Skip to main content
Erschienen in: Shape Memory and Superelasticity 4/2015

01.12.2015

Computational Thermodynamics and Kinetics-Based ICME Framework for High-Temperature Shape Memory Alloys

verfasst von: Raymundo Arróyave, Anjana Talapatra, Luke Johnson, Navdeep Singh, Ji Ma, Ibrahim Karaman

Erschienen in: Shape Memory and Superelasticity | Ausgabe 4/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Over the last decade, considerable interest in the development of High-Temperature Shape Memory Alloys (HTSMAs) for solid-state actuation has increased dramatically as key applications in the aerospace and automotive industry demand actuation temperatures well above those of conventional SMAs. Most of the research to date has focused on establishing the (forward) connections between chemistry, processing, (micro)structure, properties, and performance. Much less work has been dedicated to the development of frameworks capable of addressing the inverse problem of establishing necessary chemistry and processing schedules to achieve specific performance goals. Integrated Computational Materials Engineering (ICME) has emerged as a powerful framework to address this problem, although it has yet to be applied to the development of HTSMAs. In this paper, the contributions of computational thermodynamics and kinetics to ICME of HTSMAs are described. Some representative examples of the use of computational thermodynamics and kinetics to understand the phase stability and microstructural evolution in HTSMAs are discussed. Some very recent efforts at combining both to assist in the design of HTSMAs and limitations to the full implementation of ICME frameworks for HTSMA development are presented.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ma J, Karaman I, Noebe R (2010) High temperature shape memory alloys. Int Mater Rev 55:257CrossRef Ma J, Karaman I, Noebe R (2010) High temperature shape memory alloys. Int Mater Rev 55:257CrossRef
2.
Zurück zum Zitat Firstov GS, Van Humbeeck J, Koval YN (2006) High temperature shape memory alloys problems and prospects. J Intel Mat Syst Str 17:1041CrossRef Firstov GS, Van Humbeeck J, Koval YN (2006) High temperature shape memory alloys problems and prospects. J Intel Mat Syst Str 17:1041CrossRef
3.
Zurück zum Zitat Kumar PK, Desai U, Monroe JA, Lagoudas DC, Karaman I, Bigelow G, Noebe RD (2011) Experimental investigation of simultaneous creep, plasticity and transformation of Ti50.5Pd30Ni19.5 high temperature shape memory alloy during cyclic actuation. Mater Sci Eng A 530:117CrossRef Kumar PK, Desai U, Monroe JA, Lagoudas DC, Karaman I, Bigelow G, Noebe RD (2011) Experimental investigation of simultaneous creep, plasticity and transformation of Ti50.5Pd30Ni19.5 high temperature shape memory alloy during cyclic actuation. Mater Sci Eng A 530:117CrossRef
4.
Zurück zum Zitat Kumar PK, Lagoudas DC (2010) Experimental and microstructural characterization of simultaneous creep, plasticity and phase transformation in Ti50Pd40Ni10 high-temperature shape memory alloy. Acta Mater 58:1618CrossRef Kumar PK, Lagoudas DC (2010) Experimental and microstructural characterization of simultaneous creep, plasticity and phase transformation in Ti50Pd40Ni10 high-temperature shape memory alloy. Acta Mater 58:1618CrossRef
5.
Zurück zum Zitat Sehitoglu H (2015) A new journal helping to shape the future of materials. Shape Mem Superelasticity 1:3 Sehitoglu H (2015) A new journal helping to shape the future of materials. Shape Mem Superelasticity 1:3
6.
Zurück zum Zitat Evirgen A, Karaman I, Noebe RD, Santamarta R, Pons J (2013) Effect of precipitation on the microstructure and the shape memory response of the Ni50.3Ti29.7Zr20 high temperature shape memory alloy. Scr Mater 69:354CrossRef Evirgen A, Karaman I, Noebe RD, Santamarta R, Pons J (2013) Effect of precipitation on the microstructure and the shape memory response of the Ni50.3Ti29.7Zr20 high temperature shape memory alloy. Scr Mater 69:354CrossRef
7.
Zurück zum Zitat Santamarta R, Arróyave R, Pons J, Evirgen A, Karaman I, Karaca H, Noebe R (2013) TEM study of structural and microstructural characteristics of a precipitate phase in Ni-rich Ni–Ti–Hf and Ni–Ti–Zr shape memory alloys. Acta Mater 61:6191CrossRef Santamarta R, Arróyave R, Pons J, Evirgen A, Karaman I, Karaca H, Noebe R (2013) TEM study of structural and microstructural characteristics of a precipitate phase in Ni-rich Ni–Ti–Hf and Ni–Ti–Zr shape memory alloys. Acta Mater 61:6191CrossRef
8.
Zurück zum Zitat Niendorf T, Krooß P, Somsen C, Eggeler G, Chumlyakov YI, Maier HJ (2015) Martensite aging—avenue to new high temperature shape memory alloys. Acta Mater 89:298CrossRef Niendorf T, Krooß P, Somsen C, Eggeler G, Chumlyakov YI, Maier HJ (2015) Martensite aging—avenue to new high temperature shape memory alloys. Acta Mater 89:298CrossRef
9.
Zurück zum Zitat Dogan E, Karaman I, Singh N, Chivukula A, Thawabi HS, Arroyave R (2012) The effect of electronic and magnetic valences on the martensitic transformation of CoNiGa shape memory alloys. Acta Mater 60:3545CrossRef Dogan E, Karaman I, Singh N, Chivukula A, Thawabi HS, Arroyave R (2012) The effect of electronic and magnetic valences on the martensitic transformation of CoNiGa shape memory alloys. Acta Mater 60:3545CrossRef
10.
Zurück zum Zitat Benafan O, Garg A, Noebe R, Bigelow G, Padula S, Gaydosh D, Vaidyanathan R, Clausen B, Vogel S (2015) Thermomechanical behavior and microstructural evolution of a Ni (Pd)-rich Ni24.3Ti49.7Pd26 high temperature shape memory alloy. J Alloys Compd 643:275CrossRef Benafan O, Garg A, Noebe R, Bigelow G, Padula S, Gaydosh D, Vaidyanathan R, Clausen B, Vogel S (2015) Thermomechanical behavior and microstructural evolution of a Ni (Pd)-rich Ni24.3Ti49.7Pd26 high temperature shape memory alloy. J Alloys Compd 643:275CrossRef
11.
Zurück zum Zitat Buenconsejo PJS, Kim HY, Miyazaki S (2011) Novel β-TiTaAl alloys with excellent cold workability and a stable high-temperature shape memory effect. Scr Mater 64:1114CrossRef Buenconsejo PJS, Kim HY, Miyazaki S (2011) Novel β-TiTaAl alloys with excellent cold workability and a stable high-temperature shape memory effect. Scr Mater 64:1114CrossRef
12.
Zurück zum Zitat Arróyave R, Junkaew A, Chivukula A, Bajaj S, Yao C-Y, Garay A (2010) Investigation of the structural stability of Co2 NiGa shape memory alloys via ab initio methods. Acta Mater 58:5220CrossRef Arróyave R, Junkaew A, Chivukula A, Bajaj S, Yao C-Y, Garay A (2010) Investigation of the structural stability of Co2 NiGa shape memory alloys via ab initio methods. Acta Mater 58:5220CrossRef
13.
