Skip to main content

2020 | OriginalPaper | Buchkapitel

Conjugation of Nanomaterials and Bioanodes for Energy Production in Microbial Fuel Cell

verfasst von : Ambika Arkatkar, Arvind Kumar Mungray, Preeti Sharma

Erschienen in: Nanotechnology for Energy and Environmental Engineering

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The term nanotechnology is popularized for the study of small particles with unique properties. Nanoparticles are widely studied for their use in the medicinal field. The application of these tiny particles in the abiotic world of energy generation is also acceptable. The use of surface enhancement property of nanomaterials can be applied in the field of biotic energy generation and simultaneous waste treatment technology. The two goals are targeted under microbial fuel cell (MFC) technology. The MFC reactors can be added as one major area for application of nanoparticles. This chapter will deal with the basic idea of MFC and its limitation. We will further understand the use of nanoparticles as a solution for power enhancement in an MFC reactor.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Alharbi NS (2013) A microbial fuel cell modified with carbon nanomaterials for organic removal and denitrification. Math Probl Eng 9 Alharbi NS (2013) A microbial fuel cell modified with carbon nanomaterials for organic removal and denitrification. Math Probl Eng 9
Zurück zum Zitat Alzate-Gaviria L, García-Rodríguez O, Flota-Bañuelos M, Del Rio Jorge-Rivera F, Cámara-Chalé G, Domínguez-Maldonado J (2016) Stacked-mfc into a typical septic tank used in public housing. Biofuels 7:79–86CrossRef Alzate-Gaviria L, García-Rodríguez O, Flota-Bañuelos M, Del Rio Jorge-Rivera F, Cámara-Chalé G, Domínguez-Maldonado J (2016) Stacked-mfc into a typical septic tank used in public housing. Biofuels 7:79–86CrossRef
Zurück zum Zitat Arkatkar A, Sharma P, Mungray AK (2019) In: Tomar DAS, Mandaliya DVB (ed) Red biotechnology. Daya Publishing House® A Division of Astral International Pvt. Ltd, New Delhi, India, pp 1–42 Arkatkar A, Sharma P, Mungray AK (2019) In: Tomar DAS, Mandaliya DVB (ed) Red biotechnology. Daya Publishing House® A Division of Astral International Pvt. Ltd, New Delhi, India, pp 1–42
Zurück zum Zitat Asai Y, Miyahara M, Kouzuma A, Watanabe K (2017) Comparative evaluation of wastewater-treatment microbial fuel cells in terms of organics removal, waste-sludge production, and electricity generation. Bioresour Bioprocess 4:30–30CrossRef Asai Y, Miyahara M, Kouzuma A, Watanabe K (2017) Comparative evaluation of wastewater-treatment microbial fuel cells in terms of organics removal, waste-sludge production, and electricity generation. Bioresour Bioprocess 4:30–30CrossRef
Zurück zum Zitat Babauta J, Renslow R, Lewandowski Z, Beyenal H (2012) Electrochemically active biofilms: facts and fiction. A Rev Biofouling 28:789–812CrossRef Babauta J, Renslow R, Lewandowski Z, Beyenal H (2012) Electrochemically active biofilms: facts and fiction. A Rev Biofouling 28:789–812CrossRef
Zurück zum Zitat Bosire EM, Blank LM, Rosenbaum MA (2016) Strain- and substrate-dependent redox mediator and electricity production by Pseudomonas aeruginosa. Appl Environ Microbiol 82:5026–5038CrossRef Bosire EM, Blank LM, Rosenbaum MA (2016) Strain- and substrate-dependent redox mediator and electricity production by Pseudomonas aeruginosa. Appl Environ Microbiol 82:5026–5038CrossRef
