: The contribution of intrinsically disordered regions to protein function, cellular complexity, and human disease. Biochem. Soc. Trans. 44, 1185 (2016)PubMedPubMedCentralCrossRef Babu, M.M.: The contribution of intrinsically disordered regions to protein function, cellular complexity, and human disease. Biochem. Soc. Trans. 44, 1185 (2016)PubMedPubMedCentralCrossRef
3.
Zurück zum Zitat Oldfield, C.J., Uversky, V.N., Dunker, A.K., Kurgan, L.: Introduction to intrinsically disordered proteins and regions. In: Intrinsically Disordered Proteins: Dynamics, Binding, and Function, pp. 1–34. Elsevier (2019) Oldfield, C.J., Uversky, V.N., Dunker, A.K., Kurgan, L.: Introduction to intrinsically disordered proteins and regions. In: Intrinsically Disordered Proteins: Dynamics, Binding, and Function, pp. 1–34. Elsevier (2019)
4.
Zurück zum Zitat Ferrie, J.J., Karr, J.P., Tjian, R., Darzacq, X.: “Structure”-function relationships in eukaryotic transcription factors: the role of intrinsically disordered regions in gene regulation. Mol. Cell 82, 3970–3984 (2022)PubMedCrossRef Ferrie, J.J., Karr, J.P., Tjian, R., Darzacq, X.: “Structure”-function relationships in eukaryotic transcription factors: the role of intrinsically disordered regions in gene regulation. Mol. Cell 82, 3970–3984 (2022)PubMedCrossRef
5.
Zurück zum Zitat Misiura, M.M., Kolomeisky, A.B.: Role of intrinsically disordered regions in acceleration of protein-protein association. J. Phys. Chem. B 124, 20–27 (2020)PubMedCrossRef Misiura, M.M., Kolomeisky, A.B.: Role of intrinsically disordered regions in acceleration of protein-protein association. J. Phys. Chem. B 124, 20–27 (2020)PubMedCrossRef
6.
Zurück zum Zitat DeForte, S., Uversky, V.N.: Order, disorder, and everything in between (2016) DeForte, S., Uversky, V.N.: Order, disorder, and everything in between (2016)
7.
Zurück zum Zitat Wright, P.E., Dyson, H.J.: Intrinsically disordered proteins in cellular signalling and regulation (2015) Wright, P.E., Dyson, H.J.: Intrinsically disordered proteins in cellular signalling and regulation (2015)
8.
Zurück zum Zitat Trivedi, R., Nagarajaram, H.A.: Intrinsically disordered proteins: an overview (2022) Trivedi, R., Nagarajaram, H.A.: Intrinsically disordered proteins: an overview (2022)
10.
Zurück zum Zitat Bondos, S.E., Dunker, A.K., Uversky, V.N.: Intrinsically disordered proteins play diverse roles in cell signaling (2022) Bondos, S.E., Dunker, A.K., Uversky, V.N.: Intrinsically disordered proteins play diverse roles in cell signaling (2022)
11.
Zurück zum Zitat Fuxreiter, M.: Classifying the binding modes of disordered proteins. Int. J. Mol. Sci. 21, 1–9 (2020)CrossRef Fuxreiter, M.: Classifying the binding modes of disordered proteins. Int. J. Mol. Sci. 21, 1–9 (2020)CrossRef
14.
Zurück zum Zitat Tompa, P., Fuxreiter, M.: Fuzzy complexes: polymorphism and structural disorder in protein–protein interactions. Trends Biochem. Sci. 33, 2–8 (2008)PubMedCrossRef Tompa, P., Fuxreiter, M.: Fuzzy complexes: polymorphism and structural disorder in protein–protein interactions. Trends Biochem. Sci. 33, 2–8 (2008)PubMedCrossRef
16.
Zurück zum Zitat Blundell, T.L., Gupta, M.N., Hasnain, S.E.: Intrinsic disorder in proteins: relevance to protein assemblies, drug design and host-pathogen interactions (2020) Blundell, T.L., Gupta, M.N., Hasnain, S.E.: Intrinsic disorder in proteins: relevance to protein assemblies, drug design and host-pathogen interactions (2020)
19.