Zurück zum Zitat Cox A, Baxevanis T, Lagoudas DC (2014) Finite element analysis of precipitation effects on Ni-rich NiTi shape memory alloy response. Mater Sci Forum 792:65CrossRef Cox A, Baxevanis T, Lagoudas DC (2014) Finite element analysis of precipitation effects on Ni-rich NiTi shape memory alloy response. Mater Sci Forum 792:65CrossRef
14.
Zurück zum Zitat Gao Y, Zhou N, Yang F, Cui Y, Kovarik L, Hatcher N, Noebe R, Mills M, Wang Y (2012) P-phase precipitation and its effect on martensitic transformation in (Ni, Pt) Ti shape memory alloys. Acta Mater 60:1514CrossRef Gao Y, Zhou N, Yang F, Cui Y, Kovarik L, Hatcher N, Noebe R, Mills M, Wang Y (2012) P-phase precipitation and its effect on martensitic transformation in (Ni, Pt) Ti shape memory alloys. Acta Mater 60:1514CrossRef
15.
Zurück zum Zitat Allison J (2011) Integrated computational materials engineering: a perspective on progress and future steps. JOM 63:15CrossRef Allison J (2011) Integrated computational materials engineering: a perspective on progress and future steps. JOM 63:15CrossRef
16.
Zurück zum Zitat Spanos G, Allison J, Cowles B, Deloach J, Pollock T (2013) Integrated computational materials engineering (ICME): implementing ICME in the aerospace, automotive, and maritime industries. Miner Met Mater Soc (TMS) Spanos G, Allison J, Cowles B, Deloach J, Pollock T (2013) Integrated computational materials engineering (ICME): implementing ICME in the aerospace, automotive, and maritime industries. Miner Met Mater Soc (TMS)
17.
Zurück zum Zitat Meng XL, Cai W, Fu YD, Li QF, Zhang JX, Zhao LC (2008) Shape-memory behaviors in an aged Ni-rich TiNiHf high temperature shape-memory alloy. Intermetallics 16:698CrossRef Meng XL, Cai W, Fu YD, Li QF, Zhang JX, Zhao LC (2008) Shape-memory behaviors in an aged Ni-rich TiNiHf high temperature shape-memory alloy. Intermetallics 16:698CrossRef
18.
Zurück zum Zitat Frankel DJ, Olson GB (2015) Design of heusler precipitation strengthened NiTi-and PdTi-base SMAs for cyclic performance. Shape Mem Superelasticity 1:162–179CrossRef Frankel DJ, Olson GB (2015) Design of heusler precipitation strengthened NiTi-and PdTi-base SMAs for cyclic performance. Shape Mem Superelasticity 1:162–179CrossRef
19.
Zurück zum Zitat Prasher M, Sen D (2014) Influence of aging on phase transformation and microstructure of Ni 50.3 Ti 29.7 Hf 20 high temperature shape memory alloy. J Alloys Compd 615:469CrossRef Prasher M, Sen D (2014) Influence of aging on phase transformation and microstructure of Ni 50.3 Ti 29.7 Hf 20 high temperature shape memory alloy. J Alloys Compd 615:469CrossRef
20.
Zurück zum Zitat Ramaiah K, Saikrishna C, Bhagyaraj J, Bhaumik S (2013) Influence of Sc addition on microstructure and transformation behaviour of Ni24.7Ti50.3Pd25.0 high temperature shape memory alloy. Intermetallics 40:10CrossRef Ramaiah K, Saikrishna C, Bhagyaraj J, Bhaumik S (2013) Influence of Sc addition on microstructure and transformation behaviour of Ni24.7Ti50.3Pd25.0 high temperature shape memory alloy. Intermetallics 40:10CrossRef
21.
Zurück zum Zitat Atli K, Karaman I, Noebe R, Garg A, Chumlyakov Y, Kireeva I (2010) Improvement in the shape memory response of Ti50.5Ni24.5Pd25 high-temperature shape memory alloy with scandium microalloying. Metall Mater Trans A 41:2485CrossRef Atli K, Karaman I, Noebe R, Garg A, Chumlyakov Y, Kireeva I (2010) Improvement in the shape memory response of Ti50.5Ni24.5Pd25 high-temperature shape memory alloy with scandium microalloying. Metall Mater Trans A 41:2485CrossRef
22.
Zurück zum Zitat Buenconsejo PJS, Kim HY, Hosoda H, Miyazaki S (2009) Shape memory behavior of Ti–Ta and its potential as a high-temperature shape memory alloy. Acta Mater 57:1068CrossRef Buenconsejo PJS, Kim HY, Hosoda H, Miyazaki S (2009) Shape memory behavior of Ti–Ta and its potential as a high-temperature shape memory alloy. Acta Mater 57:1068CrossRef
23.
Zurück zum Zitat Otsuka K, Ren X (2001) Mechanism of martensite aging effects and new aspects. Mater Sci Eng A 312:207CrossRef Otsuka K, Ren X (2001) Mechanism of martensite aging effects and new aspects. Mater Sci Eng A 312:207CrossRef
24.
Zurück zum Zitat Smialek JL, Humphrey DL, Noebe RD (2010) Comparative oxidation kinetics of a NiPtTi high temperature shape memory alloy. Oxid Met 74:125CrossRef Smialek JL, Humphrey DL, Noebe RD (2010) Comparative oxidation kinetics of a NiPtTi high temperature shape memory alloy. Oxid Met 74:125CrossRef
25.
Zurück zum Zitat Brady MP, Yamamoto Y, Santella ML, Maziasz PJ, Pint BA, Liu C, Lu Z, Bei H (2008) The development of alumina-forming austenitic stainless steels for high-temperature structural use. JOM 60:12CrossRef Brady MP, Yamamoto Y, Santella ML, Maziasz PJ, Pint BA, Liu C, Lu Z, Bei H (2008) The development of alumina-forming austenitic stainless steels for high-temperature structural use. JOM 60:12CrossRef
26.
Zurück zum Zitat Olson GB (1997) Computational design of hierarchically structured materials. Science 277:1237CrossRef Olson GB (1997) Computational design of hierarchically structured materials. Science 277:1237CrossRef
27.
Zurück zum Zitat Office of Science and Technology, White House (2011) Materials genome initiative for global competitiveness. Office of Science and Technology, White House, Washington, DC Office of Science and Technology, White House (2011) Materials genome initiative for global competitiveness. Office of Science and Technology, White House, Washington, DC
28.
Zurück zum Zitat McCluskey PJ, Xiao K, Gregoire JM, Dale D, Vlassak JJ (2015) Application of in situ nano-scanning calorimetry and X-ray diffraction to characterize Ni–Ti–Hf high-temperature shape memory alloys. Thermochim Acta 603:53CrossRef McCluskey PJ, Xiao K, Gregoire JM, Dale D, Vlassak JJ (2015) Application of in situ nano-scanning calorimetry and X-ray diffraction to characterize Ni–Ti–Hf high-temperature shape memory alloys. Thermochim Acta 603:53CrossRef
29.
Zurück zum Zitat Cao S, Zhao J-C (2015) Application of dual-anneal diffusion multiples to the effective study of phase diagrams and phase transformations in the Fe–Cr–Ni system. Acta Mater 88:196CrossRef Cao S, Zhao J-C (2015) Application of dual-anneal diffusion multiples to the effective study of phase diagrams and phase transformations in the Fe–Cr–Ni system. Acta Mater 88:196CrossRef
30.