Zurück zum Zitat Bullen RA, Arnot TC, Lakeman JB, Walsh FC (2006) Biofuel cells and their development. Biosens Bioelectron 21:2015–2045CrossRef Bullen RA, Arnot TC, Lakeman JB, Walsh FC (2006) Biofuel cells and their development. Biosens Bioelectron 21:2015–2045CrossRef
Zurück zum Zitat Cao Y, Mu H, Liu W, Zhang R, Guo J, Xian M, Liu H (2019) Electricigens in the anode of microbial fuel cells: pure cultures versus mixed communities. Microb Cell Fact 18:39CrossRef Cao Y, Mu H, Liu W, Zhang R, Guo J, Xian M, Liu H (2019) Electricigens in the anode of microbial fuel cells: pure cultures versus mixed communities. Microb Cell Fact 18:39CrossRef
Zurück zum Zitat Chi M (2013) Graphite felt anode modified by electropolymerization of nano-polypyrrole to improve microbial fuel cell (MFC) production of bioelectricity. J Microb Biochem Technol 01:1–4CrossRef Chi M (2013) Graphite felt anode modified by electropolymerization of nano-polypyrrole to improve microbial fuel cell (MFC) production of bioelectricity. J Microb Biochem Technol 01:1–4CrossRef
Zurück zum Zitat Choudhury P, Prasad Uday US, Bandyopadhyay TK, Ray RN, Bhunia B (2017) Performance improvement of microbial fuel cell (mfc) using suitable electrode and bioengineered organisms: A review. Bioengineered 8:471–487CrossRef Choudhury P, Prasad Uday US, Bandyopadhyay TK, Ray RN, Bhunia B (2017) Performance improvement of microbial fuel cell (mfc) using suitable electrode and bioengineered organisms: A review. Bioengineered 8:471–487CrossRef
Zurück zum Zitat Du YL, Feng YL, Teng Q, Li HR (2015) Effect of inorganic salt in the culture on microbial fuel cells performance. Int J Electrochem Sci 10:1316–1325 Du YL, Feng YL, Teng Q, Li HR (2015) Effect of inorganic salt in the culture on microbial fuel cells performance. Int J Electrochem Sci 10:1316–1325
Zurück zum Zitat Franks AE, Nevin KP (2010) Microbial fuel cells, a current review. Energies 3:899–919CrossRef Franks AE, Nevin KP (2010) Microbial fuel cells, a current review. Energies 3:899–919CrossRef
Zurück zum Zitat Gajda I, Greenman J, Melhuish C, Ieropoulos I (2015) Self-sustainable electricity production from algae grown in a microbial fuel cell system. Biomass Bioenergy 82:87–93CrossRef Gajda I, Greenman J, Melhuish C, Ieropoulos I (2015) Self-sustainable electricity production from algae grown in a microbial fuel cell system. Biomass Bioenergy 82:87–93CrossRef
Zurück zum Zitat Ghadge AN, Sreemannarayana M, Duteanu N, Ghangrekar MM (2014) Influence of ceramic separator’s characteristics on microbial fuel cell performance. Int J Electrochem Sci 4:315–326 Ghadge AN, Sreemannarayana M, Duteanu N, Ghangrekar MM (2014) Influence of ceramic separator’s characteristics on microbial fuel cell performance. Int J Electrochem Sci 4:315–326
Zurück zum Zitat Huang L, Tang J, Chen M, Liu X, Zhou S (2018) Two modes of riboflavin-mediated extracellular electron transfer in geobacter uraniireducens. Front Microbiol 9:2886CrossRef Huang L, Tang J, Chen M, Liu X, Zhou S (2018) Two modes of riboflavin-mediated extracellular electron transfer in geobacter uraniireducens. Front Microbiol 9:2886CrossRef
