Skip to main content

2022 | OriginalPaper | Buchkapitel

Conductive Gels as a Tool for Electric Field Homogenization and Electroporation in Discontinuous Regions: In Vitro and In Silico Study

verfasst von : L. B. Lopes, G. B. Pintarelli, D. O. H. Suzuki

Erschienen in: XXVII Brazilian Congress on Biomedical Engineering

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Electrochemotherapy (ECT) is a cancer treatment that combines chemotherapy and electroporation (EP) where EP is used to increase cells membrane permeability, facilitating the entrance of drugs into cancer cells. For successful treatment, the entire tumor region needs to be exposed to an adequate electric field intensity. In silico and in vitro studies are used in a pre-treatment step to analyse the electric field distribution and possible mistakes, especially in irregular and complex tissue structures such as protuberances and holes. Conductive gels can be used to fill irregular tissue structures and make the electric field distribution homogenous. In this paper, an in silico study and in vitro vegetal model were used to evaluate the effectiveness of commercial conductive gels in electric field homogenization of discontinuity areas. Both studies demonstrate that conductive gels were effective in homogenizing electric field in the discontinuity region.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kinosita K, Tsong TY (1977) Formation and resealing of pores of controlled sizes in human erythrocyte membrane. Nature 268:438–441CrossRef Kinosita K, Tsong TY (1977) Formation and resealing of pores of controlled sizes in human erythrocyte membrane. Nature 268:438–441CrossRef
2.
Zurück zum Zitat Kinosita K, Ashikawa I, Saita N et al (1988) Electroporation of cell membrane visualized under a pulsed-laser fluorescence microscope. Biophys J 53:1015–1019CrossRef Kinosita K, Ashikawa I, Saita N et al (1988) Electroporation of cell membrane visualized under a pulsed-laser fluorescence microscope. Biophys J 53:1015–1019CrossRef
3.
Zurück zum Zitat Miklavcic D (2019) Handbook of electroporation. Springer, Berlin Miklavcic D (2019) Handbook of electroporation. Springer, Berlin
4.
Zurück zum Zitat Weaver JC, Chizmadzhev YA (1996) Theory of electroporation: a review. Bioelectrochem Bioenerg 41:135–160CrossRef Weaver JC, Chizmadzhev YA (1996) Theory of electroporation: a review. Bioelectrochem Bioenerg 41:135–160CrossRef
5.
Zurück zum Zitat Chen C, Smye SW, Robinson MP et al (2006) Membrane electroporation theories: a review. Med Biol Eng Comput 44:5–14CrossRef Chen C, Smye SW, Robinson MP et al (2006) Membrane electroporation theories: a review. Med Biol Eng Comput 44:5–14CrossRef
6.
Zurück zum Zitat Fox MB, Esveld DC, Valero A et al (2006) Electroporation of cells in microfluidic devices: a review. Anal Bioanal Chem 385:474CrossRef Fox MB, Esveld DC, Valero A et al (2006) Electroporation of cells in microfluidic devices: a review. Anal Bioanal Chem 385:474CrossRef
7.
Zurück zum Zitat Lacković I, Magjarević R, Miklavčič D (2010) Incorporating Electroporation-related conductivity changes into models for the calculation of the electric field distribution in tissue. XII Mediterranean Conf Med Biolog Eng Comput 2010:695–698 Lacković I, Magjarević R, Miklavčič D (2010) Incorporating Electroporation-related conductivity changes into models for the calculation of the electric field distribution in tissue. XII Mediterranean Conf Med Biolog Eng Comput 2010:695–698
8.
Zurück zum Zitat Pavliha D, Kos B, Županič A et al (2012) Patient-specific treatment planning of electrochemotherapy: Procedure design and possible pitfalls. Bioelectrochemistry 87:265–273CrossRef Pavliha D, Kos B, Županič A et al (2012) Patient-specific treatment planning of electrochemotherapy: Procedure design and possible pitfalls. Bioelectrochemistry 87:265–273CrossRef
9.
Zurück zum Zitat Corovic S, Lackovic I, Sustaric P et al (2013) Modeling of electric field distribution in tissues during electroporation. Biomed Eng Online 12:16CrossRef Corovic S, Lackovic I, Sustaric P et al (2013) Modeling of electric field distribution in tissues during electroporation. Biomed Eng Online 12:16CrossRef
10.
Zurück zum Zitat Suzuki DOH, Anselmo J, Oliveira KD et al (2015) Numerical model of dog mast cell tumor treated by electrochemotherapy. Artif Organs. 39:192–197CrossRef Suzuki DOH, Anselmo J, Oliveira KD et al (2015) Numerical model of dog mast cell tumor treated by electrochemotherapy. Artif Organs. 39:192–197CrossRef
11.
Zurück zum Zitat Berkenbrock JA, Machado RG, Suzuki DOH (2018) Electrochemotherapy effectiveness loss due to electric field indentation between needle electrodes: A numerical study. J healthcare Eng Berkenbrock JA, Machado RG, Suzuki DOH (2018) Electrochemotherapy effectiveness loss due to electric field indentation between needle electrodes: A numerical study. J healthcare Eng
12.
Zurück zum Zitat Heyse A B, Pintarelli G B, Suzuki D O H. Electric field distribution and electroporation in discontinuous regions using vegetal model: In: vitro and in silico study in XXVI Brazilian congress on biomedical engineering, 465–469 Heyse A B, Pintarelli G B, Suzuki D O H. Electric field distribution and electroporation in discontinuous regions using vegetal model: In: vitro and in silico study in XXVI Brazilian congress on biomedical engineering, 465–469
