Skip to main content
Erschienen in: Shape Memory and Superelasticity 4/2015

01.12.2015

Directions for High-Temperature Shape Memory Alloys’ Improvement: Straight Way to High-Entropy Materials?

verfasst von: G. S. Firstov, T. A. Kosorukova, Yu N. Koval, P. A. Verhovlyuk

Erschienen in: Shape Memory and Superelasticity | Ausgabe 4/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nowadays, all thermo-mechanical effects, associated with the martensitic structural phase transitions, are still in the focus of scientists and engineers, especially once these phenomena are taking place at elevated temperatures. The list of the materials, undergoing high-temperature martensitic transformation, is constantly widening. Still, industrial application of these materials, called high-temperature shape memory alloys, is far enough due to the lack of understanding of the peculiarities of the high-temperature martensitic transformation and shape memory effect. The present work attempts to show how the development of the proper directions for high-temperature shape memory alloys’ improvement might lead to the creation of essentially new functional materials.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Duerig TW, Melton KN, Wayman CM (1990) Engineering aspects of shape memory alloys. Butterworth-Heinemann Ltd., London Duerig TW, Melton KN, Wayman CM (1990) Engineering aspects of shape memory alloys. Butterworth-Heinemann Ltd., London
2.
Zurück zum Zitat Otsuka K, Wayman CM (1998) Shape memory materials. University Press, Cambridge Otsuka K, Wayman CM (1998) Shape memory materials. University Press, Cambridge
3.
Zurück zum Zitat Buehler WJ, Gilfrich JW, Wiley RC (1963) Effect of low-temperature phase changes on the mechanical properties of alloys near composition TiNi. J Appl Phys 34:1475–1477CrossRef Buehler WJ, Gilfrich JW, Wiley RC (1963) Effect of low-temperature phase changes on the mechanical properties of alloys near composition TiNi. J Appl Phys 34:1475–1477CrossRef
4.
Zurück zum Zitat Otsuka K, Ren X (2005) Physical metallurgy of Ti-Ni-based shape memory alloys. Prog Mater Sci 50:511–678CrossRef Otsuka K, Ren X (2005) Physical metallurgy of Ti-Ni-based shape memory alloys. Prog Mater Sci 50:511–678CrossRef
5.
Zurück zum Zitat Warlimont H, Delaey L (1974) Martensitic transformations in copper-, silver- and gold-based alloys. Pergamon Press, Oxford Warlimont H, Delaey L (1974) Martensitic transformations in copper-, silver- and gold-based alloys. Pergamon Press, Oxford
6.
Zurück zum Zitat Kurdyumov GV, Khandros LG (1949) O « тepмoyпpyгoм » paвнoвecии пpи мapтeнcитныx пpeвpaщeнияx (On the “thermoelastic” equilibrium in martensitic transformations). Dokl Akad Nauk SSSR 66(2):211–214 in Russian Kurdyumov GV, Khandros LG (1949) O « тepмoyпpyгoм » paвнoвecии пpи мapтeнcитныx пpeвpaщeнияx (On the “thermoelastic” equilibrium in martensitic transformations). Dokl Akad Nauk SSSR 66(2):211–214 in Russian
7.
Zurück zum Zitat Miyazaki S, Igo Y, Otsuka K (1986) Effect of thermal cycling on the transformation temperatures of Ti–Ni alloys. Acta Metall 34:2045–2051CrossRef Miyazaki S, Igo Y, Otsuka K (1986) Effect of thermal cycling on the transformation temperatures of Ti–Ni alloys. Acta Metall 34:2045–2051CrossRef
8.
Zurück zum Zitat Pelton AR (2011) Nitinol fatigue: a review of microstructures and mechanisms. J Mater Eng Perform 20(4–5):613–617CrossRef Pelton AR (2011) Nitinol fatigue: a review of microstructures and mechanisms. J Mater Eng Perform 20(4–5):613–617CrossRef
9.