Zurück zum Zitat Sridhar, A., Orozco, M., Collepardo-Guevara, R.: Protein disorder-to-order transition enhances the nucleosome-binding affinity of H1. Nucleic Acids Res. 48, 5318–5331 (2020)PubMedPubMedCentralCrossRef Sridhar, A., Orozco, M., Collepardo-Guevara, R.: Protein disorder-to-order transition enhances the nucleosome-binding affinity of H1. Nucleic Acids Res. 48, 5318–5331 (2020)PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Moritsugu, K., Terada, T., Kidera, A.: Disorder-to-order transition of an intrinsically disordered region of sortase revealed by multiscale enhanced sampling. J. Am. Chem. Soc. 134, 7094–7101 (2012)PubMedCrossRef Moritsugu, K., Terada, T., Kidera, A.: Disorder-to-order transition of an intrinsically disordered region of sortase revealed by multiscale enhanced sampling. J. Am. Chem. Soc. 134, 7094–7101 (2012)PubMedCrossRef
21.
Zurück zum Zitat Ahmad, J., et al.: Disorder-to-order transition in PE–PPE proteins of Mycobacterium tuberculosis augments the pro-pathogen immune response. FEBS Open Biol. 10, 70–85 (2020)CrossRef Ahmad, J., et al.: Disorder-to-order transition in PE–PPE proteins of Mycobacterium tuberculosis augments the pro-pathogen immune response. FEBS Open Biol. 10, 70–85 (2020)CrossRef
22.
Zurück zum Zitat Nishi, H., Fong, J.H., Chang, C., Teichmann, S.A., Panchenko, A.R.: Regulation of protein-protein binding by coupling between phosphorylation and intrinsic disorder: analysis of human protein complexes. Mol. Biosyst. 9, 1620–1626 (2013)PubMedPubMedCentralCrossRef Nishi, H., Fong, J.H., Chang, C., Teichmann, S.A., Panchenko, A.R.: Regulation of protein-protein binding by coupling between phosphorylation and intrinsic disorder: analysis of human protein complexes. Mol. Biosyst. 9, 1620–1626 (2013)PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Uversky, V.N.: Intrinsically disordered proteins and their “mysterious” (meta)physics (2019) Uversky, V.N.: Intrinsically disordered proteins and their “mysterious” (meta)physics (2019)
24.
25.
Zurück zum Zitat Quaglia, F., et al.: DisProt in 2022: improved quality and accessibility of protein intrinsic disorder annotation. Nucleic Acids Res. 50, D480–D487 (2022)PubMedCrossRef Quaglia, F., et al.: DisProt in 2022: improved quality and accessibility of protein intrinsic disorder annotation. Nucleic Acids Res. 50, D480–D487 (2022)PubMedCrossRef
26.
Zurück zum Zitat Fukuchi, S., et al.: IDEAL: Intrinsically disordered proteins with extensive annotations and literature. Nucleic Acids Res. 40 (2012) Fukuchi, S., et al.: IDEAL: Intrinsically disordered proteins with extensive annotations and literature. Nucleic Acids Res. 40 (2012)
27.
Zurück zum Zitat Fukuchi, S., et al.: IDEAL in 2014 illustrates interaction networks composed of intrinsically disordered proteins and their binding partners. Nucleic Acids Res. 42 (2014) Fukuchi, S., et al.: IDEAL in 2014 illustrates interaction networks composed of intrinsically disordered proteins and their binding partners. Nucleic Acids Res. 42 (2014)
28.
Zurück zum Zitat Piovesan, D., et al.: MobiDB: intrinsically disordered proteins in 2021. Nucleic Acids Res. 49, D361–D367 (2021)PubMedCrossRef Piovesan, D., et al.: MobiDB: intrinsically disordered proteins in 2021. Nucleic Acids Res. 49, D361–D367 (2021)PubMedCrossRef
29.