Zurück zum Zitat Ieropoulos I, Melhuish C, Greenman J, Horsfield I (2005) Ecobot-ii: AN artificial agent with a natural metabolism. Int J Adv Robot Syst 2:31CrossRef Ieropoulos I, Melhuish C, Greenman J, Horsfield I (2005) Ecobot-ii: AN artificial agent with a natural metabolism. Int J Adv Robot Syst 2:31CrossRef
Zurück zum Zitat Ieropoulos IA, Ledezma P, Stinchcombe A, Papaharalabos G, Melhuish C, Greenman J (2013) Waste to real energy: the first mfc powered mobile phone. Phys Chem Chem Phys 15:15312–15316CrossRef Ieropoulos IA, Ledezma P, Stinchcombe A, Papaharalabos G, Melhuish C, Greenman J (2013) Waste to real energy: the first mfc powered mobile phone. Phys Chem Chem Phys 15:15312–15316CrossRef
Zurück zum Zitat Jiang X, Hu J, Lieber AM, Jackan CS, Biffinger JC, Fitzgerald LA, Ringeisen BR, Lieber CM (2014) Nanoparticle facilitated extracellular electron transfer in microbial fuel cells. Nano Lett 14:6737–6742CrossRef Jiang X, Hu J, Lieber AM, Jackan CS, Biffinger JC, Fitzgerald LA, Ringeisen BR, Lieber CM (2014) Nanoparticle facilitated extracellular electron transfer in microbial fuel cells. Nano Lett 14:6737–6742CrossRef
Zurück zum Zitat Kalathil S, Nguyen VH, Shim J-J, Khan MM, Lee J, Cho MH (2013) Enhanced performance of a microbial fuel cell using CNT/MnO2 nanocomposite as a bioanode material. J Nanosci Nanaotechno 13:7712–7716CrossRef Kalathil S, Nguyen VH, Shim J-J, Khan MM, Lee J, Cho MH (2013) Enhanced performance of a microbial fuel cell using CNT/MnO2 nanocomposite as a bioanode material. J Nanosci Nanaotechno 13:7712–7716CrossRef
Zurück zum Zitat Liang M, Tao HC, Li SF, Li W, Zhang LJ, Ni JR (2011) Treatment of Cu2+ containing wastewater by microbial fuel cell with excess sludge as anodic substrate. J Environ Sci (China) 32:179–185 Liang M, Tao HC, Li SF, Li W, Zhang LJ, Ni JR (2011) Treatment of Cu2+ containing wastewater by microbial fuel cell with excess sludge as anodic substrate. J Environ Sci (China) 32:179–185
Zurück zum Zitat Logan BE (2008) Microbial fuel cells. Wiley, New Jersey Logan BE (2008) Microbial fuel cells. Wiley, New Jersey
Zurück zum Zitat Logan BE, Hamelers B, Rozendal R, Schröder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40:5181–5192CrossRef Logan BE, Hamelers B, Rozendal R, Schröder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40:5181–5192CrossRef
Zurück zum Zitat Lv Z, Xie D, Yue X, Feng C, Wei C (2012) Ruthenium oxide-coated carbon felt electrode: a highly active anode for microbial fuel cell applications. J Power Sources 210:26–31CrossRef Lv Z, Xie D, Yue X, Feng C, Wei C (2012) Ruthenium oxide-coated carbon felt electrode: a highly active anode for microbial fuel cell applications. J Power Sources 210:26–31CrossRef
Zurück zum Zitat Mathuriya AS, Jadhav DA, Ghangrekar MM (2018) Architectural adaptations of microbial fuel cells. Appl Microbiol Biotechnol 102:9419–9432CrossRef Mathuriya AS, Jadhav DA, Ghangrekar MM (2018) Architectural adaptations of microbial fuel cells. Appl Microbiol Biotechnol 102:9419–9432CrossRef
Zurück zum Zitat Mehdinia A, Ziaei E, Jabbari A (2014) Multi-walled carbon nanotube/SnO2 nanocomposite: a novel anode material for microbial fuel cells. Electrochim Acta 130:512–518CrossRef Mehdinia A, Ziaei E, Jabbari A (2014) Multi-walled carbon nanotube/SnO2 nanocomposite: a novel anode material for microbial fuel cells. Electrochim Acta 130:512–518CrossRef
