Skip to main content
Erschienen in: Flow, Turbulence and Combustion 1/2020

04.12.2019

Computational Study of Reactants Mixing in a Rotating Detonation Combustor Using Compressible RANS

verfasst von: Sebastian Weiss, Myles D. Bohon, C. Oliver Paschereit, Ephraim J. Gutmark

Erschienen in: Flow, Turbulence and Combustion | Ausgabe 1/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This study considers the steady-state, non-reacting mixing of fuel and air within the hydrogen-air Rotating Detonation Combustor (RDC) currently in use at TU Berlin. The interaction of reactants occurs in a confined jet-in-crossflow (JIC) configuration with an axially injected fuel jet and an air stream entering radially inwards. The investigation of the baseline flow case provided three flow characteristics primarily responsible for affecting the process of mixing: supersonic shock patterns, the existence of two major recirculation zones, and a counter-rotating vortex pair (CVP) structure. In a parametric study with nine different flow configurations, attained by the variation of reactant inlet flow rates, the effect on mixing behavior and performance was analyzed in order to determine the most impactful parameter for the RDC refill process. The air mass flow rate was identified as the primary parameter with respect to the general flow field due to the interaction of a dominant air barrel shock with the fuel jet. The low flow rate cases allowed the greater fuel and air jet interaction in the near injection region of the combustor, whereas in the far field the higher flow rate configurations attained comparable mixing quality despite more complicated fuel and air jet shock structures.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Heiser, W.H., Pratt, D.T.: Thermodynamic cycle analysis of pulse detonation engines. J. Propuls. Power 18(1), 68–76 (2002)CrossRef Heiser, W.H., Pratt, D.T.: Thermodynamic cycle analysis of pulse detonation engines. J. Propuls. Power 18(1), 68–76 (2002)CrossRef
2.
Zurück zum Zitat Wolański, P.: Detonation engines. J. KONES Powertrain Transport 18(3), 515–521 (2011) Wolański, P.: Detonation engines. J. KONES Powertrain Transport 18(3), 515–521 (2011)
3.
Zurück zum Zitat St. George, A., Driscoll, R., Gutmark, E., Munday, D.: Experimental comparison of axial turbine performance under steady and pulsating flows. J. Turbomach. 136(11), 1–11 (2014)CrossRef St. George, A., Driscoll, R., Gutmark, E., Munday, D.: Experimental comparison of axial turbine performance under steady and pulsating flows. J. Turbomach. 136(11), 1–11 (2014)CrossRef
4.
Zurück zum Zitat Voitsekhovskii, B.V.: Stationary detonation. Soviet Phys. Doklady 4(6), 1207–1209 (1959) Voitsekhovskii, B.V.: Stationary detonation. Soviet Phys. Doklady 4(6), 1207–1209 (1959)
5.
Zurück zum Zitat Nicholls, J.A., Cullen, R.E., Ragland, K.W.: Feasibility studies of a rotating detonation wave rocket motor. J. Spacecraft 3(6), 893–898 (1966)CrossRef Nicholls, J.A., Cullen, R.E., Ragland, K.W.: Feasibility studies of a rotating detonation wave rocket motor. J. Spacecraft 3(6), 893–898 (1966)CrossRef
6.
Zurück zum Zitat Naples, A., Hoke, J., Karnesky, J., Schauer, F.: Flowfield characterization of a rotating detonation engine. AIAA Journal, pp. 1–6 (2013) Naples, A., Hoke, J., Karnesky, J., Schauer, F.: Flowfield characterization of a rotating detonation engine. AIAA Journal, pp. 1–6 (2013)
7.
Zurück zum Zitat Duvall, J., Gamba, M.: Characterization of reactant mixing in a rotating detonation engine using schlieren imaging and planar laser induced fluorescence. AIAA Propulsion and Energy Forum (2018) Duvall, J., Gamba, M.: Characterization of reactant mixing in a rotating detonation engine using schlieren imaging and planar laser induced fluorescence. AIAA Propulsion and Energy Forum (2018)
8.
Zurück zum Zitat Frolov, S.M., Dubrovskii, A.V., Ivanov, V.S.: Three-Dimensional Numerical simulation of the operation of a Rotating-Detonation chamber with separate supply of fuel and oxidizer. Russian J. Phys. Chem. B 7(1), 35–43 (2013)CrossRef Frolov, S.M., Dubrovskii, A.V., Ivanov, V.S.: Three-Dimensional Numerical simulation of the operation of a Rotating-Detonation chamber with separate supply of fuel and oxidizer. Russian J. Phys. Chem. B 7(1), 35–43 (2013)CrossRef
9.