Zurück zum Zitat Furuya Y, Park YC (1992) Thermal cyclic deformation and degradation of shape memory effect in Ti-Ni alloy. Nondestruct Test Eval 8–9:541–554CrossRef Furuya Y, Park YC (1992) Thermal cyclic deformation and degradation of shape memory effect in Ti-Ni alloy. Nondestruct Test Eval 8–9:541–554CrossRef
10.
Zurück zum Zitat Niendorf T, Krooß P, Batyrsina E, Paulsen A, Motemani Y, Ludwig A, Buenconsejo P, Frenzel J, Eggeler G, Maier HJ (2015) Functional and structural fatigue of titanium tantalum high temperature shape memory alloys. Mater Sci Eng A 620:359–366CrossRef Niendorf T, Krooß P, Batyrsina E, Paulsen A, Motemani Y, Ludwig A, Buenconsejo P, Frenzel J, Eggeler G, Maier HJ (2015) Functional and structural fatigue of titanium tantalum high temperature shape memory alloys. Mater Sci Eng A 620:359–366CrossRef
11.
Zurück zum Zitat Kumar PK, Lagoudas DC (2010) Experimental and microstructural characterization of simultaneous creep, plasticity and phase transformation in Ti50Pd40Ni10 high-temperature shape memory alloy. Acta Mater 58:1618–1628CrossRef Kumar PK, Lagoudas DC (2010) Experimental and microstructural characterization of simultaneous creep, plasticity and phase transformation in Ti50Pd40Ni10 high-temperature shape memory alloy. Acta Mater 58:1618–1628CrossRef
12.
Zurück zum Zitat Firstov GS, Van Humbeeck J, Koval YN (2006) High temperature shape memory alloys problems and prospects. J Intel Mater Syst Struct 17:1041–1047CrossRef Firstov GS, Van Humbeeck J, Koval YN (2006) High temperature shape memory alloys problems and prospects. J Intel Mater Syst Struct 17:1041–1047CrossRef
13.
Zurück zum Zitat Ma J, Karaman I, Noebe RD (2010) High temperature shape memory alloys. Int Mater Rev 55:257–315CrossRef Ma J, Karaman I, Noebe RD (2010) High temperature shape memory alloys. Int Mater Rev 55:257–315CrossRef
14.
Zurück zum Zitat Firstov G, Koval Y, Van Humbeeck J, Timoshevskii A, Kosorukova T, Verhovlyuk P (2015) Some physical principles of high temperature shape memory alloys design. In: Resnina N, Rubanik V (eds) Shape memory alloys: properties, technologies, opportunities. Trans Tech Publications Inc., Zurich, pp 207–232 Firstov G, Koval Y, Van Humbeeck J, Timoshevskii A, Kosorukova T, Verhovlyuk P (2015) Some physical principles of high temperature shape memory alloys design. In: Resnina N, Rubanik V (eds) Shape memory alloys: properties, technologies, opportunities. Trans Tech Publications Inc., Zurich, pp 207–232
15.
Zurück zum Zitat Firstov GS, Kosorukova TA, Koval YN, Odnosum VV (2015) High entropy shape memory alloys. In: Mater Today: Proceedings (to be published) Firstov GS, Kosorukova TA, Koval YN, Odnosum VV (2015) High entropy shape memory alloys. In: Mater Today: Proceedings (to be published)
16.
Zurück zum Zitat Firstov GS, Koval YN, Van Humbeeck J, Ochin P (2008) Martensitic transformation and shape memory effect in Ni3Ta: a novel high-temperature shape memory alloy. Mater Sci Eng A 481–482:590–593CrossRef Firstov GS, Koval YN, Van Humbeeck J, Ochin P (2008) Martensitic transformation and shape memory effect in Ni3Ta: a novel high-temperature shape memory alloy. Mater Sci Eng A 481–482:590–593CrossRef
18.