Zurück zum Zitat Mohamed HO, Abdelkareem MA, Obaid M, Chae S-H, Park M, Kim HY, Barakat NAM (2017) Cobalt oxides-sheathed cobalt nano flakes to improve surface properties of carbonaceous electrodes utilized in microbial fuel cells. Chem Eng J 326:497–506CrossRef Mohamed HO, Abdelkareem MA, Obaid M, Chae S-H, Park M, Kim HY, Barakat NAM (2017) Cobalt oxides-sheathed cobalt nano flakes to improve surface properties of carbonaceous electrodes utilized in microbial fuel cells. Chem Eng J 326:497–506CrossRef
Zurück zum Zitat Mohamed HO, Obaid M, Poo K-M, Ali Abdelkareem M, Talas SA, Fadali OA, Kim HY, Chae K-J (2018a) Fe/Fe2O3 nanoparticles as anode catalyst for exclusive power generation and degradation of organic compounds using microbial fuel cell. Chem Eng J 349:800–807CrossRef Mohamed HO, Obaid M, Poo K-M, Ali Abdelkareem M, Talas SA, Fadali OA, Kim HY, Chae K-J (2018a) Fe/Fe2O3 nanoparticles as anode catalyst for exclusive power generation and degradation of organic compounds using microbial fuel cell. Chem Eng J 349:800–807CrossRef
Zurück zum Zitat Mohamed HO, Sayed ET, Obaid M, Choi Y-J, Park S-G, Al-Qaradawi S, Chae K-J (2018b) Transition metal nanoparticles doped carbon paper as a cost-effective anode in a microbial fuel cell powered by pure and mixed biocatalyst cultures. Int J Hydrog Energy 43:21560–21571CrossRef Mohamed HO, Sayed ET, Obaid M, Choi Y-J, Park S-G, Al-Qaradawi S, Chae K-J (2018b) Transition metal nanoparticles doped carbon paper as a cost-effective anode in a microbial fuel cell powered by pure and mixed biocatalyst cultures. Int J Hydrog Energy 43:21560–21571CrossRef
Zurück zum Zitat Muthukumar H, Mohammed SN, Chandrasekaran N, Sekar AD, Pugazhendhi A, Matheswaran M (2019) Effect of iron doped zinc oxide nanoparticles coating in the anode on current generation in microbial electrochemical cells. Int J Hydrog Energy 44:2407–2416CrossRef Muthukumar H, Mohammed SN, Chandrasekaran N, Sekar AD, Pugazhendhi A, Matheswaran M (2019) Effect of iron doped zinc oxide nanoparticles coating in the anode on current generation in microbial electrochemical cells. Int J Hydrog Energy 44:2407–2416CrossRef
Zurück zum Zitat Ogawa T, Takeuchi M, Kajikawa Y (2018) Analysis of trends and emerging technologies in water electrolysis research based on a computational method: a comparison with fuel cell research. Sustainability 10:478CrossRef Ogawa T, Takeuchi M, Kajikawa Y (2018) Analysis of trends and emerging technologies in water electrolysis research based on a computational method: a comparison with fuel cell research. Sustainability 10:478CrossRef
Zurück zum Zitat Pant D, Van Bogaert G, Diels L, Vanbroekhoven K (2010) A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour Technol 101:1533–1543CrossRef Pant D, Van Bogaert G, Diels L, Vanbroekhoven K (2010) A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour Technol 101:1533–1543CrossRef
Zurück zum Zitat Phonsa S, Sreearunothai P, Charojrochkul S, Sombatmankhong K (2018) Electrodeposition of mno2 on polypyrrole-coated stainless steel to enhance electrochemical activities in microbial fuel cells. Solid State Ion 316:125–134CrossRef Phonsa S, Sreearunothai P, Charojrochkul S, Sombatmankhong K (2018) Electrodeposition of mno2 on polypyrrole-coated stainless steel to enhance electrochemical activities in microbial fuel cells. Solid State Ion 316:125–134CrossRef
