Skip to main content
Erschienen in: International Journal of Steel Structures 4/2018

01.06.2018

Computationally Efficient and Accurate Simulation of Cyclic Behavior for Rectangular HSS Braces

verfasst von: Chang Seok Lee, Min Soo Sung, Sang Whan Han, Hyun Woo Jee

Erschienen in: International Journal of Steel Structures | Ausgabe 4/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

During earthquakes, braces behave in complex manners because of the asymmetric response nature of their responses in tension and compression. Hollow structural sections (HSS) have been popularly used for braces due to their sectional efficiency in compression. The purpose of this study is to accurately simulate the cyclic behavior of rectangular HSS braces using a computationally efficient numerical model. A conceptually efficient and simple physical theory model is used as a basis model. To improve the accuracy of the model, cyclic beam growth and buckling load, as well as the incidences of local buckling and brace fracture are estimated using empirical equations obtained from regression analyses using test data on rectangular HSS braces. The accuracy of the proposed model is verified by comparing actual and simulated cyclic curves of brace specimens with various slenderness and width-to-thickness ratios.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat AISC. (2001). Load and resistance factor design specification for structural steel buildings (3rd ed.). Chicago: American Institute of Steel Construction. AISC. (2001). Load and resistance factor design specification for structural steel buildings (3rd ed.). Chicago: American Institute of Steel Construction.
Zurück zum Zitat AISC. (2016). Seismic provisions for structural steel buildings. Chicago: American Institute of Steel Construction, Chicago, ANSI/AISC 341-16. AISC. (2016). Seismic provisions for structural steel buildings. Chicago: American Institute of Steel Construction, Chicago, ANSI/AISC 341-16.
Zurück zum Zitat Alipour, M., & Aghakouchak, A. (2013). Numerical analysis of the nonlinear performance of concentrically braced frames under cyclic loading. International Journal of Steel Structures, 13(3), 401–419.CrossRef Alipour, M., & Aghakouchak, A. (2013). Numerical analysis of the nonlinear performance of concentrically braced frames under cyclic loading. International Journal of Steel Structures, 13(3), 401–419.CrossRef
Zurück zum Zitat ASCE 7. (2010). Minimum design loads for buildings and other structures. Reston: ASCE 7-10, American Society of Civil Engineers. ASCE 7. (2010). Minimum design loads for buildings and other structures. Reston: ASCE 7-10, American Society of Civil Engineers.
Zurück zum Zitat Azad, S. K., Topkaya, C., & Bybordiani, M. (2018). Dynamic buckling of braces in concentrically braced frames. Earthquake Engineering and Structural Dynamics, 47, 613–633.CrossRef Azad, S. K., Topkaya, C., & Bybordiani, M. (2018). Dynamic buckling of braces in concentrically braced frames. Earthquake Engineering and Structural Dynamics, 47, 613–633.CrossRef
Zurück zum Zitat Black, R. G., Wenger, W. A., & Popov, E. P. (1980). Inelastic buckling of steel strut under cyclic load reversals. Report No. UCB/EERC-80/40, Earthquake Engineering Research Center, University of California, Berkeley. Black, R. G., Wenger, W. A., & Popov, E. P. (1980). Inelastic buckling of steel strut under cyclic load reversals. Report No. UCB/EERC-80/40, Earthquake Engineering Research Center, University of California, Berkeley.
Zurück zum Zitat Bruneau, M., Uang, C. M., & Whittaker, A. (2011). Ductile design of steel structures. New York: McGraw-Hill Book Co., Inc. Bruneau, M., Uang, C. M., & Whittaker, A. (2011). Ductile design of steel structures. New York: McGraw-Hill Book Co., Inc.
Zurück zum Zitat Dicleli, M., & Calik, E. E. (2008). Physical theory hysteretic model for steel braces. Journal of Structural Engineering, ASCE, 134(7), 1215–1228.CrossRef Dicleli, M., & Calik, E. E. (2008). Physical theory hysteretic model for steel braces. Journal of Structural Engineering, ASCE, 134(7), 1215–1228.CrossRef
Zurück zum Zitat Ding, Z., Fouthch, D. A., & Han, S. W. (2008). Fracture modeling of rectangular hollow section steel braces. Engineering Journal, 45(3), 171–185. Ding, Z., Fouthch, D. A., & Han, S. W. (2008). Fracture modeling of rectangular hollow section steel braces. Engineering Journal, 45(3), 171–185.