Zurück zum Zitat Erdos, G., Mátyás, P., Dosztányi, D.: IUPred3: prediction of protein disorder enhanced with unambiguous experimental annotation and visualization of evolutionary conservation. Nucleic Acids Res. 49, W297–W303 (2021)PubMedPubMedCentralCrossRef Erdos, G., Mátyás, P., Dosztányi, D.: IUPred3: prediction of protein disorder enhanced with unambiguous experimental annotation and visualization of evolutionary conservation. Nucleic Acids Res. 49, W297–W303 (2021)PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Mészáros, B., Erdös, G., Dosztányi, Z.: IUPred2A: context-dependent prediction of protein disorder as a function of redox state and protein binding. Nucleic Acids Res. 46, W329–W337 (2018)PubMedPubMedCentralCrossRef Mészáros, B., Erdös, G., Dosztányi, Z.: IUPred2A: context-dependent prediction of protein disorder as a function of redox state and protein binding. Nucleic Acids Res. 46, W329–W337 (2018)PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Dosztányi, Z., Mészáros, B., Simon, I.: ANCHOR: web server for predicting protein binding regions in disordered proteins. Bioinformatics 25, 2745 (2009)PubMedPubMedCentralCrossRef Dosztányi, Z., Mészáros, B., Simon, I.: ANCHOR: web server for predicting protein binding regions in disordered proteins. Bioinformatics 25, 2745 (2009)PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Jones, D.T., Cozzetto, D.: DISOPRED3: precise disordered region predictions with annotated protein-binding activity. Bioinformatics 31, 857–863 (2015)PubMedCrossRef Jones, D.T., Cozzetto, D.: DISOPRED3: precise disordered region predictions with annotated protein-binding activity. Bioinformatics 31, 857–863 (2015)PubMedCrossRef
33.
Zurück zum Zitat Barik, A., Katuwawala, A., Hanson, J., Paliwal, K., Zhou, Y., Kurgan, L.: DEPICTER: intrinsic disorder and disorder function prediction server. J. Mol. Biol. 432, 3379–3387 (2020)PubMedCrossRef Barik, A., Katuwawala, A., Hanson, J., Paliwal, K., Zhou, Y., Kurgan, L.: DEPICTER: intrinsic disorder and disorder function prediction server. J. Mol. Biol. 432, 3379–3387 (2020)PubMedCrossRef
35.
Zurück zum Zitat Fu, L., Niu, B., Zhu, Z., Wu, S., Li, W.: CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152 (2012)PubMedPubMedCentralCrossRef Fu, L., Niu, B., Zhu, Z., Wu, S., Li, W.: CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152 (2012)PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Li, W., Godzik, A.: Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006)PubMedCrossRef Li, W., Godzik, A.: Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006)PubMedCrossRef
37.
Zurück zum Zitat Brandt, B.W., Heringa, J., Leunissen, J.A.M.: SEQATOMS: a web tool for identifying missing regions in PDB in sequence context. Nucleic Acids Res. 36, W255–W259 (2008)PubMedPubMedCentralCrossRef Brandt, B.W., Heringa, J., Leunissen, J.A.M.: SEQATOMS: a web tool for identifying missing regions in PDB in sequence context. Nucleic Acids Res. 36, W255–W259 (2008)PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Monzon, A.M., et al.: Experimentally determined long intrinsically disordered protein regions are now abundant in the Protein Data Bank. Int. J. Mol. Sci. 21, 1–13 (2020)CrossRef Monzon, A.M., et al.: Experimentally determined long intrinsically disordered protein regions are now abundant in the Protein Data Bank. Int. J. Mol. Sci. 21, 1–13 (2020)CrossRef
39.
Zurück zum Zitat Oldfield, C.J., et al.: Utilization of protein intrinsic disorder knowledge in structural proteomics. Biochim. Biophys. Acta 1834, 487 (2013)PubMedCrossRef Oldfield, C.J., et al.: Utilization of protein intrinsic disorder knowledge in structural proteomics. Biochim. Biophys. Acta 1834, 487 (2013)PubMedCrossRef
40.
Zurück zum Zitat Gall, T.L., Romero, P.R., Cortese, M.S., Uversky, V.N., Dunker, A.K.: Intrinsic disorder in the Protein Data Bank. J. Biomol. Struct. Dyn. 24, 325–341 (2007)PubMedCrossRef Gall, T.L., Romero, P.R., Cortese, M.S., Uversky, V.N., Dunker, A.K.: Intrinsic disorder in the Protein Data Bank. J. Biomol. Struct. Dyn. 24, 325–341 (2007)PubMedCrossRef
41.