Zurück zum Zitat Rankin, B.A., Fugger, C.A., Richardson, D.R., Cho, K.Y., Hoke, J.L., Caswell, A.W., Gord, J.R., Schauer, F.R.: Evaluation of Mixing Processes in a Non-Premixed Rotating Detonation Engine Using Acetone PLIF Imaging. 54th AIAA Aerospace Sciences Meeting, San Diego, CA, pp. 1–12 (2016) Rankin, B.A., Fugger, C.A., Richardson, D.R., Cho, K.Y., Hoke, J.L., Caswell, A.W., Gord, J.R., Schauer, F.R.: Evaluation of Mixing Processes in a Non-Premixed Rotating Detonation Engine Using Acetone PLIF Imaging. 54th AIAA Aerospace Sciences Meeting, San Diego, CA, pp. 1–12 (2016)
10.
Zurück zum Zitat Driscoll, R., Aghasi, P., St. George, A., Gutmark, E.J.: Three-dimensional, numerical investigation of reactant injection variation in a H2/air rotating detonation engine. Int. J. Hydrogen Energy 41, 5162–5175 (2016)CrossRef Driscoll, R., Aghasi, P., St. George, A., Gutmark, E.J.: Three-dimensional, numerical investigation of reactant injection variation in a H2/air rotating detonation engine. Int. J. Hydrogen Energy 41, 5162–5175 (2016)CrossRef
11.
Zurück zum Zitat Shank, J.: Development and Testing of a Rotating Detonation Engine Run on Hydrogen and Air. Ph.D. thesis, Air Force Institute of Technology (2012) Shank, J.: Development and Testing of a Rotating Detonation Engine Run on Hydrogen and Air. Ph.D. thesis, Air Force Institute of Technology (2012)
12.
Zurück zum Zitat Fric, T.F.: Structure in the Near Field of the Transverse Jet. Ph.D. thesis, California Institute of Technology (1990) Fric, T.F.: Structure in the Near Field of the Transverse Jet. Ph.D. thesis, California Institute of Technology (1990)
13.
Zurück zum Zitat Fric, T.F., Roshko, A.: Views of the transverse jet near field. Phys. Fluids 31 (1988) Fric, T.F., Roshko, A.: Views of the transverse jet near field. Phys. Fluids 31 (1988)
14.
Zurück zum Zitat Fric, T.F., Roshko, A.: Structure in the near field of the transverse jet. Turbulent Shear Flows 7 (cd. F. Durst others.) Springer, Berlin (1991) Fric, T.F., Roshko, A.: Structure in the near field of the transverse jet. Turbulent Shear Flows 7 (cd. F. Durst others.) Springer, Berlin (1991)
15.
Zurück zum Zitat Fric, T.F., Roshko, A.: Vortical structure in the wake of a transverse jet. J. Fluid Mech. 279, 1–47 (1994)CrossRef Fric, T.F., Roshko, A.: Vortical structure in the wake of a transverse jet. J. Fluid Mech. 279, 1–47 (1994)CrossRef
16.
Zurück zum Zitat Cortelezzi, L., Karagozian, A.R.: On the formation of the counter-rotating vortex pair in transverse jets. J. Fluid Mech. 446, 347–373 (2001)MathSciNetCrossRef Cortelezzi, L., Karagozian, A.R.: On the formation of the counter-rotating vortex pair in transverse jets. J. Fluid Mech. 446, 347–373 (2001)MathSciNetCrossRef
17.
Zurück zum Zitat Kelso, R.M., Lim, T.T., Perry, A.E.: An experimental study of round jet in Cross-Flow. J. Fluid Mech. 306, 111–144 (1996)CrossRef Kelso, R.M., Lim, T.T., Perry, A.E.: An experimental study of round jet in Cross-Flow. J. Fluid Mech. 306, 111–144 (1996)CrossRef
18.
Zurück zum Zitat Wang, H.: A Study of Gaseous Transverse Injection and Mixing Process in a Simulated Engine Intake Port. Ph.D. thesis, Politecnico di Milano (2013) Wang, H.: A Study of Gaseous Transverse Injection and Mixing Process in a Simulated Engine Intake Port. Ph.D. thesis, Politecnico di Milano (2013)
19.