Zurück zum Zitat Declairieux C, Denquin A, Ochin P, Portier R, Vermaut P (2011) On the potential of Ti50Au50 compound as a high temperature shape memory alloy. Intermetallics 19:1461–1465CrossRef Declairieux C, Denquin A, Ochin P, Portier R, Vermaut P (2011) On the potential of Ti50Au50 compound as a high temperature shape memory alloy. Intermetallics 19:1461–1465CrossRef
19.
Zurück zum Zitat Koval YN (2000) High temperature shape memory effect in some alloys and compounds. Mater Sci Forum 327–328:271–278CrossRef Koval YN (2000) High temperature shape memory effect in some alloys and compounds. Mater Sci Forum 327–328:271–278CrossRef
20.
Zurück zum Zitat Otsuka K, Oda K, Ueno Y, Piao M, Ueki T, Horikawa H (1993) The shape memory effect in a Ti50Pd50 alloy. Scripta Metallurgica et Materiala 29(10):1355–1358CrossRef Otsuka K, Oda K, Ueno Y, Piao M, Ueki T, Horikawa H (1993) The shape memory effect in a Ti50Pd50 alloy. Scripta Metallurgica et Materiala 29(10):1355–1358CrossRef
21.
Zurück zum Zitat Vermaut P, Declairieux C, Ochin P, Kolomytsev V, Pasko A, Monastyrsky G, Denquin A, Portier R (2013) Martensitic transformation and shape memory effect at very high temperatures in HfPd and TiAu intermetallic compounds. J Alloys Compd 577S:S388–S392CrossRef Vermaut P, Declairieux C, Ochin P, Kolomytsev V, Pasko A, Monastyrsky G, Denquin A, Portier R (2013) Martensitic transformation and shape memory effect at very high temperatures in HfPd and TiAu intermetallic compounds. J Alloys Compd 577S:S388–S392CrossRef
22.
Zurück zum Zitat Koval YN, Firstov GS, Delaey L, Van Humbeeck J, Jang WY (1995) B2 intermetallic compounds of Zr. New class of the shape memory alloys. J Phys IV 5(C8):1103–1108 Koval YN, Firstov GS, Delaey L, Van Humbeeck J, Jang WY (1995) B2 intermetallic compounds of Zr. New class of the shape memory alloys. J Phys IV 5(C8):1103–1108
23.
Zurück zum Zitat Kosorukova T, Firstov G, Koval Y, Ivanchenko V, Van Humbeeck J (2013) Phase transformations and shape memory effect in alloys of Zr-Ni-Co system. Mater Sci Forum 738–739:123–127CrossRef Kosorukova T, Firstov G, Koval Y, Ivanchenko V, Van Humbeeck J (2013) Phase transformations and shape memory effect in alloys of Zr-Ni-Co system. Mater Sci Forum 738–739:123–127CrossRef
24.
Zurück zum Zitat Koval Y, Firstov G, Odnosum V (2013) High temperature martensitic transformation and shape memory behavior in HfIr intermetallic compound. Mater Sci Forum 738–739:72–76CrossRef Koval Y, Firstov G, Odnosum V (2013) High temperature martensitic transformation and shape memory behavior in HfIr intermetallic compound. Mater Sci Forum 738–739:72–76CrossRef
25.
Zurück zum Zitat Fonda RW, Jones HN, Vandermeer RA (1998) The shape memory effect in equiatomic TaRu and NbRu alloys. Scripta Mater 39:1031–1037CrossRef Fonda RW, Jones HN, Vandermeer RA (1998) The shape memory effect in equiatomic TaRu and NbRu alloys. Scripta Mater 39:1031–1037CrossRef
26.
Zurück zum Zitat Yamabe-Mitarai Y, Hara T, Miura S, Hosoda H (2006) Mechanical properties of Ti-50(Pt, Ir) high temperature shape memory alloys. Mater Trans 47:650–657CrossRef Yamabe-Mitarai Y, Hara T, Miura S, Hosoda H (2006) Mechanical properties of Ti-50(Pt, Ir) high temperature shape memory alloys. Mater Trans 47:650–657CrossRef
27.