Zurück zum Zitat Saunders N (1998) CALPHAD: calculation of phase diagrams: a comprehensive. Pergamon, Oxford Saunders N (1998) CALPHAD: calculation of phase diagrams: a comprehensive. Pergamon, Oxford
31.
Zurück zum Zitat Kaufman L, Bernstein H (1970) Computer calculation of phase diagrams. With special reference to refractory metals. Academic Press, New York Kaufman L, Bernstein H (1970) Computer calculation of phase diagrams. With special reference to refractory metals. Academic Press, New York
32.
Zurück zum Zitat Kaufman L, Nesor H (1973) Theoretical approaches to the determination of phase diagrams. Annu Rev Mater Sci 3:1CrossRef Kaufman L, Nesor H (1973) Theoretical approaches to the determination of phase diagrams. Annu Rev Mater Sci 3:1CrossRef
33.
Zurück zum Zitat Olson G, Kuehmann C (2014) Materials genomics: from CALPHAD to flight. Scr Mater 70:25CrossRef Olson G, Kuehmann C (2014) Materials genomics: from CALPHAD to flight. Scr Mater 70:25CrossRef
34.
Zurück zum Zitat Lukas HL, Fries SG, Sundman B (2007) Computational thermodynamics: the Calphad method. Cambridge University Press, CambridgeCrossRef Lukas HL, Fries SG, Sundman B (2007) Computational thermodynamics: the Calphad method. Cambridge University Press, CambridgeCrossRef
35.
Zurück zum Zitat Arróyave R, Liu ZK (2006) Intermetallics in the Mg-Ca-Sn ternary system: structural, vibrational, and thermodynamic properties from first principles. Phys Rev B 74:174118CrossRef Arróyave R, Liu ZK (2006) Intermetallics in the Mg-Ca-Sn ternary system: structural, vibrational, and thermodynamic properties from first principles. Phys Rev B 74:174118CrossRef
36.
Zurück zum Zitat Zhou S, Arroyave R, Randall CA, Liu Z-K (2005) Thermodynamic modeling of the binary barium-oxygen system. J Am Ceram Soc 88:1943CrossRef Zhou S, Arroyave R, Randall CA, Liu Z-K (2005) Thermodynamic modeling of the binary barium-oxygen system. J Am Ceram Soc 88:1943CrossRef
37.
Zurück zum Zitat Arróyave R, Liu Z (2006) Thermodynamic modelling of the Zn-Zr system. Calphad 30:1CrossRef Arróyave R, Liu Z (2006) Thermodynamic modelling of the Zn-Zr system. Calphad 30:1CrossRef
38.
Zurück zum Zitat Venimadhav A, Soukiassian A, Tenne D, Li Q, Xi X, Schlom D, Arróyave R, Liu Z, Sun H, Pan X et al (2005) Structural and transport properties of epitaxial NaxCoO2 thin films. Appl Phys Lett 87:172104CrossRef Venimadhav A, Soukiassian A, Tenne D, Li Q, Xi X, Schlom D, Arróyave R, Liu Z, Sun H, Pan X et al (2005) Structural and transport properties of epitaxial NaxCoO2 thin films. Appl Phys Lett 87:172104CrossRef
39.
Zurück zum Zitat Arróyave R, Van De Walle A, Liu ZK (2006) First-principles calculations of the Zn-Zr system. Acta Mater 54:473CrossRef Arróyave R, Van De Walle A, Liu ZK (2006) First-principles calculations of the Zn-Zr system. Acta Mater 54:473CrossRef
40.
Zurück zum Zitat Perevoshchikova N, Appolaire B, Teixeira J, Aeby-Gautier E, Denis S (2012) A convex hull algorithm for a grid minimization of Gibbs energy as initial step in equilibrium calculations in two-phase multicomponent alloys. Comput Mater Sci 61:54CrossRef Perevoshchikova N, Appolaire B, Teixeira J, Aeby-Gautier E, Denis S (2012) A convex hull algorithm for a grid minimization of Gibbs energy as initial step in equilibrium calculations in two-phase multicomponent alloys. Comput Mater Sci 61:54CrossRef
41.
Zurück zum Zitat Lu X-G, Selleby M, Sundman B (2005) Assessments of molar volume and thermal expansion for selected bcc, fcc and hcp metallic elements. Calphad 29:68CrossRef Lu X-G, Selleby M, Sundman B (2005) Assessments of molar volume and thermal expansion for selected bcc, fcc and hcp metallic elements. Calphad 29:68CrossRef
42.
Zurück zum Zitat Hallstedt B, Dupin N, Hillert M, Höglund L, Lukas HL, Schuster JC, Solak N (2007) Thermodynamic models for crystalline phases. Composition dependent models for volume, bulk modulus and thermal expansion. Calphad 31:28CrossRef Hallstedt B, Dupin N, Hillert M, Höglund L, Lukas HL, Schuster JC, Solak N (2007) Thermodynamic models for crystalline phases. Composition dependent models for volume, bulk modulus and thermal expansion. Calphad 31:28CrossRef
43.
Zurück zum Zitat Saunders N, Miodownik AP (1998) CALPHAD (calculation of phase diagrams): a comprehensive guide. Pergamon, Oxford Saunders N, Miodownik AP (1998) CALPHAD (calculation of phase diagrams): a comprehensive guide. Pergamon, Oxford
44.
Zurück zum Zitat Tang W, Sundman B, Sandström R, Qiu C (1999) New modelling of the B2 phase and its associated martensitic transformation in the Ti–Ni system. Acta Mater 47:3457CrossRef Tang W, Sundman B, Sandström R, Qiu C (1999) New modelling of the B2 phase and its associated martensitic transformation in the Ti–Ni system. Acta Mater 47:3457CrossRef
45.
Zurück zum Zitat Tang W (1997) Thermodynamic study of the low-temperature phase B19′ and the martensitic transformation in near-equiatomic Ti-Ni shape memory alloys. Metall Mater Trans A 28:537CrossRef Tang W (1997) Thermodynamic study of the low-temperature phase B19′ and the martensitic transformation in near-equiatomic Ti-Ni shape memory alloys. Metall Mater Trans A 28:537CrossRef
46.
Zurück zum Zitat Povoden-Karadeniz E, Cirstea D, Lang P, Wojcik T, Kozeschnik E (2013) Thermodynamics of Ti–Ni shape memory alloys. Calphad 41:128CrossRef Povoden-Karadeniz E, Cirstea D, Lang P, Wojcik T, Kozeschnik E (2013) Thermodynamics of Ti–Ni shape memory alloys. Calphad 41:128CrossRef
47.
Zurück zum Zitat Cacciamani G, De Keyzer J, Ferro R, Klotz UE, Lacaze J, Wollants P (2006) Critical evaluation of the Fe–Ni, Fe–Ti and Fe–Ni–Ti alloy systems. Intermetallics 14:1312CrossRef Cacciamani G, De Keyzer J, Ferro R, Klotz UE, Lacaze J, Wollants P (2006) Critical evaluation of the Fe–Ni, Fe–Ti and Fe–Ni–Ti alloy systems. Intermetallics 14:1312CrossRef
48.
Zurück zum Zitat Tang W, Sandström R, Miyazaki S (2000) Phase equilibria in the pseudobinary Ti0.5Ni0.5-Ti0.5Cu0.5 system. J Phase Equilib 21:227CrossRef Tang W, Sandström R, Miyazaki S (2000) Phase equilibria in the pseudobinary Ti0.5Ni0.5-Ti0.5Cu0.5 system. J Phase Equilib 21:227CrossRef
49.