Zurück zum Zitat Broadwell, J.E., Breidenthal, R.E.: Structure and mixing of a transverse jet in incompressible flow. J. Fluid Mech. 148, 405–412 (1984)CrossRef Broadwell, J.E., Breidenthal, R.E.: Structure and mixing of a transverse jet in incompressible flow. J. Fluid Mech. 148, 405–412 (1984)CrossRef
20.
Zurück zum Zitat Muppidi, S., Mahesh, K.: A two-dimensional model problem to explain CVP formation in a transverse jet. University of Minnesota (1986), pp. 1–14 (2001) Muppidi, S., Mahesh, K.: A two-dimensional model problem to explain CVP formation in a transverse jet. University of Minnesota (1986), pp. 1–14 (2001)
21.
Zurück zum Zitat Cutler, P.R.E.: On the Structure and Mixing of a Jet in Crossflow. Ph.D. thesis, The University of Adelaide (2002) Cutler, P.R.E.: On the Structure and Mixing of a Jet in Crossflow. Ph.D. thesis, The University of Adelaide (2002)
22.
Zurück zum Zitat Schetz, J.A., Billig, F.S.: Penetration of gaseous jets injected into a supersonic stream. J. Spacecr. Rocket. 3(11), 1658–1665 (1966)CrossRef Schetz, J.A., Billig, F.S.: Penetration of gaseous jets injected into a supersonic stream. J. Spacecr. Rocket. 3(11), 1658–1665 (1966)CrossRef
23.
Zurück zum Zitat Ben-Yakar, A., Mungal, M.G., Hanson, R.K.: Time evolution and mixing characteristics of hydrogen and ethylene transverse jets in supersonic crossflows. Phys. Fluids 18, 1–16 (2006)CrossRef Ben-Yakar, A., Mungal, M.G., Hanson, R.K.: Time evolution and mixing characteristics of hydrogen and ethylene transverse jets in supersonic crossflows. Phys. Fluids 18, 1–16 (2006)CrossRef
24.
Zurück zum Zitat Gruber, M.R., Nejadt, A.S., Chen, T.H., Dutton, J.C.: Mixing and penetration studies of sonic jets in a Mach 2 freestream. J. Propuls. Power 11, 315–323 (1995)CrossRef Gruber, M.R., Nejadt, A.S., Chen, T.H., Dutton, J.C.: Mixing and penetration studies of sonic jets in a Mach 2 freestream. J. Propuls. Power 11, 315–323 (1995)CrossRef
26.
Zurück zum Zitat Greenshields, C.J.: OpenFOAM User Guide version 5.0 (2017) Greenshields, C.J.: OpenFOAM User Guide version 5.0 (2017)
27.
Zurück zum Zitat Kraposhin, M.: Study of capabilities of hybrid scheme for advection terms approximation in mathematical models of compressible flows. Trudy ISP RAN / Proc. ISP RAS 28(3), 267–326 (2016)CrossRef Kraposhin, M.: Study of capabilities of hybrid scheme for advection terms approximation in mathematical models of compressible flows. Trudy ISP RAN / Proc. ISP RAS 28(3), 267–326 (2016)CrossRef
28.
Zurück zum Zitat Kraposhin, M., Bovtrikova, A., Strijhak, S.: Adaptation of Kurganov-Tadmor numerical scheme for applying in combination with the PISO method in numerical simulation of flows in a wide range of mach numbers. Procedia Comput. Sci. 66, 43–52 (2015)CrossRef Kraposhin, M., Bovtrikova, A., Strijhak, S.: Adaptation of Kurganov-Tadmor numerical scheme for applying in combination with the PISO method in numerical simulation of flows in a wide range of mach numbers. Procedia Comput. Sci. 66, 43–52 (2015)CrossRef
29.
Zurück zum Zitat DeSpirito, J.: Turbulence model effects on Cold-Gas lateral jet interaction in a supersonic crossflow. Army Research Laboratory, pp. 50 (2014) DeSpirito, J.: Turbulence model effects on Cold-Gas lateral jet interaction in a supersonic crossflow. Army Research Laboratory, pp. 50 (2014)
30.
Zurück zum Zitat Chauvet, N., Deck, S., Jacquin, L.: Numerical study of mixing enhancement in a supersonic round jet. AIAA J. 45(7), 1675–1687 (2007)CrossRef Chauvet, N., Deck, S., Jacquin, L.: Numerical study of mixing enhancement in a supersonic round jet. AIAA J. 45(7), 1675–1687 (2007)CrossRef
31.