Zurück zum Zitat Firstov GS, Koval YN, Van Humbeeck J, Portier R, Vermaut P, Ochin P (2006) Phase transformation in Zr-29.56 at.% Cu–19.85 Ni at.% melt-spun high-temperature shape memory alloy. Mater Sci Eng A 438-440:816–820CrossRef Firstov GS, Koval YN, Van Humbeeck J, Portier R, Vermaut P, Ochin P (2006) Phase transformation in Zr-29.56 at.% Cu–19.85 Ni at.% melt-spun high-temperature shape memory alloy. Mater Sci Eng A 438-440:816–820CrossRef
28.
Zurück zum Zitat Firstov G, Koval Y, Lotkov A, Grishkov V, Van Humbeeck J (2012) The increase of the martensitic deformation during shape memory effect in deformed TiNi. Funct Mater Lett 5:1250011-1–1250011-4CrossRef Firstov G, Koval Y, Lotkov A, Grishkov V, Van Humbeeck J (2012) The increase of the martensitic deformation during shape memory effect in deformed TiNi. Funct Mater Lett 5:1250011-1–1250011-4CrossRef
29.
Zurück zum Zitat Sawaguchi T, Sato M, Ishida A (2002) Microstructure and shape memory behavior of Ti51.2(Pd27.0Ni21.8) and Ti49.5(Pd28.5Ni22.0) thin films. Mater Sci Eng A 332(1-2):47–55CrossRef Sawaguchi T, Sato M, Ishida A (2002) Microstructure and shape memory behavior of Ti51.2(Pd27.0Ni21.8) and Ti49.5(Pd28.5Ni22.0) thin films. Mater Sci Eng A 332(1-2):47–55CrossRef
30.
Zurück zum Zitat Firstov GS, Van Humbeeck J, Koval YN (2004) Comparison of the high temperature shape memory behaviour for ZrCu-based, Ti-Ni-Zr and Ti-Ni-Hf alloys. Scripta Materialia 50:243–248CrossRef Firstov GS, Van Humbeeck J, Koval YN (2004) Comparison of the high temperature shape memory behaviour for ZrCu-based, Ti-Ni-Zr and Ti-Ni-Hf alloys. Scripta Materialia 50:243–248CrossRef
31.
Zurück zum Zitat Firstov GS, Van Humbeeck J, Koval YN (2004) High-temperature shape memory alloys: some recent developments. Mater Sci Eng A 378:2–10CrossRef Firstov GS, Van Humbeeck J, Koval YN (2004) High-temperature shape memory alloys: some recent developments. Mater Sci Eng A 378:2–10CrossRef
32.
Zurück zum Zitat Yeh JW, Chen SK, Lin SG, Gan JY, Chin TS, Shun TT, Tsau CH, Chang SY (2004) Nanostructured high entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater 6:299–303CrossRef Yeh JW, Chen SK, Lin SG, Gan JY, Chin TS, Shun TT, Tsau CH, Chang SY (2004) Nanostructured high entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater 6:299–303CrossRef
33.
Zurück zum Zitat Zhang Y, Zuo TT, Nang Z, Cao MC, Dahmen KA, Liaw PK, Lu ZP (2014) Microstructures and properties of high entropy alloys. Prog Mater Sci 61:1–93CrossRef Zhang Y, Zuo TT, Nang Z, Cao MC, Dahmen KA, Liaw PK, Lu ZP (2014) Microstructures and properties of high entropy alloys. Prog Mater Sci 61:1–93CrossRef
34.
Zurück zum Zitat Murty BS, Yeh J-W, Ranganathan S (2014) High entropy alloys. Elsevier Science & Technology Butterworth-Heinemann Ltd, OxfordCrossRef Murty BS, Yeh J-W, Ranganathan S (2014) High entropy alloys. Elsevier Science & Technology Butterworth-Heinemann Ltd, OxfordCrossRef
35.