Zurück zum Zitat Sitepu H, Schmahl WW, Allafi JK, Eggeler G, Dlouhy A, Toebbens D, Tovar M (2002) Neutron diffraction phase analysis during thermal cycling of a Ni-rich NiTi shape memory alloy using the Rietveld method. Scr Mater 46:543CrossRef Sitepu H, Schmahl WW, Allafi JK, Eggeler G, Dlouhy A, Toebbens D, Tovar M (2002) Neutron diffraction phase analysis during thermal cycling of a Ni-rich NiTi shape memory alloy using the Rietveld method. Scr Mater 46:543CrossRef
50.
Zurück zum Zitat Ren XB, Otsuka K (2000) Why does the martensitic transformation temperature strongly depend on composition? Mater Sci Forum 327:429CrossRef Ren XB, Otsuka K (2000) Why does the martensitic transformation temperature strongly depend on composition? Mater Sci Forum 327:429CrossRef
51.
Zurück zum Zitat Hillert M, Jarl M (1978) A model for alloying in ferromagnetic metals. Calphad 2:227CrossRef Hillert M, Jarl M (1978) A model for alloying in ferromagnetic metals. Calphad 2:227CrossRef
52.
Zurück zum Zitat Hillert M (2001) The compound energy formalism. J Alloys Compd 320:161CrossRef Hillert M (2001) The compound energy formalism. J Alloys Compd 320:161CrossRef
53.
Zurück zum Zitat Santhy K, Kumar KH (2015) Thermodynamic reassessment of Nb-Ni-Ti system with order–disorder model. J Alloys Compd 619:733CrossRef Santhy K, Kumar KH (2015) Thermodynamic reassessment of Nb-Ni-Ti system with order–disorder model. J Alloys Compd 619:733CrossRef
54.
Zurück zum Zitat Palumbo M (2008) Thermodynamics of martensitic transformations in the framework of the CALPHAD approach. Calphad 32:693CrossRef Palumbo M (2008) Thermodynamics of martensitic transformations in the framework of the CALPHAD approach. Calphad 32:693CrossRef
55.
Zurück zum Zitat Cotes S, Baruj A, Sade M, Guillermet AF (1995) Thermodynamics of the g/e martensitic transformation in Fe-Mn alloys: modelling of the driving force, and calculation of the MS and As. J Phys IV 5:83 Cotes S, Baruj A, Sade M, Guillermet AF (1995) Thermodynamics of the g/e martensitic transformation in Fe-Mn alloys: modelling of the driving force, and calculation of the MS and As. J Phys IV 5:83
56.
Zurück zum Zitat Ghosh G, Olson G (1994) Kinetics of FCC → BCC heterogeneous martensitic nucleation—I. The critical driving force for athermal nucleation. Acta Metall Mater 42:3361CrossRef Ghosh G, Olson G (1994) Kinetics of FCC → BCC heterogeneous martensitic nucleation—I. The critical driving force for athermal nucleation. Acta Metall Mater 42:3361CrossRef
57.
Zurück zum Zitat Borgenstam A, Hillert M (2000) Nucleation of isothermal martensite. Acta Mater 48:2777CrossRef Borgenstam A, Hillert M (2000) Nucleation of isothermal martensite. Acta Mater 48:2777CrossRef
58.
Zurück zum Zitat Ren X, Otsuka K (2000) Universal symmetry property of point defects in crystals. Phys Rev Lett 85:1016CrossRef Ren X, Otsuka K (2000) Universal symmetry property of point defects in crystals. Phys Rev Lett 85:1016CrossRef
59.
Zurück zum Zitat Ren X, Otsuka K (1997) Origin of rubber-like behaviour in metal alloys. Nature 389:579CrossRef Ren X, Otsuka K (1997) Origin of rubber-like behaviour in metal alloys. Nature 389:579CrossRef
60.
Zurück zum Zitat Sarkar S, Ren X, Otsuka K (2005) Evidence for strain glass in the ferroelastic-martensitic system Ti50 − xNi50 + x. Phys Rev Lett 95:205702CrossRef Sarkar S, Ren X, Otsuka K (2005) Evidence for strain glass in the ferroelastic-martensitic system Ti50 − xNi50 + x. Phys Rev Lett 95:205702CrossRef
61.
Zurück zum Zitat Cai W, Otsuka K, Asai M (1999) Martensite aging effect in Ti–Pd and Ti–Pd–Ni high temperature shape memory alloys. Mater Trans JIM 40:895CrossRef Cai W, Otsuka K, Asai M (1999) Martensite aging effect in Ti–Pd and Ti–Pd–Ni high temperature shape memory alloys. Mater Trans JIM 40:895CrossRef
62.
Zurück zum Zitat Dogan E, Karaman I, Chumlyakov Y, Luo Z (2011) Microstructure and martensitic transformation characteristics of CoNiGa high temperature shape memory alloys. Acta Mater 59:1168CrossRef Dogan E, Karaman I, Chumlyakov Y, Luo Z (2011) Microstructure and martensitic transformation characteristics of CoNiGa high temperature shape memory alloys. Acta Mater 59:1168CrossRef
63.
Zurück zum Zitat Manca A, Shelyakov AV, Airoldi G (2003) Ageing in parent phase and Martensite stabilization in a Ni50Ti30Hf20 alloy. Mater Trans 44:1219CrossRef Manca A, Shelyakov AV, Airoldi G (2003) Ageing in parent phase and Martensite stabilization in a Ni50Ti30Hf20 alloy. Mater Trans 44:1219CrossRef
64.
Zurück zum Zitat Khovaylo V, Kainuma R, Ishida K, Omori T, Miki H, Takagi T, Datesman A (2008) New aspects of martensite stabilization in Ni–Mn–Ga high-temperature shape memory alloy. Philos Mag 88:865CrossRef Khovaylo V, Kainuma R, Ishida K, Omori T, Miki H, Takagi T, Datesman A (2008) New aspects of martensite stabilization in Ni–Mn–Ga high-temperature shape memory alloy. Philos Mag 88:865CrossRef
65.
Zurück zum Zitat Najafabadi R, Srolovitz D, Ma E, Atzmon M (1993) Thermodynamic properties of metastable Ag-Cu alloys. J Appl Phys 74:3144CrossRef Najafabadi R, Srolovitz D, Ma E, Atzmon M (1993) Thermodynamic properties of metastable Ag-Cu alloys. J Appl Phys 74:3144CrossRef
66.
Zurück zum Zitat Aliravci CA, Pekgüleryüz MÖ (1998) Calculation of phase diagrams for the metastable Al-Fe phases forming in direct-chill (DC)-cast aluminum alloy ingots. Calphad 22:147CrossRef Aliravci CA, Pekgüleryüz MÖ (1998) Calculation of phase diagrams for the metastable Al-Fe phases forming in direct-chill (DC)-cast aluminum alloy ingots. Calphad 22:147CrossRef
67.
Zurück zum Zitat Bajaj S, Haverty MG, Arróyave R, Shankar S (2015) Phase stability in nanoscale material systems: extension from bulk phase diagrams. Nanoscale 7:9868CrossRef Bajaj S, Haverty MG, Arróyave R, Shankar S (2015) Phase stability in nanoscale material systems: extension from bulk phase diagrams. Nanoscale 7:9868CrossRef
68.