Zurück zum Zitat Kurganov, A., Tadmor, E.: New High-Resolution central schemes for nonlinear conservation laws and Convection-Diffusion equations. J. Comput. Phys. 160, 241–282 (2000)MathSciNetCrossRef Kurganov, A., Tadmor, E.: New High-Resolution central schemes for nonlinear conservation laws and Convection-Diffusion equations. J. Comput. Phys. 160, 241–282 (2000)MathSciNetCrossRef
32.
Zurück zum Zitat Richardson, L.F.: The approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses. Trans. R. Soc. Lond. 210, 307–357 (1910) Richardson, L.F.: The approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses. Trans. R. Soc. Lond. 210, 307–357 (1910)
33.
Zurück zum Zitat Richardson, L.F., Gaunt, J.A.: The deferred approach to the limit. Trans. R. Soc. Lond. 226, 299–361 (1927)CrossRef Richardson, L.F., Gaunt, J.A.: The deferred approach to the limit. Trans. R. Soc. Lond. 226, 299–361 (1927)CrossRef
34.
Zurück zum Zitat Celik, I.B.: Procedure for estimation and reporting of discretization error in CFD applications. Journal of Fluids Engineering 130 (2008) Celik, I.B.: Procedure for estimation and reporting of discretization error in CFD applications. Journal of Fluids Engineering 130 (2008)
35.
Zurück zum Zitat Bluemner, R., Bohon, M.D., Paschereit, C.O., Gutmark, E.J.: Experimental study of reactant mixing in model rotating detonation combustor geometries. Flow, Turbulence and Combustion (2018) Bluemner, R., Bohon, M.D., Paschereit, C.O., Gutmark, E.J.: Experimental study of reactant mixing in model rotating detonation combustor geometries. Flow, Turbulence and Combustion (2018)
36.
Zurück zum Zitat Bluemner, R., Bohon, M.D., Nguyen, H.Q., Paschereit, C.O.: Influence of Reactant Injection Parameters on RDC Mode of Operation. In: 57Th AIAA Aerospace Sciences Meeting. San Diego, CA (2019) Bluemner, R., Bohon, M.D., Nguyen, H.Q., Paschereit, C.O.: Influence of Reactant Injection Parameters on RDC Mode of Operation. In: 57Th AIAA Aerospace Sciences Meeting. San Diego, CA (2019)
37.
Zurück zum Zitat Abramovich, G.: The theory of turbulent jets. Massachusetts Institute of Technology Press, Cambridge (1963) Abramovich, G.: The theory of turbulent jets. Massachusetts Institute of Technology Press, Cambridge (1963)
38.
Zurück zum Zitat Margason, R.J.: The path of a jet directed at large angles to a subsonic free stream. NASA TN d-4919 (1968) Margason, R.J.: The path of a jet directed at large angles to a subsonic free stream. NASA TN d-4919 (1968)
39.
Zurück zum Zitat Orth, R.C., Funk, J.A.: An experimental and comparative study of jet penetration in supersonic flow. AIAA J. 5, 1–9 (1967)CrossRef Orth, R.C., Funk, J.A.: An experimental and comparative study of jet penetration in supersonic flow. AIAA J. 5, 1–9 (1967)CrossRef
42.
Zurück zum Zitat Fric, T.F.: Effects of Fuel-Air Unmixedness on NOx Emissions. J. Propuls. Power 9(5), 708–713 (1993)CrossRef Fric, T.F.: Effects of Fuel-Air Unmixedness on NOx Emissions. J. Propuls. Power 9(5), 708–713 (1993)CrossRef
Metadaten
Titel
Computational Study of Reactants Mixing in a Rotating Detonation Combustor Using Compressible RANS
verfasst von
Sebastian Weiss
Myles D. Bohon
C. Oliver Paschereit
Ephraim J. Gutmark
Publikationsdatum
04.12.2019
Verlag
Springer Netherlands
Erschienen in
Flow, Turbulence and Combustion / Ausgabe 1/2020
Print ISSN: 1386-6184
Elektronische ISSN: 1573-1987
DOI
https://doi.org/10.1007/s10494-019-00097-x

Weitere Artikel der Ausgabe 1/2020

Flow, Turbulence and Combustion 1/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.