Zurück zum Zitat Pushkar P, Prakash O, Imran M, Mungray AA, Kailasa SK, Mungray AK (2018) Effect of cerium oxide nanoparticles coating on the electrodes of benthic microbial fuel cell. Sep Sci Technol 54:213–223CrossRef Pushkar P, Prakash O, Imran M, Mungray AA, Kailasa SK, Mungray AK (2018) Effect of cerium oxide nanoparticles coating on the electrodes of benthic microbial fuel cell. Sep Sci Technol 54:213–223CrossRef
Zurück zum Zitat Qin M, He Z (2017) Resource recovery by osmotic bioelectrochemical systems towards sustainable wastewater treatment. Environ Sci Water Res Technol 3:583–592CrossRef Qin M, He Z (2017) Resource recovery by osmotic bioelectrochemical systems towards sustainable wastewater treatment. Environ Sci Water Res Technol 3:583–592CrossRef
Zurück zum Zitat Qin M, Ping Q, Lu Y, Abu-Reesh IM, He Z (2015) Understanding electricity generation in osmotic microbial fuel cells through integrated experimental investigation and mathematical modeling. Bioresour Technol 195:194–201CrossRef Qin M, Ping Q, Lu Y, Abu-Reesh IM, He Z (2015) Understanding electricity generation in osmotic microbial fuel cells through integrated experimental investigation and mathematical modeling. Bioresour Technol 195:194–201CrossRef
Zurück zum Zitat Quan X, Xu H, Sun B, Xiao Z (2018) Anode modification with palladium nanoparticles enhanced evans blue removal and power generation in microbial fuel cells. Int Biodeter Biodegr 132:94–101CrossRef Quan X, Xu H, Sun B, Xiao Z (2018) Anode modification with palladium nanoparticles enhanced evans blue removal and power generation in microbial fuel cells. Int Biodeter Biodegr 132:94–101CrossRef
Zurück zum Zitat Rajesh PP, Noori MT, Ghangrekar MM (2018) Graphene oxide/polytetrafluoroethylene composite anode and chaetoceros pre-treated anodic inoculum enhancing performance of microbial fuel cell. J Clean Energy Technol 6:236–241CrossRef Rajesh PP, Noori MT, Ghangrekar MM (2018) Graphene oxide/polytetrafluoroethylene composite anode and chaetoceros pre-treated anodic inoculum enhancing performance of microbial fuel cell. J Clean Energy Technol 6:236–241CrossRef
Zurück zum Zitat Rikame SS, Mungray AA, Mungray AK (2018) Modification of anode electrode in microbial fuel cell for electrochemical recovery of energy and copper metal. Electrochim Acta 275:8–17CrossRef Rikame SS, Mungray AA, Mungray AK (2018) Modification of anode electrode in microbial fuel cell for electrochemical recovery of energy and copper metal. Electrochim Acta 275:8–17CrossRef
Zurück zum Zitat Rotaru AE, Shrestha PM, Liu F, Markovaite B, Chen S, Nevin KP, Lovley DR (2014) Direct interspecies electron transfer between geobacter metallireducens and methanosarcina barkeri. Appl Environ Microbiol 80:4599–4605CrossRef Rotaru AE, Shrestha PM, Liu F, Markovaite B, Chen S, Nevin KP, Lovley DR (2014) Direct interspecies electron transfer between geobacter metallireducens and methanosarcina barkeri. Appl Environ Microbiol 80:4599–4605CrossRef
Zurück zum Zitat Sarma MK, Quadir MGA, Bhaduri R, Kaushik S, Goswami P (2018) Composite polymer coated magnetic nanoparticles based anode enhances dye degradation and power production in microbial fuel cells. Biosens Bioelectron 119:94–102CrossRef Sarma MK, Quadir MGA, Bhaduri R, Kaushik S, Goswami P (2018) Composite polymer coated magnetic nanoparticles based anode enhances dye degradation and power production in microbial fuel cells. Biosens Bioelectron 119:94–102CrossRef
