Skip to main content
Erschienen in: Journal of Nanoparticle Research 10/2017

01.10.2017 | Research Paper

Computational study on the structural and surface properties of amorphous hydroxylated TiO2 spherical nanoparticles

verfasst von: Naveen Kumar Kaliannan, Karthik Krishnamurthy

Erschienen in: Journal of Nanoparticle Research | Ausgabe 10/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Monte Carlo simulations were carried out on amorphous titanium dioxide (TiO2) for both bulk and hydroxylated nanoparticles with particle sizes ranging from 1 to 10 nm. The potential developed by the Matsui and Akaogi (MA) was used to model the interatomic interactions of TiO2 in both cases (bulk and nanoparticles). Besides, Angular and Morse potentials proposed by the Tether, Cormack, Du et. al. (TCD) were introduced to model the interactions of hydroxyl groups on the TiO2 surfaces, i.e., the Ti-O-H groups with an experimental and theoretical angles of 125 o . The bulk system was developed using periodic boundary conditions. The TiO2 nanoparticles were extracted by applying a spherical cut section in the bulk TiO2 melt structure to obtain the required size. Free valences on the nanoparticle surfaces were saturated via additional hydroxyl groups and then quenched to 300 K under free boundary conditions. The bulk and surface properties of the nanoparticles were calculated at 300 K and zero pressure and characterized via radial distribution functions, bond angle distributions, bond distances, coordination numbers, OH group concentrations and radial density profiles. In addition, to understand the difference in properties of amorphous hydroxylated TiO2 nanoparticles and bulk amorphous TiO2, a comparative study was done at the same thermodynamic conditions. The study shows that the bulk properties of amorphous hydroxylated TiO2 nanoparticles are strongly size-dependent and different from those of the bulk TiO2. As expected, increasing the particle size leads to an approach of the particle’s bulk properties to the bulk properties of the (quasi) infinite system. The size effects show that decreasing the particle size results in increasing the surface effects and surface OH group concentrations. Accordingly, small-sized TiO2 nanoparticles have higher surface OH group concentrations and larger surface effects than large-sized TiO2 nanoparticles. Larger surface effects result significant changes in their bond angles, bond distances, and coordination numbers. The simulation results of the surface properties reveal that the surface titanium atoms in the TiO2 nanoparticles have the capability of accommodating up to 5 hydroxyl groups. The mean surface hydroxyl group density of the amorphous TiO2 spherical nanoparticles is estimated to be around 8.1/nm 2, which lies in the range of 8–16/nm 2, found by experimental and other simulation studies. Details of the modelling, simulations results and the study are presented in this paper.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Carter CB, Norton MG (2013) Ceramic materials: science and engineering. Springer, BerlinCrossRef Carter CB, Norton MG (2013) Ceramic materials: science and engineering. Springer, BerlinCrossRef
Zurück zum Zitat Johnson DA (2002) Metals and chemical change, vol 1. Royal Society of Chemistry, Open University, Great Britain Johnson DA (2002) Metals and chemical change, vol 1. Royal Society of Chemistry, Open University, Great Britain
Zurück zum Zitat Kellar JJ (2006) Functional fillers and Nanoscale Minerals: New markets/new Horizons. SME-Science, Dearborn Kellar JJ (2006) Functional fillers and Nanoscale Minerals: New markets/new Horizons. SME-Science, Dearborn
Zurück zum Zitat Predota M, Bandura A, Cummings PT, Kubicki WC, Machesky ML (2004) Electric double layer at the rutile (110) surface. 1. structure of surfaces and interfacial water from molecular dynamics by use of ab initio potentials. J Phys Chem B 108. https://doi.org/10.1021/jp037197c Predota M, Bandura A, Cummings PT, Kubicki WC, Machesky ML (2004) Electric double layer at the rutile (110) surface. 1. structure of surfaces and interfacial water from molecular dynamics by use of ab initio potentials. J Phys Chem B 108. https://​doi.​org/​10.​1021/​jp037197c
Zurück zum Zitat Rezaei B, Mosaddeghi H (2006) Applications of titanium dioxdie nanocoating. Nano-Technology in Environments Conference, Isfahan University of Technology, Isfahan Rezaei B, Mosaddeghi H (2006) Applications of titanium dioxdie nanocoating. Nano-Technology in Environments Conference, Isfahan University of Technology, Isfahan
Zurück zum Zitat Rouquerol R (1998) Sing adsorption by powders and porous solids principles. Methodology and Applications Academic Press, Massachusetts Rouquerol R (1998) Sing adsorption by powders and porous solids principles. Methodology and Applications Academic Press, Massachusetts
Zurück zum Zitat Tilley RJD (2013) Understanding solids: the science of materials. 2 New Jersey, Wiley Tilley RJD (2013) Understanding solids: the science of materials. 2 New Jersey, Wiley
Metadaten
Titel
Computational study on the structural and surface properties of amorphous hydroxylated TiO2 spherical nanoparticles
verfasst von
Naveen Kumar Kaliannan
Karthik Krishnamurthy
Publikationsdatum
01.10.2017
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 10/2017
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-017-4028-y

Weitere Artikel der Ausgabe 10/2017

Journal of Nanoparticle Research 10/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.