Zurück zum Zitat Guo S, Liu CT (2011) Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase. Prog Nat Sci 21:433–446CrossRef Guo S, Liu CT (2011) Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase. Prog Nat Sci 21:433–446CrossRef
36.
Zurück zum Zitat Firstov SA, Rogul TG, Krapivka NA, Ponomarev SS, Tkach VN, Kovylyaev VV, Gorban’ VF, Karpets MV (2014) Solid-solution hardening of a high-entropy AlTiVCrNbMo alloy. Russ Metall (Metally) 4:285–292CrossRef Firstov SA, Rogul TG, Krapivka NA, Ponomarev SS, Tkach VN, Kovylyaev VV, Gorban’ VF, Karpets MV (2014) Solid-solution hardening of a high-entropy AlTiVCrNbMo alloy. Russ Metall (Metally) 4:285–292CrossRef
37.
Zurück zum Zitat Tsai KY, Tsai MH, Yeh JW (2013) Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys. Acta Mater 61(13):4887–4897CrossRef Tsai KY, Tsai MH, Yeh JW (2013) Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys. Acta Mater 61(13):4887–4897CrossRef
38.
Zurück zum Zitat Planes A, Macqueron JL, Ortin J (1988) Energy contributions in the martensitic transformation of shape memory alloys. Philos Mag Lett 57(6):291–298CrossRef Planes A, Macqueron JL, Ortin J (1988) Energy contributions in the martensitic transformation of shape memory alloys. Philos Mag Lett 57(6):291–298CrossRef
39.
Zurück zum Zitat Firstov G, Timoshevskii A, Kosorukova T, Koval Y, Matviychuk Y, Verhovlyuk P (2015) Electronic and crystal structure of the high entropy TiZrHfCoNiCu intermetallics undergoing martensitic transformation, ESOMAT-2015, EDP Sciences, MATEC Web of Conferences, Antwerp (to be published) Firstov G, Timoshevskii A, Kosorukova T, Koval Y, Matviychuk Y, Verhovlyuk P (2015) Electronic and crystal structure of the high entropy TiZrHfCoNiCu intermetallics undergoing martensitic transformation, ESOMAT-2015, EDP Sciences, MATEC Web of Conferences, Antwerp (to be published)
40.
Zurück zum Zitat Koval YN, Firstov GS, Kotko AV (1992) Martensitic transformation and shape memory effect in ZrCu intermetallic compound. Scripta Metall et Mater 27(12):1611–1616CrossRef Koval YN, Firstov GS, Kotko AV (1992) Martensitic transformation and shape memory effect in ZrCu intermetallic compound. Scripta Metall et Mater 27(12):1611–1616CrossRef
41.
Zurück zum Zitat Ma LQ, Wang LM, Zhang T et al (2002) Bulk glass formation of Ti–Zr–Hf–Cu–M (M = Fe Co, Ni) alloys. Mater Trans 43:277–280CrossRef Ma LQ, Wang LM, Zhang T et al (2002) Bulk glass formation of Ti–Zr–Hf–Cu–M (M = Fe Co, Ni) alloys. Mater Trans 43:277–280CrossRef
42.
Zurück zum Zitat Yang X, Zhang Y (2012) Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater Chem Phys 132:233–238CrossRef Yang X, Zhang Y (2012) Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater Chem Phys 132:233–238CrossRef
Metadaten
Titel
Directions for High-Temperature Shape Memory Alloys’ Improvement: Straight Way to High-Entropy Materials?
verfasst von
G. S. Firstov
T. A. Kosorukova
Yu N. Koval
P. A. Verhovlyuk
Publikationsdatum
01.12.2015
Verlag
Springer International Publishing
Erschienen in
Shape Memory and Superelasticity / Ausgabe 4/2015
Print ISSN: 2199-384X
Elektronische ISSN: 2199-3858
DOI
https://doi.org/10.1007/s40830-015-0039-7

Weitere Artikel der Ausgabe 4/2015

Shape Memory and Superelasticity 4/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.