Zurück zum Zitat Schröder U (2012) Editorial: microbial fuel cells and microbial electrochemistry: into the next century! Chemsuschem 5:959–959CrossRef Schröder U (2012) Editorial: microbial fuel cells and microbial electrochemistry: into the next century! Chemsuschem 5:959–959CrossRef
Zurück zum Zitat Sekar AD, Jayabalan T, Muthukumar H, Chandrasekaran NI, Mohamed SN, Matheswaran M (2019) Enhancing power generation and treatment of dairy waste water in microbial fuel cell using cu-doped iron oxide nanoparticles decorated anode. Energy 172:173–180CrossRef Sekar AD, Jayabalan T, Muthukumar H, Chandrasekaran NI, Mohamed SN, Matheswaran M (2019) Enhancing power generation and treatment of dairy waste water in microbial fuel cell using cu-doped iron oxide nanoparticles decorated anode. Energy 172:173–180CrossRef
Zurück zum Zitat Singh S, Bairagi PK, Verma N (2018) Candle soot-derived carbon nanoparticles: an inexpensive and efficient electrode for microbial fuel cells. Electrochim Acta 264:119–127CrossRef Singh S, Bairagi PK, Verma N (2018) Candle soot-derived carbon nanoparticles: an inexpensive and efficient electrode for microbial fuel cells. Electrochim Acta 264:119–127CrossRef
Zurück zum Zitat Song T-S, Jin Y, Bao J, Kang D, Xie J (2016) Graphene/biofilm composites for enhancement of hexavalent chromium reduction and electricity production in a biocathode microbial fuel cell. J Hazard Mater 317:73–80CrossRef Song T-S, Jin Y, Bao J, Kang D, Xie J (2016) Graphene/biofilm composites for enhancement of hexavalent chromium reduction and electricity production in a biocathode microbial fuel cell. J Hazard Mater 317:73–80CrossRef
Zurück zum Zitat Sumisha A, Haribabu K (2018) Modification of graphite felt using nano polypyrrole and polythiophene for microbial fuel cell applications-a comparative study. Int J Hydrog Energy 43:3308–3316CrossRef Sumisha A, Haribabu K (2018) Modification of graphite felt using nano polypyrrole and polythiophene for microbial fuel cell applications-a comparative study. Int J Hydrog Energy 43:3308–3316CrossRef
Zurück zum Zitat Tepeli Y, Anik U (2015) Comparison of performances of bioanodes modified with graphene oxide and graphene–platinum hybrid nanoparticles. Electrochem Commun 57:31–34CrossRef Tepeli Y, Anik U (2015) Comparison of performances of bioanodes modified with graphene oxide and graphene–platinum hybrid nanoparticles. Electrochem Commun 57:31–34CrossRef
Zurück zum Zitat Tharali AD, Sain N, Osborne WJ (2016) Microbial fuel cells in bioelectricity production. Front Life Sci 9:252–266CrossRef Tharali AD, Sain N, Osborne WJ (2016) Microbial fuel cells in bioelectricity production. Front Life Sci 9:252–266CrossRef
Zurück zum Zitat Wahab KAA, Nazri AAA, Azam AAM, Ghazali NF, Salleh EM, Mahmood NAN (2018) Development of immobilised bioanode for microbial fuel cell. Chem Eng Trans 63:607–612 Wahab KAA, Nazri AAA, Azam AAM, Ghazali NF, Salleh EM, Mahmood NAN (2018) Development of immobilised bioanode for microbial fuel cell. Chem Eng Trans 63:607–612