Zurück zum Zitat Fell, B. V., Kanvinde, A. M., Deierlein, G. G., & Myers, A. T. (2009). Experimental investigation of inelastic cyclic buckling and fracture of steel braces. Journal of Structural Engineering, 135, 19–32.CrossRef Fell, B. V., Kanvinde, A. M., Deierlein, G. G., & Myers, A. T. (2009). Experimental investigation of inelastic cyclic buckling and fracture of steel braces. Journal of Structural Engineering, 135, 19–32.CrossRef
Zurück zum Zitat Gogginsa, J. M., Brodericka, B. M., Elghazoulib, A. Y., & Lucasa, A. S. (2005). Experimental cyclic response of cold-formed hollow steel bracing members. Engineering Structures, 27(7), 977–989.CrossRef Gogginsa, J. M., Brodericka, B. M., Elghazoulib, A. Y., & Lucasa, A. S. (2005). Experimental cyclic response of cold-formed hollow steel bracing members. Engineering Structures, 27(7), 977–989.CrossRef
Zurück zum Zitat Han, S. W., Kim, W. T., & Foutch, D. A. (2007a). Seismic behavior of HSS bracing members according to width-thickness ratio under symmetric cyclic loading. Journal of Structural Engineering, 133, 264–273.CrossRef Han, S. W., Kim, W. T., & Foutch, D. A. (2007a). Seismic behavior of HSS bracing members according to width-thickness ratio under symmetric cyclic loading. Journal of Structural Engineering, 133, 264–273.CrossRef
Zurück zum Zitat Han, S. W., Kim, W. T., & Foutch, D. A. (2007b). Tensile strength equation for HSS bracing members having slotted end connections. Earthquake Engineering and Structural Dynamics, 36, 995–1008.CrossRef Han, S. W., Kim, W. T., & Foutch, D. A. (2007b). Tensile strength equation for HSS bracing members having slotted end connections. Earthquake Engineering and Structural Dynamics, 36, 995–1008.CrossRef
Zurück zum Zitat Ikeda, K., & Mahin, S. A. (1984). A refined physical theory model for predicting the seismic behavior of braced steel frames. Report No. UCB/EERC-84/12. Berkeley. Ikeda, K., & Mahin, S. A. (1984). A refined physical theory model for predicting the seismic behavior of braced steel frames. Report No. UCB/EERC-84/12. Berkeley.
Zurück zum Zitat Jain, A. K., & Goel, S. C. (1978). Hysteresis models for steel members subjected to cyclic buckling or cyclic end moments and buckling—User’s guide for DRAIN-2D: EL9 and EL10. Report No. UMEE 78R6. University of Michigan, Ann Arbor. Jain, A. K., & Goel, S. C. (1978). Hysteresis models for steel members subjected to cyclic buckling or cyclic end moments and bucklingUser’s guide for DRAIN-2D: EL9 and EL10. Report No. UMEE 78R6. University of Michigan, Ann Arbor.
Zurück zum Zitat Jin, J., & El-Tawil, S. (2003). Inelastic cyclic model for steel braces. Journal of Engineering Mechanics, ASCE, 129(5), 548–557.CrossRef Jin, J., & El-Tawil, S. (2003). Inelastic cyclic model for steel braces. Journal of Engineering Mechanics, ASCE, 129(5), 548–557.CrossRef
Zurück zum Zitat Kayvani, K., & Barzegar, F. (1996). Hysteretic modeling of tubular members and offshore platforms. Engineering Structures, 18(2), 93–101.CrossRef Kayvani, K., & Barzegar, F. (1996). Hysteretic modeling of tubular members and offshore platforms. Engineering Structures, 18(2), 93–101.CrossRef
Zurück zum Zitat Lee, K. (2003). Seismic vulnerability evaluation of axially loaded steel build-up laced members. Ph.D. thesis. Department of Civil, Structural, and Environmental Engineering, State University of New York, Buffalo. Lee, K. (2003). Seismic vulnerability evaluation of axially loaded steel build-up laced members. Ph.D. thesis. Department of Civil, Structural, and Environmental Engineering, State University of New York, Buffalo.
Zurück zum Zitat Lee, S. S., & Goel, S. C. (1987). Seismic behavior of hollow and concrete-filled square tubular bracing members. Report No. UMCE 87-11. Department of Civil Eng., University of Michigan, Ann Arbor. Lee, S. S., & Goel, S. C. (1987). Seismic behavior of hollow and concrete-filled square tubular bracing members. Report No. UMCE 87-11. Department of Civil Eng., University of Michigan, Ann Arbor.