Zurück zum Zitat Zhang, Y., Stec, B., Godzik, A.: Between order and disorder in protein structures – analysis of “dual personality” fragments in proteins. Structure 15, 1141 (2007)PubMedPubMedCentralCrossRef Zhang, Y., Stec, B., Godzik, A.: Between order and disorder in protein structures – analysis of “dual personality” fragments in proteins. Structure 15, 1141 (2007)PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Baruah, A., Rani, P., Biswas, P.: Conformational entropy of intrinsically disordered proteins from amino acid triads. Sci. Rep. 5 (2015) Baruah, A., Rani, P., Biswas, P.: Conformational entropy of intrinsically disordered proteins from amino acid triads. Sci. Rep. 5 (2015)
43.
Zurück zum Zitat Ferron, F., Longhi, S., Canard, B., Karlin, D.: A practical overview of protein disorder prediction methods. Proteins Struct. Funct. Bioinform. 65, 1–14 (2006)CrossRef Ferron, F., Longhi, S., Canard, B., Karlin, D.: A practical overview of protein disorder prediction methods. Proteins Struct. Funct. Bioinform. 65, 1–14 (2006)CrossRef
44.
Zurück zum Zitat Schrödinger LLC: The PyMOL Molecular Graphics System, Version 2.5 (2015) Schrödinger LLC: The PyMOL Molecular Graphics System, Version 2.5 (2015)
47.
Zurück zum Zitat McDonald, I.K., Thornton, J.M.: Satisfying hydrogen bonding potential in proteins. J. Mol. Biol. 238, 777–793 (1994)PubMedCrossRef McDonald, I.K., Thornton, J.M.: Satisfying hydrogen bonding potential in proteins. J. Mol. Biol. 238, 777–793 (1994)PubMedCrossRef
48.
Zurück zum Zitat Jones, D.T.: Protein secondary structure prediction based on position-specific scoring matrices. J. Mol. Biol. 292, 195–202 (1999)PubMedCrossRef Jones, D.T.: Protein secondary structure prediction based on position-specific scoring matrices. J. Mol. Biol. 292, 195–202 (1999)PubMedCrossRef
51.
Zurück zum Zitat Abraham, M., et al.: GROMACS 2023.1 Manual (2023) Abraham, M., et al.: GROMACS 2023.1 Manual (2023)
52.
Zurück zum Zitat Abraham, M.J., et al.: GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25 (2015)CrossRef Abraham, M.J., et al.: GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25 (2015)CrossRef
53.
Zurück zum Zitat Robustelli, P., Piana, S., Shaw, D.E.: Developing a molecular dynamics force field for both folded and disordered protein states. Proc. Natl. Acad. Sci. U.S.A. 115, E4758–E4766 (2018)PubMedPubMedCentralCrossRef Robustelli, P., Piana, S., Shaw, D.E.: Developing a molecular dynamics force field for both folded and disordered protein states. Proc. Natl. Acad. Sci. U.S.A. 115, E4758–E4766 (2018)PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Bienert, S., et al.: The SWISS-MODEL repository – new features and functionality. Nucleic Acids Res. 45, D313–D319 (2017)PubMedCrossRef Bienert, S., et al.: The SWISS-MODEL repository – new features and functionality. Nucleic Acids Res. 45, D313–D319 (2017)PubMedCrossRef
56.
57.
Zurück zum Zitat Medina‐Pritchard, B., et al.: Structural basis for centromere maintenance by Drosophila CENP‐A chaperone CAL1. EMBO J. 39 (2020) Medina‐Pritchard, B., et al.: Structural basis for centromere maintenance by Drosophila CENP‐A chaperone CAL1. EMBO J. 39 (2020)
58.
Zurück zum Zitat Nakagawa, N., Sugahara, M., Masui, R., Kato, R., Fukuyama, K., Kuramitsu, S.: Crystal structure of Thermus thermophilus HB8 UvrB protein, a key enzyme of nucleotide excision repair. J. Biochem. 126, 986–990 (1999)PubMedCrossRef Nakagawa, N., Sugahara, M., Masui, R., Kato, R., Fukuyama, K., Kuramitsu, S.: Crystal structure of Thermus thermophilus HB8 UvrB protein, a key enzyme of nucleotide excision repair. J. Biochem. 126, 986–990 (1999)PubMedCrossRef
60.