Zurück zum Zitat Wang Y, Li B, Cui D, Xiang X, Li W (2014) Nano-molybdenum carbide/carbon nanotubes composite as bifunctional anode catalyst for high-performance escherichia coli-based microbial fuel cell. Biosens Bioelectron 51:349–355CrossRef Wang Y, Li B, Cui D, Xiang X, Li W (2014) Nano-molybdenum carbide/carbon nanotubes composite as bifunctional anode catalyst for high-performance escherichia coli-based microbial fuel cell. Biosens Bioelectron 51:349–355CrossRef
Zurück zum Zitat Winfield J, Gajda I, Greenman J, Ieropoulos I (2016) A review into the use of ceramics in microbial fuel cells. Bioresour Technol 215:296–303CrossRef Winfield J, Gajda I, Greenman J, Ieropoulos I (2016) A review into the use of ceramics in microbial fuel cells. Bioresour Technol 215:296–303CrossRef
Zurück zum Zitat Wu X, Xiong X, Owens G, Brunetti G, Zhou J, Yong X, Xie X, Zhang L, Wei P, Jia H (2018) Anode modification by biogenic gold nanoparticles for the improved performance of microbial fuel cells and microbial community shift. Bioresour Technol 270:11–19CrossRef Wu X, Xiong X, Owens G, Brunetti G, Zhou J, Yong X, Xie X, Zhang L, Wei P, Jia H (2018) Anode modification by biogenic gold nanoparticles for the improved performance of microbial fuel cells and microbial community shift. Bioresour Technol 270:11–19CrossRef
Zurück zum Zitat Xie X, Criddle C, Cui Y (2015) Design and fabrication of bioelectrodes for microbial bioelectrochemical systems. Energy Environ Sci 8:3418–3441 Xie X, Criddle C, Cui Y (2015) Design and fabrication of bioelectrodes for microbial bioelectrochemical systems. Energy Environ Sci 8:3418–3441
Zurück zum Zitat Xu H, Quan X, Xiao Z, Chen L (2018) Effect of anodes decoration with metal and metal oxides nanoparticles on pharmaceutically active compounds removal and power generation in microbial fuel cells. Chem Eng J 335:539–547CrossRef Xu H, Quan X, Xiao Z, Chen L (2018) Effect of anodes decoration with metal and metal oxides nanoparticles on pharmaceutically active compounds removal and power generation in microbial fuel cells. Chem Eng J 335:539–547CrossRef
Zurück zum Zitat Yan ZH, Wang M, Huang BX, Liu RM, Zhao JS (2013) Graphene supported pt-co alloy nanoparticles as cathode catalyst for microbial fuel cells. Int J Electrochem Sci 8:149–158 Yan ZH, Wang M, Huang BX, Liu RM, Zhao JS (2013) Graphene supported pt-co alloy nanoparticles as cathode catalyst for microbial fuel cells. Int J Electrochem Sci 8:149–158
Zurück zum Zitat Yu Y-Y, Guo CX, Yong Y-C, Li CM, Song H (2015) Nitrogen doped carbon nanoparticles enhanced extracellular electron transfer for high-performance microbial fuel cells anode. Chemosphere 140:26–33CrossRef Yu Y-Y, Guo CX, Yong Y-C, Li CM, Song H (2015) Nitrogen doped carbon nanoparticles enhanced extracellular electron transfer for high-performance microbial fuel cells anode. Chemosphere 140:26–33CrossRef
Zurück zum Zitat Zeng L, Chen X, Li H, Xiong J, Hu M, Li X, Li W (2018a) Highly dispersed polydopamine-modified Mo2C/MoO2 nanoparticles as anode electrocatalyst for microbial fuel cells. Electrochim Acta 283:528–537CrossRef Zeng L, Chen X, Li H, Xiong J, Hu M, Li X, Li W (2018a) Highly dispersed polydopamine-modified Mo2C/MoO2 nanoparticles as anode electrocatalyst for microbial fuel cells. Electrochim Acta 283:528–537CrossRef