Zurück zum Zitat Khvan AV, Cheverikin VV, Dinsdale AT, Watson A, Levchenko VV, Zolotorevskiy VS (2015) Formation of metastable phases during solidification of Al–3.2 wt% Mn. J Alloys Compd 622:223CrossRef Khvan AV, Cheverikin VV, Dinsdale AT, Watson A, Levchenko VV, Zolotorevskiy VS (2015) Formation of metastable phases during solidification of Al–3.2 wt% Mn. J Alloys Compd 622:223CrossRef
69.
Zurück zum Zitat Frenzel J, George EP, Dlouhy A, Somsen C, Wagner M-X, Eggeler G (2010) Influence of Ni on martensitic phase transformations in NiTi shape memory alloys. Acta Mater 58:3444CrossRef Frenzel J, George EP, Dlouhy A, Somsen C, Wagner M-X, Eggeler G (2010) Influence of Ni on martensitic phase transformations in NiTi shape memory alloys. Acta Mater 58:3444CrossRef
70.
Zurück zum Zitat Eggeler G, Khalil-Allafi J, Gollerthan S, Somsen C, Schmahl W, Sheptyakov D (2005) On the effect of aging on martensitic transformations in Ni-rich NiTi shape memory alloys. Smart Mater Struct 14:S186CrossRef Eggeler G, Khalil-Allafi J, Gollerthan S, Somsen C, Schmahl W, Sheptyakov D (2005) On the effect of aging on martensitic transformations in Ni-rich NiTi shape memory alloys. Smart Mater Struct 14:S186CrossRef
71.
Zurück zum Zitat Weighardt S, Maier H, Chumlyakov Y (2013) Dependence of functional degradation on crystallographic orientation in NiTi shape memory alloys aged under stress. J Alloys Compd 577:S219CrossRef Weighardt S, Maier H, Chumlyakov Y (2013) Dependence of functional degradation on crystallographic orientation in NiTi shape memory alloys aged under stress. J Alloys Compd 577:S219CrossRef
72.
Zurück zum Zitat Oikawa K, Ota T, Imano Y, Omori T, Kainuma R, Ishida K (2006) Phase equilibria and phase transformation of Co–Ni–Ga ferromagnetic shape memory alloy system. J Phase Equilib Diffus 27:75CrossRef Oikawa K, Ota T, Imano Y, Omori T, Kainuma R, Ishida K (2006) Phase equilibria and phase transformation of Co–Ni–Ga ferromagnetic shape memory alloy system. J Phase Equilib Diffus 27:75CrossRef
73.
Zurück zum Zitat Dadda J, Maier H, Karaman I, Chumlyakov YI (2009) Cyclic deformation and austenite stabilization in Co35Ni35Al30 single crystalline high-temperature shape memory alloys. Acta Mater 57:6123CrossRef Dadda J, Maier H, Karaman I, Chumlyakov YI (2009) Cyclic deformation and austenite stabilization in Co35Ni35Al30 single crystalline high-temperature shape memory alloys. Acta Mater 57:6123CrossRef
74.
Zurück zum Zitat Chari A, Dogan E, Talapatra A, Chivukula AR, Garay A, Karaman I, Arróyave R (2014) Computational thermodynamics of the CoNiGa high temperature shape memory alloy system. Calphad 45:167CrossRef Chari A, Dogan E, Talapatra A, Chivukula AR, Garay A, Karaman I, Arróyave R (2014) Computational thermodynamics of the CoNiGa high temperature shape memory alloy system. Calphad 45:167CrossRef
75.
Zurück zum Zitat Galvan E, Malak Jr RJ, Gibbons S, Arroyave R (2014) Constraint satisfaction approach to the design of multi-component, multi-phase alloys. In: ASME 2014 international design engineering technical conferences and computers and information in engineering conference. American Society of Mechanical Engineers, New York, p V02BT03A010 Galvan E, Malak Jr RJ, Gibbons S, Arroyave R (2014) Constraint satisfaction approach to the design of multi-component, multi-phase alloys. In: ASME 2014 international design engineering technical conferences and computers and information in engineering conference. American Society of Mechanical Engineers, New York, p V02BT03A010
76.
Zurück zum Zitat De Keyzer J, Cacciamani G, Dupin N, Wollants P (2009) Thermodynamic modeling and optimization of the Fe–Ni–Ti system. Calphad 33:109CrossRef De Keyzer J, Cacciamani G, Dupin N, Wollants P (2009) Thermodynamic modeling and optimization of the Fe–Ni–Ti system. Calphad 33:109CrossRef
77.
Zurück zum Zitat Zhu W, Duarte L, Leinenbach C (2014) Experimental study and thermodynamic assessment of the Cu–Ni–Ti system. Calphad 47:9CrossRef Zhu W, Duarte L, Leinenbach C (2014) Experimental study and thermodynamic assessment of the Cu–Ni–Ti system. Calphad 47:9CrossRef
78.
Zurück zum Zitat Qiu A-T, Liu L-J, Wei P, Lu X-G, Li C-H (2011) Calculation of phase diagram of Ti-Ni-O system and application to deoxidation of TiNi alloy. Trans Nonferrous Met Soc China 21:1808CrossRef Qiu A-T, Liu L-J, Wei P, Lu X-G, Li C-H (2011) Calculation of phase diagram of Ti-Ni-O system and application to deoxidation of TiNi alloy. Trans Nonferrous Met Soc China 21:1808CrossRef
79.
Zurück zum Zitat Matsumoto S, Tokunaga T, Ohtani H, Hasebe M (2005) Thermodynamic analysis of the phase equilibria of the Nb-Ni-Ti system. Mater Trans 46:2920CrossRef Matsumoto S, Tokunaga T, Ohtani H, Hasebe M (2005) Thermodynamic analysis of the phase equilibria of the Nb-Ni-Ti system. Mater Trans 46:2920CrossRef
80.
Zurück zum Zitat Wang C, Guo Y, Lu Y, Liu X (2014) Thermodynamic assessment of the Ti-Ir system. J Phase Equilib Diffus 35:269CrossRef Wang C, Guo Y, Lu Y, Liu X (2014) Thermodynamic assessment of the Ti-Ir system. J Phase Equilib Diffus 35:269CrossRef
81.
Zurück zum Zitat Hafner J (2000) Atomic-scale Computational materials science. Acta Mater 48:71CrossRef Hafner J (2000) Atomic-scale Computational materials science. Acta Mater 48:71CrossRef
82.
Zurück zum Zitat Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133CrossRef Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133CrossRef
83.
Zurück zum Zitat Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864CrossRef Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864CrossRef
84.
Zurück zum Zitat Kohn W, Becke AD, Parr RG (1996) Density functional theory of electronic structure. J Phys Chem 100:974CrossRef Kohn W, Becke AD, Parr RG (1996) Density functional theory of electronic structure. J Phys Chem 100:974CrossRef
85.
Zurück zum Zitat Soler JM, Artacho E, Gale JD, García A, Junquera J, Ordejón P, Sánchez-Portal D (2002) The SIESTA method for ab initio order-N materials simulation. J Phys Condens Matter 14:2745CrossRef Soler JM, Artacho E, Gale JD, García A, Junquera J, Ordejón P, Sánchez-Portal D (2002) The SIESTA method for ab initio order-N materials simulation. J Phys Condens Matter 14:2745CrossRef
86.
Zurück zum Zitat Kresse G (2009) VASP, Vienna ab-initio package simulation, vol 2007. Vienna University, Vienna Kresse G (2009) VASP, Vienna ab-initio package simulation, vol 2007. Vienna University, Vienna
87.