61.
Zurück zum Zitat Campen, A., Williams, R.M., Brown, C.J., Meng, J., Uversky, V.N., Dunker, A.K.: TOP-IDP-Scale: a new amino acid scale measuring propensity for intrinsic disorder. Protein Pept Lett. 15, 956 (2008)PubMedPubMedCentralCrossRef Campen, A., Williams, R.M., Brown, C.J., Meng, J., Uversky, V.N., Dunker, A.K.: TOP-IDP-Scale: a new amino acid scale measuring propensity for intrinsic disorder. Protein Pept Lett. 15, 956 (2008)PubMedPubMedCentralCrossRef
64.
Zurück zum Zitat Structural and functional analysis of “non-smelly” proteins|Enhanced Reader. Accessed 29 Apr 2023 Structural and functional analysis of “non-smelly” proteins|Enhanced Reader. Accessed 29 Apr 2023
66.
67.
Zurück zum Zitat Huang, O.W., et al.: Phosphorylation-dependent activity of the deubiquitinase DUBA. Nat. Struct. Mol. Biol. 19(2), 171–175 (2012)PubMedCrossRef Huang, O.W., et al.: Phosphorylation-dependent activity of the deubiquitinase DUBA. Nat. Struct. Mol. Biol. 19(2), 171–175 (2012)PubMedCrossRef
68.
Zurück zum Zitat Vance, N.R., Gakhar, L., Spies, M.A.: Allosteric tuning of caspase-7: a fragment-based drug discovery approach. Angew. Chem. Int. Ed. Engl. 56, 14443 (2017)PubMedPubMedCentralCrossRef Vance, N.R., Gakhar, L., Spies, M.A.: Allosteric tuning of caspase-7: a fragment-based drug discovery approach. Angew. Chem. Int. Ed. Engl. 56, 14443 (2017)PubMedPubMedCentralCrossRef
69.
Zurück zum Zitat Abhari, B.A., Davoodi, J.: A mechanistic insight into SMAC peptide interference with XIAP-Bir2 inhibition of executioner caspases. J. Mol. Biol. 381, 645–654 (2008)PubMedCrossRef Abhari, B.A., Davoodi, J.: A mechanistic insight into SMAC peptide interference with XIAP-Bir2 inhibition of executioner caspases. J. Mol. Biol. 381, 645–654 (2008)PubMedCrossRef
70.
Zurück zum Zitat Aier, I., Varadwaj, P.K., Raj, U.: Structural insights into conformational stability of both wild-type and mutant EZH2 receptor. Sci. Rep. 6(1), 1–10 (2016)CrossRef Aier, I., Varadwaj, P.K., Raj, U.: Structural insights into conformational stability of both wild-type and mutant EZH2 receptor. Sci. Rep. 6(1), 1–10 (2016)CrossRef
72.
Zurück zum Zitat Sneha, P., Priya Doss, C.G.: Molecular dynamics: new frontier in personalized medicine. Adv. Protein Chem. Struct. Biol. 102, 181–224 (2016)PubMedCrossRef Sneha, P., Priya Doss, C.G.: Molecular dynamics: new frontier in personalized medicine. Adv. Protein Chem. Struct. Biol. 102, 181–224 (2016)PubMedCrossRef
73.
Zurück zum Zitat Funari, R., Bhalla, N., Gentile, L.: Measuring the radius of gyration and intrinsic flexibility of viral proteins in buffer solution using small-angle X-ray scattering. ACS Meas. Sci. Au 2, 547–552 (2022)PubMedPubMedCentralCrossRef Funari, R., Bhalla, N., Gentile, L.: Measuring the radius of gyration and intrinsic flexibility of viral proteins in buffer solution using small-angle X-ray scattering. ACS Meas. Sci. Au 2, 547–552 (2022)PubMedPubMedCentralCrossRef
Metadaten
Titel
Computational Study of Conformational Changes in Intrinsically Disordered Regions During Protein-Protein Complex Formation
verfasst von
Madhabendra Mohon Kar
Prachi Bhargava
Amita Barik
Copyright-Jahr
2023
DOI
https://doi.org/10.1007/978-3-031-34953-9_28

Premium Partner