Zurück zum Zitat Lee, Y. J., Oh, J., Abdu, H. H., & Ju, Y. K. (2016). Finite element analysis of optimized brace angle for the diagrid structural system. International Journal of Steel Structures, 16(4), 1355–1363.CrossRef Lee, Y. J., Oh, J., Abdu, H. H., & Ju, Y. K. (2016). Finite element analysis of optimized brace angle for the diagrid structural system. International Journal of Steel Structures, 16(4), 1355–1363.CrossRef
Zurück zum Zitat Maison, B. F., & Popov, E. P. (1980). Cyclic response prediction for braced steel frames. Journal of Structural Engineering, ASCE, 106(7), 1401–1416. Maison, B. F., & Popov, E. P. (1980). Cyclic response prediction for braced steel frames. Journal of Structural Engineering, ASCE, 106(7), 1401–1416.
Zurück zum Zitat Mazzolani, F. M., & Gioncu, V. (2000). Seismic resistant steel structures (Vol. 420). New York: CISM International Centre for Mechanical Science. Courses and lectures, Springer.CrossRef Mazzolani, F. M., & Gioncu, V. (2000). Seismic resistant steel structures (Vol. 420). New York: CISM International Centre for Mechanical Science. Courses and lectures, Springer.CrossRef
Zurück zum Zitat Nip, K. H., Gardner, L., & Elghazouli, A. Y. (2010). Cyclic testing and numerical modelling of carbon steel and stainless steel tubular bracing members. Engineering Structures, 32(2), 424–441.CrossRef Nip, K. H., Gardner, L., & Elghazouli, A. Y. (2010). Cyclic testing and numerical modelling of carbon steel and stainless steel tubular bracing members. Engineering Structures, 32(2), 424–441.CrossRef
Zurück zum Zitat Seo, A., Moon, K. H., & Han, S. W. (2010). Fracture prediction due to local buckling in bracing members. Journal of Architectural Institute of Korea (AIK), 26(12), 91–98. Seo, A., Moon, K. H., & Han, S. W. (2010). Fracture prediction due to local buckling in bracing members. Journal of Architectural Institute of Korea (AIK), 26(12), 91–98.
Zurück zum Zitat Shaback, J. B. (2001). Behavior of square HSS braces with end connections under reversed cyclic axial loading. Master thesis, University of Calgary, Calgary. Shaback, J. B. (2001). Behavior of square HSS braces with end connections under reversed cyclic axial loading. Master thesis, University of Calgary, Calgary.
Zurück zum Zitat Shaback, J. B., & Brown, T. (2003). Behaviour of square hollow structural steel braces with end connections under reversed cyclic axial loading. Canadian Journal of Civil Engineering, 30(4), 745–753.CrossRef Shaback, J. B., & Brown, T. (2003). Behaviour of square hollow structural steel braces with end connections under reversed cyclic axial loading. Canadian Journal of Civil Engineering, 30(4), 745–753.CrossRef
Zurück zum Zitat Soroushian, P., & Alawa, M. S. (1990). Hysteretic modeling of steel struts: Refined physical theory approach. Journal of Structural Engineering, 116(11), 2903–2916.CrossRef Soroushian, P., & Alawa, M. S. (1990). Hysteretic modeling of steel struts: Refined physical theory approach. Journal of Structural Engineering, 116(11), 2903–2916.CrossRef
Zurück zum Zitat Tremblay, R., Archambault, M. H., & Filiatrault, A. (2003). Seismic response of concentrically braced steel frames made with rectangular hollow bracing members. Journal of Structural Engineering, 129, 1626–1636.CrossRef Tremblay, R., Archambault, M. H., & Filiatrault, A. (2003). Seismic response of concentrically braced steel frames made with rectangular hollow bracing members. Journal of Structural Engineering, 129, 1626–1636.CrossRef
Zurück zum Zitat Uriz, P. (2005). Towards earthquake resistant design of concentrically braced steel structures. Ph.D. thesis, University of California, Berkeley. Uriz, P. (2005). Towards earthquake resistant design of concentrically braced steel structures. Ph.D. thesis, University of California, Berkeley.
Metadaten
Titel
Computationally Efficient and Accurate Simulation of Cyclic Behavior for Rectangular HSS Braces
verfasst von
Chang Seok Lee
Min Soo Sung
Sang Whan Han
Hyun Woo Jee
Publikationsdatum
01.06.2018
Verlag
Korean Society of Steel Construction
Erschienen in
International Journal of Steel Structures / Ausgabe 4/2018
Print ISSN: 1598-2351
Elektronische ISSN: 2093-6311
DOI
https://doi.org/10.1007/s13296-018-0071-5

Weitere Artikel der Ausgabe 4/2018

International Journal of Steel Structures 4/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.