Zurück zum Zitat Hafner J (2007) Materials simulations using VASP—a quantum perspective to materials science. Comput Phys Commun 177:6CrossRef Hafner J (2007) Materials simulations using VASP—a quantum perspective to materials science. Comput Phys Commun 177:6CrossRef
88.
Zurück zum Zitat Gonze X, Beuken JM, Caracas R, Detraux F, Fuchs M, Rignanese GM, Sindic L, Verstraete M, Zerah G, Jollet F (2002) First-principles computation of material properties: the ABINIT software project. Comput Mater Sci 25:478CrossRef Gonze X, Beuken JM, Caracas R, Detraux F, Fuchs M, Rignanese GM, Sindic L, Verstraete M, Zerah G, Jollet F (2002) First-principles computation of material properties: the ABINIT software project. Comput Mater Sci 25:478CrossRef
89.
Zurück zum Zitat Turchi PE, Abrikosov IA, Burton B, Fries SG, Grimvall G, Kaufman L, Korzhavyi P, Manga VR, Ohno M, Pisch A (2007) Interface between quantum-mechanical-based approaches, experiments, and CALPHAD methodology. Calphad 31:4CrossRef Turchi PE, Abrikosov IA, Burton B, Fries SG, Grimvall G, Kaufman L, Korzhavyi P, Manga VR, Ohno M, Pisch A (2007) Interface between quantum-mechanical-based approaches, experiments, and CALPHAD methodology. Calphad 31:4CrossRef
90.
Zurück zum Zitat Bozzolo G, Ferrante J, Smith JR (1992) Method for calculating alloy energetics. Phys Rev B 45:493CrossRef Bozzolo G, Ferrante J, Smith JR (1992) Method for calculating alloy energetics. Phys Rev B 45:493CrossRef
91.
Zurück zum Zitat Bozzolo G, Noebe RD, Mosca HO (2005) Site preference of ternary alloying additions to NiTi: Fe, Pt, Pd, Au, Al, Cu, Zr and Hf. J Alloys Compd 389:80CrossRef Bozzolo G, Noebe RD, Mosca HO (2005) Site preference of ternary alloying additions to NiTi: Fe, Pt, Pd, Au, Al, Cu, Zr and Hf. J Alloys Compd 389:80CrossRef
92.
Zurück zum Zitat Bozzolo G, Mosca HO, Noebe RD (2007) Phase structure and site preference behavior of ternary alloying additions to PdTi and PtTi shape-memory alloys. Intermetallics 15:901CrossRef Bozzolo G, Mosca HO, Noebe RD (2007) Phase structure and site preference behavior of ternary alloying additions to PdTi and PtTi shape-memory alloys. Intermetallics 15:901CrossRef
93.
Zurück zum Zitat Bozzolo G, Mosca HO, del Grosso MF (2008) Energy of formation, lattice parameter and bulk modulus of (Ni, X) Ti alloys with X = Fe, Pd, Pt, Au, Al, Cu, Zr, Hf. Intermetallics 16:668CrossRef Bozzolo G, Mosca HO, del Grosso MF (2008) Energy of formation, lattice parameter and bulk modulus of (Ni, X) Ti alloys with X = Fe, Pd, Pt, Au, Al, Cu, Zr, Hf. Intermetallics 16:668CrossRef
94.
Zurück zum Zitat Mosca H, Bozzolo G, del Grosso M (2012) Atomistic modeling of ternary additions to NiTi and quaternary additions to Ni–Ti–Pd, Ni–Ti–Pt and Ni–Ti–Hf shape memory alloys. Phys B 407:3244CrossRef Mosca H, Bozzolo G, del Grosso M (2012) Atomistic modeling of ternary additions to NiTi and quaternary additions to Ni–Ti–Pd, Ni–Ti–Pt and Ni–Ti–Hf shape memory alloys. Phys B 407:3244CrossRef
95.
Zurück zum Zitat Lu J, Hu Q, Wang L, Li Y, Xu D, Yang R (2007) Point defects and their interaction in TiNi from first-principles calculations. Phys Rev B 75:094108CrossRef Lu J, Hu Q, Wang L, Li Y, Xu D, Yang R (2007) Point defects and their interaction in TiNi from first-principles calculations. Phys Rev B 75:094108CrossRef
96.
Zurück zum Zitat Shi H, Frenzel J, Martinez G, Van Rompaey S, Bakulin A, Kulkova S, Van Aert S, Schryvers D (2014) Site occupation of Nb atoms in ternary Ni–Ti–Nb shape memory alloys. Acta Mater 74:85CrossRef Shi H, Frenzel J, Martinez G, Van Rompaey S, Bakulin A, Kulkova S, Van Aert S, Schryvers D (2014) Site occupation of Nb atoms in ternary Ni–Ti–Nb shape memory alloys. Acta Mater 74:85CrossRef
97.
Zurück zum Zitat Moitra A, Solanki KN, Horstemeyer M (2011) The location of atomic hydrogen in NiTi alloy: a first principles study. Comput Mater Sci 50:820CrossRef Moitra A, Solanki KN, Horstemeyer M (2011) The location of atomic hydrogen in NiTi alloy: a first principles study. Comput Mater Sci 50:820CrossRef
98.
Zurück zum Zitat Ki Yokoyama (2004) Eguchi T, Asaoka K, Nagumo M. Effect of constituent phase of Ni–Ti shape memory alloy on susceptibility to hydrogen embrittlement. Mater Sci Eng A 374:177CrossRef Ki Yokoyama (2004) Eguchi T, Asaoka K, Nagumo M. Effect of constituent phase of Ni–Ti shape memory alloy on susceptibility to hydrogen embrittlement. Mater Sci Eng A 374:177CrossRef
99.
Zurück zum Zitat Singh N, Talapatra A, Junkaew A, Duong T, Gibbons S, Li S, Thawabi HS, Olivos E, Arroyave R (2015) Effect of ternary additions to structural properties of NiTi alloys. Comput Mater Sci (accepted) Singh N, Talapatra A, Junkaew A, Duong T, Gibbons S, Li S, Thawabi HS, Olivos E, Arroyave R (2015) Effect of ternary additions to structural properties of NiTi alloys. Comput Mater Sci (accepted)
100.
Zurück zum Zitat Frenzel J, Wieczorek A, Opahle I, Maaß B, Drautz R, Eggeler G (2015) On the effect of alloy composition on martensite start temperatures and latent heats in Ni–Ti-based shape memory alloys. Acta Mater 90:213CrossRef Frenzel J, Wieczorek A, Opahle I, Maaß B, Drautz R, Eggeler G (2015) On the effect of alloy composition on martensite start temperatures and latent heats in Ni–Ti-based shape memory alloys. Acta Mater 90:213CrossRef
101.
Zurück zum Zitat Hickel T, Uijttewaal M, Al-Zubi A, Dutta B, Grabowski B, Neugebauer J (2012) Ab initio-based prediction of phase diagrams: application to magnetic shape memory alloys. Adv Eng Mater 14:547CrossRef Hickel T, Uijttewaal M, Al-Zubi A, Dutta B, Grabowski B, Neugebauer J (2012) Ab initio-based prediction of phase diagrams: application to magnetic shape memory alloys. Adv Eng Mater 14:547CrossRef
102.