Zurück zum Zitat Zeng L, Zhao S, Zhang L, He M (2018b) A facile synthesis of molybdenum carbide nanoparticles-modified carbonized cotton textile as an anode material for high-performance microbial fuel cells. RSC Adv 8:40490–40497CrossRef Zeng L, Zhao S, Zhang L, He M (2018b) A facile synthesis of molybdenum carbide nanoparticles-modified carbonized cotton textile as an anode material for high-performance microbial fuel cells. RSC Adv 8:40490–40497CrossRef
Zurück zum Zitat Zhang Y, Min B, Huang L, Angelidaki I (2011) Electricity generation and microbial community response to substrate changes in microbial fuel cell. Bioresour Technol 102:1166–1173CrossRef Zhang Y, Min B, Huang L, Angelidaki I (2011) Electricity generation and microbial community response to substrate changes in microbial fuel cell. Bioresour Technol 102:1166–1173CrossRef
Zurück zum Zitat Zhang C, Liang P, Yang X, Jiang Y, Bian Y, Chen C, Zhang X, Huang X (2016) Binder-free graphene and manganese oxide coated carbon felt anode for high-performance microbial fuel cell. Biosens Bioelectron 81:32–38CrossRef Zhang C, Liang P, Yang X, Jiang Y, Bian Y, Chen C, Zhang X, Huang X (2016) Binder-free graphene and manganese oxide coated carbon felt anode for high-performance microbial fuel cell. Biosens Bioelectron 81:32–38CrossRef
Zurück zum Zitat Zhao N, Ma Z, Song H, Xie Y, Zhang M (2019) Enhancement of bioelectricity generation by synergistic modification of vertical carbon nanotubes/polypyrrole for the carbon fibers anode in microbial fuel cell. Electrochim Acta 296:69–74CrossRef Zhao N, Ma Z, Song H, Xie Y, Zhang M (2019) Enhancement of bioelectricity generation by synergistic modification of vertical carbon nanotubes/polypyrrole for the carbon fibers anode in microbial fuel cell. Electrochim Acta 296:69–74CrossRef
Zurück zum Zitat Zhou Y, Zhao S, Yin L, Zhang J, Bao Y, Shi H (2018) Development of a novel membrane-less microbial fuel cell (ml-mfc) with a sandwiched nitrifying chamber for efficient wastewater treatment. Electroanalysis 30:2145–2152CrossRef Zhou Y, Zhao S, Yin L, Zhang J, Bao Y, Shi H (2018) Development of a novel membrane-less microbial fuel cell (ml-mfc) with a sandwiched nitrifying chamber for efficient wastewater treatment. Electroanalysis 30:2145–2152CrossRef
Zurück zum Zitat Zhu F, Wang W, Zhang X, Tao G (2011) Electricity generation in a membrane-less microbial fuel cell with down-flow feeding onto the cathode. Bioresour Technol 102:7324–7328CrossRef Zhu F, Wang W, Zhang X, Tao G (2011) Electricity generation in a membrane-less microbial fuel cell with down-flow feeding onto the cathode. Bioresour Technol 102:7324–7328CrossRef
Zurück zum Zitat Zou L, Huang Y, Wu X, Long Z-E (2019) Synergistically promoting microbial biofilm growth and interfacial bioelectrocatalysis by molybdenum carbide nanoparticles functionalized graphene anode for bioelectricity production. J Power Sources 413:174–181CrossRef Zou L, Huang Y, Wu X, Long Z-E (2019) Synergistically promoting microbial biofilm growth and interfacial bioelectrocatalysis by molybdenum carbide nanoparticles functionalized graphene anode for bioelectricity production. J Power Sources 413:174–181CrossRef
Metadaten
Titel
Conjugation of Nanomaterials and Bioanodes for Energy Production in Microbial Fuel Cell
verfasst von
Ambika Arkatkar
Arvind Kumar Mungray
Preeti Sharma
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-33774-2_7

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.