13.
Zurück zum Zitat Ivorra A, Rubinsky B (2007) Electric field modulation in tissue electroporation with electrolytic and non-electrolytic additives. Bioelectrochemistry 70:551–560CrossRef Ivorra A, Rubinsky B (2007) Electric field modulation in tissue electroporation with electrolytic and non-electrolytic additives. Bioelectrochemistry 70:551–560CrossRef
14.
Zurück zum Zitat Ivorra A, Al-Sakere B, Rubinsky B et al (2008) Use of conductive gels for electric field homogenization increases the antitumor efficacy of electroporation therapies. Phys Med Biol 53:6605CrossRef Ivorra A, Al-Sakere B, Rubinsky B et al (2008) Use of conductive gels for electric field homogenization increases the antitumor efficacy of electroporation therapies. Phys Med Biol 53:6605CrossRef
15.
Zurück zum Zitat Ivorra A, Rubinsky B (2007) Optimum conductivity of gels for electric field homogenization in tissue electroporation therapies. In: IV Latin American Congress on biomedical engineering 2007, bioengineering solutions for Latin America health, 619–622 Ivorra A, Rubinsky B (2007) Optimum conductivity of gels for electric field homogenization in tissue electroporation therapies. In: IV Latin American Congress on biomedical engineering 2007, bioengineering solutions for Latin America health, 619–622
16.
Zurück zum Zitat Suzuki DOH, Marques CMG, Rangel MMM (2016) Conductive gel increases the small tumor treatment with electrochemotherapy using needle electrodes. Artif Organs 40:705–711CrossRef Suzuki DOH, Marques CMG, Rangel MMM (2016) Conductive gel increases the small tumor treatment with electrochemotherapy using needle electrodes. Artif Organs 40:705–711CrossRef
17.
Zurück zum Zitat Oey I, Faridnia F, Leong SY et al (2016) Determination of pulsed electric fields effect on the structure of potato tubers handbook of electroporation, 1–19 Oey I, Faridnia F, Leong SY et al (2016) Determination of pulsed electric fields effect on the structure of potato tubers handbook of electroporation, 1–19
18.
Zurück zum Zitat Berkenbrock JA, Pintarelli GB, Jr Antônio A C et al (2019) Verification of electroporation models using the potato tuber as in vitro simulation J Med Biol Eng 39:224–229 Berkenbrock JA, Pintarelli GB, Jr Antônio A C et al (2019) Verification of electroporation models using the potato tuber as in vitro simulation J Med Biol Eng 39:224–229
19.
Zurück zum Zitat Pintarelli GB, Berkenbrock JA, Rassele A et al (2019) Computer simulation of commercial conductive gels and their application to increase the safety of electrochemotherapy treatment. Med Eng Phys 74:99–105CrossRef Pintarelli GB, Berkenbrock JA, Rassele A et al (2019) Computer simulation of commercial conductive gels and their application to increase the safety of electrochemotherapy treatment. Med Eng Phys 74:99–105CrossRef
20.
Zurück zum Zitat Sel D, Cukjati D, Batiuskaite D et al (2005) Sequential finite element model of tissue electropermeabilization. IEEE Trans Biomed Eng 52:816–827CrossRef Sel D, Cukjati D, Batiuskaite D et al (2005) Sequential finite element model of tissue electropermeabilization. IEEE Trans Biomed Eng 52:816–827CrossRef
22.
Zurück zum Zitat Berkenbrock J, Pintarelli G, Antônio A et al (2017) In vitro simulation of electroporation using potato model. In: CMBES Proceedings, 40 Berkenbrock J, Pintarelli G, Antônio A et al (2017) In vitro simulation of electroporation using potato model. In: CMBES Proceedings, 40
23.
Zurück zum Zitat Ivorra A, Mir L M, Rubinsky B (2009) Electric field redistribution due to conductivity changes during tissue electroporation: experiments with a simple vegetal model. In: World congress on medical physics and biomedical engineering; Munich, Germany, 59–62 Ivorra A, Mir L M, Rubinsky B (2009) Electric field redistribution due to conductivity changes during tissue electroporation: experiments with a simple vegetal model. In: World congress on medical physics and biomedical engineering; Munich, Germany, 59–62
24.
Zurück zum Zitat Groselj A, Kos B, Cemazar M et al (2015) Coupling treatment planning with navigation system: a new technological approach in treatment of head and neck tumors by electrochemotherapy. Biomed Eng Online 14:S2CrossRef Groselj A, Kos B, Cemazar M et al (2015) Coupling treatment planning with navigation system: a new technological approach in treatment of head and neck tumors by electrochemotherapy. Biomed Eng Online 14:S2CrossRef
25.
Zurück zum Zitat Mahna A, Firoozabadi SMP, Shankayi Z (2014) The effect of ELF magnetic field on tumor growth after electrochemotherapy. J Membr Biol 247:9–15CrossRef Mahna A, Firoozabadi SMP, Shankayi Z (2014) The effect of ELF magnetic field on tumor growth after electrochemotherapy. J Membr Biol 247:9–15CrossRef
Metadaten
Titel
Conductive Gels as a Tool for Electric Field Homogenization and Electroporation in Discontinuous Regions: In Vitro and In Silico Study
verfasst von
L. B. Lopes
G. B. Pintarelli
D. O. H. Suzuki
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-030-70601-2_167

Neuer Inhalt