Zurück zum Zitat Siewert M, Gruner M, Dannenberg A, Chakrabarti A, Herper H, Wuttig M, Barman S, Singh S, Al-Zubi A, Hickel T (2011) Designing shape-memory Heusler alloys from first-principles. Appl Phys Lett 99:191904CrossRef Siewert M, Gruner M, Dannenberg A, Chakrabarti A, Herper H, Wuttig M, Barman S, Singh S, Al-Zubi A, Hickel T (2011) Designing shape-memory Heusler alloys from first-principles. Appl Phys Lett 99:191904CrossRef
103.
Zurück zum Zitat Boettinger WJ, Warren JA, Beckermann C, Karma A (2002) Phase-field simulations of solidification. Annu Rev Mater Res 32:163CrossRef Boettinger WJ, Warren JA, Beckermann C, Karma A (2002) Phase-field simulations of solidification. Annu Rev Mater Res 32:163CrossRef
105.
Zurück zum Zitat Guyer JE, Boettinger WJ, Warren JA, McFadden GB (2004) Phase field modeling of electrochemistry. I. Equilibrium. Phys Rev E 69:021603/1 Guyer JE, Boettinger WJ, Warren JA, McFadden GB (2004) Phase field modeling of electrochemistry. I. Equilibrium. Phys Rev E 69:021603/1
106.
Zurück zum Zitat Cahn JW, Hilliard JE (1958) Free energy of a nonuniform system I. Interfacial free energy. J Chem Phys 28:258CrossRef Cahn JW, Hilliard JE (1958) Free energy of a nonuniform system I. Interfacial free energy. J Chem Phys 28:258CrossRef
107.
Zurück zum Zitat Allen SM, Cahn JW (1979) A microscope theory of antiphase boundary and its application to antiphase domain coarsening. Acta Metall 27:1085CrossRef Allen SM, Cahn JW (1979) A microscope theory of antiphase boundary and its application to antiphase domain coarsening. Acta Metall 27:1085CrossRef
108.
Zurück zum Zitat Jin YM (2013) Phase field modeling of current density distribution and effective electrical conductivity in complex microstructures. Appl Phys Lett 103:021906CrossRef Jin YM (2013) Phase field modeling of current density distribution and effective electrical conductivity in complex microstructures. Appl Phys Lett 103:021906CrossRef
109.
Zurück zum Zitat Jin YM (2012) Phase-field microelastic modeling of microstructure evolutions in free-standing thin films. Acta Mater 60:6547–6554CrossRef Jin YM (2012) Phase-field microelastic modeling of microstructure evolutions in free-standing thin films. Acta Mater 60:6547–6554CrossRef
110.
Zurück zum Zitat Jin YM (2011) Competitive roles of elastic and magnetic interactions in twin boundary behaviors of magnetic shape memory alloys. Appl Phys Lett 99:062507CrossRef Jin YM (2011) Competitive roles of elastic and magnetic interactions in twin boundary behaviors of magnetic shape memory alloys. Appl Phys Lett 99:062507CrossRef
111.
Zurück zum Zitat Jin YM (2009) Effects of twin boundary mobility on domain microstructure evolution in magnetic shape memory alloys: phase field simulation. Appl Phys Lett 94:062508CrossRef Jin YM (2009) Effects of twin boundary mobility on domain microstructure evolution in magnetic shape memory alloys: phase field simulation. Appl Phys Lett 94:062508CrossRef
112.
Zurück zum Zitat Wang J, Leinenbach C, Liu H, Liu L, Roth M, Jin Z (2009) Re-assessment of diffusion mobilities in the face-centered cubic Cu–Sn alloys. Calphad 33:704CrossRef Wang J, Leinenbach C, Liu H, Liu L, Roth M, Jin Z (2009) Re-assessment of diffusion mobilities in the face-centered cubic Cu–Sn alloys. Calphad 33:704CrossRef
113.
Zurück zum Zitat Jin Y, Wang Y, Khachaturyan A (2001) Three-dimensional phase field microelasticity theory and modeling of multiple cracks and voids. Appl Phys Lett 79:3071CrossRef Jin Y, Wang Y, Khachaturyan A (2001) Three-dimensional phase field microelasticity theory and modeling of multiple cracks and voids. Appl Phys Lett 79:3071CrossRef
114.
Zurück zum Zitat Jin Y, Khachaturyan A (2001) Phase field microelasticity theory of dislocation dynamics in a polycrystal: model and three-dimensional simulations. Philos Mag Lett 81:607CrossRef Jin Y, Khachaturyan A (2001) Phase field microelasticity theory of dislocation dynamics in a polycrystal: model and three-dimensional simulations. Philos Mag Lett 81:607CrossRef
115.
Zurück zum Zitat Jin Y, Artemev A, Khachaturyan A (2001) Three-dimensional phase field model of low-symmetry martensitic transformation in polycrystal: simulation of Xsi martensite in Au-Cd alloys. Acta Mater 49:2309CrossRef Jin Y, Artemev A, Khachaturyan A (2001) Three-dimensional phase field model of low-symmetry martensitic transformation in polycrystal: simulation of Xsi martensite in Au-Cd alloys. Acta Mater 49:2309CrossRef
116.
Zurück zum Zitat Artemev A, Jin Y, Khachaturyan A (2002) Three-dimensional phase field model and simulation of cubic → tetragonal martensitic transformation in polycrystals. Philos Mag A 82:1249 Artemev A, Jin Y, Khachaturyan A (2002) Three-dimensional phase field model and simulation of cubic → tetragonal martensitic transformation in polycrystals. Philos Mag A 82:1249
117.
Zurück zum Zitat Zhang J, Chen L (2005) Phase-field model for ferromagnetic shape-memory alloys. Philos Mag Lett 85:533CrossRef Zhang J, Chen L (2005) Phase-field model for ferromagnetic shape-memory alloys. Philos Mag Lett 85:533CrossRef
118.
Zurück zum Zitat Li L, Li J, Shu Y, Chen H, Yen J (2008) Magnetoelastic domains and magnetic field-induced strains in ferromagnetic shape memory alloys by phase-field simulation. Appl Phys Lett 92:172504CrossRef Li L, Li J, Shu Y, Chen H, Yen J (2008) Magnetoelastic domains and magnetic field-induced strains in ferromagnetic shape memory alloys by phase-field simulation. Appl Phys Lett 92:172504CrossRef
119.
Zurück zum Zitat Kamachali RD, Borukhovich E, Hatcher N, Steinbach I (2014) DFT-supported phase-field study on the effect of mechanically driven fluxes in Ni4Ti3 precipitation. Modell Simul Mater Sci Eng 22:034003CrossRef Kamachali RD, Borukhovich E, Hatcher N, Steinbach I (2014) DFT-supported phase-field study on the effect of mechanically driven fluxes in Ni4Ti3 precipitation. Modell Simul Mater Sci Eng 22:034003CrossRef
120.
Zurück zum Zitat Ke C, Cao S, Zhang X (2014) Three-dimensional phase field simulation of the morphology and growth kinetics of Ni4Ti3 precipitates in a NiTi alloy. Modell Simul Mater Sci Eng 22:055018CrossRef Ke C, Cao S, Zhang X (2014) Three-dimensional phase field simulation of the morphology and growth kinetics of Ni4Ti3 precipitates in a NiTi alloy. Modell Simul Mater Sci Eng 22:055018CrossRef
121.
Zurück zum Zitat Guo W, Steinbach I, Somsen C, Eggeler G (2011) On the effect of superimposed external stresses on the nucleation and growth of Ni 4 Ti 3 particles: a parametric phase field study. Acta Mater 59:3287CrossRef Guo W, Steinbach I, Somsen C, Eggeler G (2011) On the effect of superimposed external stresses on the nucleation and growth of Ni 4 Ti 3 particles: a parametric phase field study. Acta Mater 59:3287CrossRef
122.
Zurück zum Zitat Ke C, Cao S, Zhang X (2015) Phase field modeling of Ni-concentration distribution behavior around Ni4Ti3 precipitates in NiTi alloys. Comput Mater Sci 105:55CrossRef Ke C, Cao S, Zhang X (2015) Phase field modeling of Ni-concentration distribution behavior around Ni4Ti3 precipitates in NiTi alloys. Comput Mater Sci 105:55CrossRef
123.
Zurück zum Zitat Mamivand M, Zaeem MA, El Kadiri H (2013) A review on phase field modeling of martensitic phase transformation. Comput Mater Sci 77:304CrossRef Mamivand M, Zaeem MA, El Kadiri H (2013) A review on phase field modeling of martensitic phase transformation. Comput Mater Sci 77:304CrossRef
124.
Zurück zum Zitat Zhou N, Shen C, Wagner M-X, Eggeler G, Mills M, Wang Y (2010) Effect of Ni 4 Ti 3 precipitation on martensitic transformation in Ti–Ni. Acta Mater 58:6685CrossRef Zhou N, Shen C, Wagner M-X, Eggeler G, Mills M, Wang Y (2010) Effect of Ni 4 Ti 3 precipitation on martensitic transformation in Ti–Ni. Acta Mater 58:6685CrossRef
125.
Zurück zum Zitat Kampmann R, Wagner R, Haasen P, Gerold V, Wagner R, Ashby M (1984) Decomposition of alloys: the early stages. In: Haasen P, Gerold V, Wagner R, Ashby MF (eds) 2nd Acta Scripta Metallurgica conference. Pergamon Press, Oxford, p 91 Kampmann R, Wagner R, Haasen P, Gerold V, Wagner R, Ashby M (1984) Decomposition of alloys: the early stages. In: Haasen P, Gerold V, Wagner R, Ashby MF (eds) 2nd Acta Scripta Metallurgica conference. Pergamon Press, Oxford, p 91
126.
Zurück zum Zitat Kozeschnik E, Svoboda J, Fischer F (2004) Modified evolution equations for the precipitation kinetics of complex phases in multi-component systems. Calphad 28:379CrossRef Kozeschnik E, Svoboda J, Fischer F (2004) Modified evolution equations for the precipitation kinetics of complex phases in multi-component systems. Calphad 28:379CrossRef
127.
Zurück zum Zitat Kozeschnik E, Svoboda J, Fratzl P, Fischer F (2004) Modelling of kinetics in multi-component multi-phase systems with spherical precipitates: II: numerical solution and application. Mater Sci Eng A 385:157 Kozeschnik E, Svoboda J, Fratzl P, Fischer F (2004) Modelling of kinetics in multi-component multi-phase systems with spherical precipitates: II: numerical solution and application. Mater Sci Eng A 385:157
128.
Zurück zum Zitat Svoboda J, Fischer F, Fratzl P, Kozeschnik E (2004) Modelling of kinetics in multi-component multi-phase systems with spherical precipitates: I: Theory. Mater Sci Eng A 385:166 Svoboda J, Fischer F, Fratzl P, Kozeschnik E (2004) Modelling of kinetics in multi-component multi-phase systems with spherical precipitates: I: Theory. Mater Sci Eng A 385:166
129.
Zurück zum Zitat Russell KC (1980) Nucleation in solids: the induction and steady state effects. Adv Colloid Interface Sci 13:205CrossRef Russell KC (1980) Nucleation in solids: the induction and steady state effects. Adv Colloid Interface Sci 13:205CrossRef
130.
Zurück zum Zitat Kozeschnik E, Janssens K, Bataille C (2012) Modeling solid-state precipitation. Momentum Press, New YorkCrossRef Kozeschnik E, Janssens K, Bataille C (2012) Modeling solid-state precipitation. Momentum Press, New YorkCrossRef
131.
Zurück zum Zitat Johnson L, Arróyave R (2015) Coupling precipitation simulations and mesh adaptive direct search for the prescription of heat treatments in precipitation-engineered shape memory alloys (in preparation) Johnson L, Arróyave R (2015) Coupling precipitation simulations and mesh adaptive direct search for the prescription of heat treatments in precipitation-engineered shape memory alloys (in preparation)
132.
Zurück zum Zitat Zel’dovich V, Sobyanina G, Pushin V (1997) Bimodal size distribution of Ti3Ni4 particles and martensitic transformations in slowly cooled nickel-rich Ti Ni alloys. Scr Mater 37:79CrossRef Zel’dovich V, Sobyanina G, Pushin V (1997) Bimodal size distribution of Ti3Ni4 particles and martensitic transformations in slowly cooled nickel-rich Ti Ni alloys. Scr Mater 37:79CrossRef
133.
Zurück zum Zitat Baxevanis T, Cox A, Lagoudas D (2014) Micromechanics of precipitated near-equiatomic Ni-rich NiTi shape memory alloys. Acta Mech 225:1167CrossRef Baxevanis T, Cox A, Lagoudas D (2014) Micromechanics of precipitated near-equiatomic Ni-rich NiTi shape memory alloys. Acta Mech 225:1167CrossRef
134.
Zurück zum Zitat Radmilovic V, Ophus C, Marquis E, Rossell M, Tolley A, Gautam A, Asta M, Dahmen U (2011) Highly monodisperse core–shell particles created by solid-state reactions. Nat Mater 10:710CrossRef Radmilovic V, Ophus C, Marquis E, Rossell M, Tolley A, Gautam A, Asta M, Dahmen U (2011) Highly monodisperse core–shell particles created by solid-state reactions. Nat Mater 10:710CrossRef
135.
Zurück zum Zitat Pint BA, Distefano JR, Wright IG (2006) Oxidation resistance: one barrier to moving beyond Ni-base superalloys. Mater Sci Eng A 415:255CrossRef Pint BA, Distefano JR, Wright IG (2006) Oxidation resistance: one barrier to moving beyond Ni-base superalloys. Mater Sci Eng A 415:255CrossRef
136.
Zurück zum Zitat Sato A, Chiu Y-L, Reed R (2011) Oxidation of nickel-based single-crystal superalloys for industrial gas turbine applications. Acta Mater 59:225CrossRef Sato A, Chiu Y-L, Reed R (2011) Oxidation of nickel-based single-crystal superalloys for industrial gas turbine applications. Acta Mater 59:225CrossRef
Metadaten
Titel
Computational Thermodynamics and Kinetics-Based ICME Framework for High-Temperature Shape Memory Alloys
verfasst von
Raymundo Arróyave
Anjana Talapatra
Luke Johnson
Navdeep Singh
Ji Ma
Ibrahim Karaman
Publikationsdatum
01.12.2015
Verlag
Springer International Publishing
Erschienen in
Shape Memory and Superelasticity / Ausgabe 4/2015
Print ISSN: 2199-384X
Elektronische ISSN: 2199-3858
DOI
https://doi.org/10.1007/s40830-015-0044-x

Weitere Artikel der Ausgabe 4/2015

Shape Memory and Superelasticity 4/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.